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2k,  2kr and 2k-p Factorial Designs
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Types of Experimental Designs

! Full Factorial Design:

" Uses all possible combinations of 

all levels of all factors.

n=3*2*2=12

Too costly!
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Types of Experimental Designs

! Reducing Cost of Full Factorial Design:
" Reduce the no. of levels of each factor. If all 

factors have 2 levels, we have a 2k factorial 

design.

" Reduce the number of factors.

" Use fractional factorial designs.

 4

Types of Experimental Designs

! Fractional Factorial Design:

" Use a fraction of the full 

factorial design.

n=3*2=6

Some interactions
among factors may
be lost!The factor memory size was eliminated.
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2k  Factorial Designs
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2k Factorial Designs

! 2k designs are used to determine the 

effects of k factors, each of which have 

two alternatives or levels
" Easier to analyze than full factorial designs 

" Help sort out factors in the order of their 

impact, especially when there are a large 

number of factors
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22 Factorial Designs

! Special case of 2k design with k = 2

! Example: impact of cache size and memory 

size on the performance of a computer

Cache 

size (KB)

Memory 

4 MB

Size

16 MB

1 15 45

2 25 75

Performance in MIPS
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Regression Model

Let y denote the performance of the computer. We 
can model y using a non-linear regression model as 
follows:

where xa and xb  are variables that represent the 

factors memory size and cache size respectively, 
and the q’s are called effects

 
! 

y = q
0

+ qaxa + qbxb+qab xa xb
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Regression Model (con’td)

Let

Substituting the four observations yields

! 

x
a

=
"1 if memory size =  4 MB

1 if memory size =  16 MB 

# 
$ 
% 

! 

x
b

=
"1 if cache size =  1 KB

1 if cache size =  2 KB 

# 
$ 
% 

! 

15 = q
0
" qa " qb + qab

! 

45 = q
0

+ qa " qb " qab

! 

25 = q
0
" qa + qb " qab

! 

75 = q
0

+ qa + qb + qab
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Regression Model (cont’d)

There is a unique solution for the four effects: 

q0 = 40, qa = 20, qb = 10, qab = 5. So, we have:

Thus the mean performance is 40 MIPS, the effect 

of memory size is 20 MIPS, the effect of cache 

size 10 MIPS, and the interaction between 

memory and cache size accounts for 5 MIPS
! 

y = 40 + 20xa +10xb + 5xa xb
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Computing effects

In general, the model for a 22 design can be 

solved to obtain:

! 

q
0

=
1

4
(y

1
+y

2
+ y

3
+ y

4
)

! 

qA =
1

4
("y

1
+y

2
" y

3
+ y

4
)

! 

qB =
1

4
("y

1
"y

2
+ y

3
+ y

4
)

! 

qAB =
1

4
(y

1
"y

2
" y

3
+ y

4
)
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Sign table method for calculating effects

I A B AB Y 

1 -1 -1 1 15

1 1 -1 -1 45

1 -1 1 -1 25

1 1 1 1 75

160 80 40 20 Total

40 20 10 5 Total/4
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Allocation of variation

! The importance of a factor is explained by the 
proportion of the total variation in the response 
that is explained by the factor
" If one factor contributes 90% of the variation whereas 

another factor contributes only 5%, then the second 
factor may be considered relatively unimportant

! The total variation of y or Sum of Squares Total 
(SST) is given by:

 

! 

SST = (yi

i=1

2
2

" # y )
2
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Allocation of variation (cont’d)

For a 22 design, the variation can be divided into 

three parts:

where the three terms on the RHS represent the 

portion of the variation that is explained by the 

effects of A, B, and the interaction AB 

respectively (see derivation in textbook). Thus
! 

SST = 2
2
qA
2

+ 2
2
qB
2

+ 2
2
qAB
2

! 

SST = SSA + SSB + SSAB
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Example

For the memory-cache example,

Total variation

                         

Thus, 76% (1600) of the total variation can be attributed to 
memory size, 19% (400) can be attributed to cache, and only 
5% (100) can be attributed to the interaction between 
memory and cache.

! 

y =
1

4
(15 + 55 + 25 + 75) = 40

! 

