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Measuring Performance

2

Measurement tools and techniques

 Fundamental strategies
 Interval timers & cycle counters
 Program profiling
 Tracing
 Indirect measurement
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Events

 Most measurement tools based on events
 Some predefined change to system state

 Definition depends on metric being
measured
 Memory reference
 Disk access
 Change in a register’s state
 Network message
 Processor interrupt

4

Event Classification

 Count metrics
 The number of times event X occurs
 Number of cache misses
 Number of I/O operations
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Event Classification

Secondary-event metrics
 Record a value when triggered

by some event
 Record block size for each I/O

operation
 Count number of operations
 Find average I/O transfer size

6

Event Classification

 Profiles
 Characterization of overall

behavior
 Aggregate/big picture view of an

application program
 Time spent in each function
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Event-Driven Strategies

 Record necessary information only when
selected event occurs

 Modify system to record event
 Dump data when program terminates

 May need intermediate dumps also
 E.g. simple counter in page fault routine

8

Event-Driven Strategies

 System overhead
 Only when the event of interest actually occurs
 Infrequent events → little perturbation
 Frequent events → high perturbation

 No longer “typical” behavior?
 Perturbation changes system being measured
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Event-Driven Strategies

 Inter-event time is unpredictable
 Depends on when events actually occur
 Makes it hard to estimate perturbation
 How long to measure?

 Event-driven measurement tools
 → Good for low-frequency events

10

Event-Driven Strategies

 Counts 8 events exactly

+1 +1 +1 +1 +1 +1 +1 +1
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Tracing

 Similar to event-driven
 But record additional system state

 Event has occurred – count
 Additional information to uniquely identify

event
 E.g. addresses that cause page faults

 Overhead
 Additional memory or disk storage
 Time to save state

 Relatively large system perturbation

12

Tracing

 Counts 8 events plus extra data
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Sampling

 Record necessary state at fixed time
intervals

 Overhead
 Independent of specific event frequency
 Depends on sampling frequency

 Misses some events
 Produces statistical summary

 May miss infrequent events
 Each replication will produce different results

14

Sampling

 Counts 3 events out of 5 samples

+1 +1 +1
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Comparisons

FixedHigh~ #eventsPerturbation

ConstantHighLowOverhead

Statistical
summary

Detailed
info

Exact
countResolution

SamplingTracing
Event
count

16

Comparison

 Event counting
 Best for low frequency events
 Required if exact counts needed

 Sampling
 Best for high frequency events
 If statistical summary is adequate

 Tracing
 When additional detail is required
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Indirect Measurements

 Used when desired metric is not directly
accessible

 Measure one thing directly
 Derive or deduce desired metric

 Highly dependent on creativity of
performance analyst

Time Measurement

Based on Ch 9 of Computer Systems: 
A Programmer’s Perspective - 

Bryant & O’Halloran
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Computer Time Scales

Two Fundamental Time Scales
 Processor: ~10–9 sec.
 External events: ~10–2 sec.

 Keyboard input
 Disk seek
 Screen refresh

 Implication
 Can execute many instructions

while waiting for external
event to occur

 Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

20

Measurement Challenge

 How Much Time Does Program X Require?
 CPU time

 How many total seconds are used when executing X?
 Measure used for most applications
 Small dependence on other system activities

 Actual (“Wall”) Time
 How many seconds elapse between the start and the completion

of X?
 Depends on system load, I/O times, etc.

 Confounding Factors
 How does time get measured?
 Many processes share computing resources

 Transient effects when switching from one process to another
 Suddenly, the effects of alternating among processes become

noticeable
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“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ =  real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

22

Activity Periods: Light Load

 Most of the time spent
executing one process

 Periodic interrupts every
10ms
 Interval timer
 Keep system from

executing one process to
exclusion of others

 Other interrupts
 Due to I/O activity

 Inactivity periods
 System time spent

processing interrupts
 ~250,000 clock cycles

Activity Periods, Load = 1
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Activity Periods: Heavy Load

 Sharing processor with one other active
process

 From perspective of this process, system
appears to be “inactive” for ~50% of the time
 Other process is executing

Activity Periods, Load = 2
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Interval Counting

 OS Measures Runtimes Using Interval
Timer
 Maintain 2 counts per process

 User time
 System time

 Each time get timer interrupt, increment
counter for executing process
 User time if running in user mode
 System time if running in kernel mode
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Interval Counting Example
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Unix time Command

 0.82 seconds user time
 82 timer intervals

 0.30 seconds system time
 30 timer intervals

 1.32 seconds wall time
 84.8% of total was used running these processes

 (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g  -march=i486 -c clock.c
gcc -O2 -Wall -g  -march=i486 -c options.c
gcc -O2 -Wall -g  -march=i486 -c load.c
gcc -O2 -Wall -g  -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8%     0+0k 0+0io 4049pf+0w
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Accuracy of Interval Counting

 Worst Case Analysis
 Timer Interval = δ
 Single process segment measurement can be off by ±δ
 No bound on error for multiple segments

 Could consistently underestimate, or consistently
overestimate
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• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε
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Accuracy of Int. Cntg. (cont.)

 Average Case Analysis
 Over/underestimates tend to balance out
 As long as total run time is sufficiently large

 Min run time ~1 second
 100 timer intervals

 Consistently miss 4% overhead due to timer interrupts
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Cycle Counters

 Most modern systems have built in registers that are
incremented every clock cycle
 Very fine grained
 Maintained as part of process state

– In Linux, counts elapsed