= (yi

i=1

4

" # y )
2

= (25
2

+15
2

+15
2

+ 35
2
)

= 2100 = 4 $ 202 + 4 $102 + 4 $ 52
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General 2k Factorial Designs

! The analysis techniques described so far 
for 22 designs can be extended to that for 
a 2k design
" Given k factors with two levels each, 2k 

experiments are required and there are 2k 

effects

• k main effects,      two-factor interactions,       
three-factor interactions, and so on

• The sign table technique for calculating effects 
and allocating the variation is applicable! 

k

2

" 

# 
$ 
% 

& 
' 

! 

k

3

" 

# 
$ 
% 

& 
' 
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2kr Factorial Designs with Replications
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2kr Factorial Designs

! Shortcoming of 2k design: cannot estimate 

experimental error because no experiment 

is repeated

! Solution: Replication
" Repeat each experiment in a 2k design r times 

yielding 2kr observations (called a 2kr design)

" We will discuss k = 2

• Can be generalized as in 2k design (see section 
18.9 of Jain)
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22r Factorial Design

! Model for 22 design is extended to add an error 
term

where the q’s are effects as before and e is the 
experimental error

! Holding the factor level constant and repeating 
the experiment yields samples of the response yi

! Statistical analysis of the yi’s yields the fraction 

of variation due to experimental error, and 
confidence intervals for y 

! 

y = q
0

+ qA xA + qB xB+qAB xA xB + e
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Computation of Effects

I A B AB Y Mean 

1 -1 -1 1 (15,18,12) 15

1 1 -1 -1 (45,48,51) 48

1 -1 1 -1 (25,28,19) 24

1 1 1 1 (75,75,81) 77

164 86 38 20 Total

41 21.5 9.5 5 Total/4

! 

y 

The effects can be calculated using a sign table as before except that in 

the y column we put the sample mean of r measurements at the given 

factor level
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Estimation of experimental errors

Once the effects have been computed, the model 

can be used to estimate the response for any 

given factor values as:

The difference between the estimate and the 

measured value yij in the jth replication of the ith 

experiment represents the experimental error
! 

ˆ y i = q
0

+ qA xAi + qB xBi+qAB xAixBi

! 

eij = yij " ˆ y i = yij " q
0

+ qA xAi + qB xBi+qAB xAixBi
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Sign table augmented with errors

I A B AB (yi1,yi2,yi3)  ei1 ei2 ei3

1 -1 -1 1 (15,18,12) 15 0 3 -3

1 1 -1 -1 (45,48,51) 48 -3 0 3

1 -1 1 -1 (25,28,19) 24 1 4 -5

1 1 1 1 (75,75,81) 77 -2 -2 4

41 21.5 9.5 5

! 

ˆ y i

! 

SSE = eij
2

j=1

r

"
i=1

2
2

" =102
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Allocation of variation

Let      represent the mean of responses from all 
replications of all experiments. Then

We can also show that SST = SSY - SS0, giving us 
an easier way to compute SSE:

 

 

! 

y 
..

! 

SSE = SSY " (SS0 + SSA + SSB + SSAB)

where SSY = yij
2
 and SS0 = 2

2

i, j

# rq0

2

! 

SST = (yij

i, j

" # y ..) = 2
2
rqA

2
+ 2

2
rqB

2
+ 2

2
rqAB

2
+ eij

2

i, j

"

               SST = SSA +SSB + SSAB + SSE
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Example

For our memory-cache example

SSY = 152+182+122+452+…+752+752+812= 27,204

SS0 = 12 x 412= 20,172

SSA = 5547, SSB = 1083, SSAB = 300

SSE = 27,204 - 22x3(412+21.52+9.52+52) = 102

SST = SSY - SS0 = 27,204 - 20,172 = 7032

Thus, factor A explains 5547/7032 or 78.88% of the 
variation, factor B explains 15.4%, interaction AB 
explains 4.27% of the variation.

The remaining 1.45% is attributed to experimental 
errors
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Confidence intervals for effects

! The effects computed from a sample are random 

variables

! We can calculate the confidence intervals for the 

effects if we assume that
" Errors are normally distributed with zero mean

" Errors for different experiments are independent

" Errors have a constant standard deviation

! Under these assumptions, we can use the t-

distribution to compute confidence intervals as 

discussed previously (Chapter 13, Jain)
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Confidence intervals for effects

! The sample variance of errors can be 

estimated from the SSE as follows:

! The confidence intervals for effects can 

then be computed as 
! 

               se
2

=
SSE

2
2
(r "1)

sq0

2
= sqA

2
= sqB

2
= sqAB

2
= se

2
/(2

2
r)

! 

qi ± t
[1"# / 2;22 (r"1)]

sqi
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Example

! For the memory-cache example, 

! The t-value for 8 degrees of freedom and 90% 
confidence is 1.86. Thus, the confidence intervals 
for the effects are 

    that is (39.08,42.91), (19.58,23.41), (7.58,11.41), 
(3.08,6.91) for q0, qA, qB, and qAB respectively

! 

se =
SSE

2
2
(r "1)

=
102

8
= 12.75 = 3.57

sqi = se / (2
2
r) = 3.57 / 12 =1.03

! 

qi ± (1.86)(1.03) = qi ±1.92
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Additional Reading (Jain)

! Confidence intervals for predicted 

responses: Section 18.6

! Visual tests for verifying the model: 

Section 18.7

! Multiplicative models: Section 18.8

! General 2kr factorial design: Section 18.9
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2k-p Fractional Factorial Designs
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Fractional Factorial Designs

! If we have 7 factors, a 27 factorial design 

will require 128 experiments

! How much information can we obtain from 

fewer experiments, e.g. 27-4 = 8 

experiments?

! A 2k-p design allows the analysis of k two-

level factors with fewer experiments
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A 27-4 Experimental Design

Experiment # I A B C AB AC BC ABC

1 1 -1 -1 -1 1 1 1 -1

2 1 1 -1 -1 -1 -1 1 1

3 1 -1 1 -1 -1 1 -1 1

4 1 1 1 -1 1 -1 -1 -1

5 1 -1 -1 1 1 -1 -1 1

6 1 1 -1 1 -1 1 -1 -1

7 1 -1 1 1 -1 -1 1 -1

8 1 1 1 1 1 1 1 1

Consider the 23 design below:

If the factors, AB, AC, BC, ABC are replaced by D, E, F, 

and G we get a 27-4 design
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A 27-4 design

Experiment # I A B C D E F G y

1 1 -1 -1 -1 1 1 1 -1 20

2 1 1 -1 -1 -1 -1 1 1 35

3 1 -1 1 -1 -1 1 -1 1 7

4 1 1 1 -1 1 -1 -1 -1 42

5 1 -1 -1 1 1 -1 -1 1 36

6 1 1 -1 1 -1 1 -1 -1 50

7 1 -1 1 1 -1 -1 1 -1 45

8 1 1 1 1 1 1 1 1 82

Total 317 101 35 109 43 1 47 3

Total/8 39.62 12.62 4.37 13.62 5.37 0.12 5.9 0.37

Percent 

variation

37.26 4.74 43.4 6.75 0 8.1 0.03

If the interactions AB, AC, AD,…, ABCD are negligible we can use the table 

below
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Preparing the sign table for a 2k-p design

1. Choose k-p factors and prepare a complete sign 
table for a full factorial design with k-p factors. 

 There are 2k-p rows and columns in the table.

The first column is marked I and consists of all 1’s. 

The next k-p columns correspond to the k-p selected 
factors. The remaining columns correspond to the 
products of these factors.

2. Of the 2k-p-k+p-1 remaining columns, select p 
columns corresponding to the p factors that 
were not chosen in step 1.

Note: there are several possibilities; the columns 
corresponding to negligible interactions should be 
chosen. 

 34

A 24-1 design

Experiment # I A B C AB AC BC

1 1 -1 -1 -1 1 1 1 -1

2 1 1 -1 -1 -1 -1 1 1

3 1 -1 1 -1 -1 1 -1 1

4 1 1 1 -1 1 -1 -1 -1

5 1 -1 -1 1 1 -1 -1 1

6 1 1 -1 1 -1 1 -1 -1

7 1 -1 1 1 -1 -1 1 -1

8 1 1 1 1 1 1 1 1

DABC

If the ABC interaction is negligible, we should replace 

ABC with D. If AB is negligible, we can replace AB with D.
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Confounding
! The drawback of 2k-p designs is that the experiments only yield 

the combined effects of two or more factors. This is called 
confounding
" On the previous slide, the effects of ABC and D are confounded 

(denoted as ABC = D)

! In a 2k-1 design, every column represents a sum of two effects. 
" For our example,

• A = BCD, B = ACD, C = ABD, AB = CD, AC = BD, 
BC = AD, ABC = D, I = ABCD

• This means that columns for A, B, C, D actually correspond to 
A + BCD, B + ACD, C + ABD, D+ ABC, etc.

" If we replace AB with D,

• I = ABD, A = BD, B = AD, C = A BCD, D = AB, AC = BCD, 
BC = ACD, ABC = CD

! In a 2k-p design, 2p effects are confounded
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Algebra of Confounding

Consider the first  design in which ABC is replaced 
with D
" Here,  I = ABCD

" All the confoundings can be generated using the 
following rules

1. I is treated as unity.e.g. I multiplied by A is A

1. Any term with a power of 2 is erased, e.g. AB2C is 
the same as AC.

The polynomial I = ABCD is used to generate all the 
confoundings for this design, and is called the 
generator polynomial

The second design in which AB was replaced by D in the 
sign table has generator polynomial I = ABD
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Design Resolution

! The resolution of a design is measured by the order 
of effects that are confounded
" The effect ABCD is of order 4, while I is of order 0

" If an i-th order effect is confounded with a 
j-th order term, the confounding is of order i+j

" The minimum of orders of all confoundings of a design is 
called its resolution

• We can easily determine the resolution of a design by 
looking at the generator polynomial, e.g. if I = ABCD, then 
the design has resolution 4, if I = ABD, the design has 
resolution 3

! In general, higher resolution designs are considered 
better under the assumption that higher order 
interactions are smaller than lower-order effects


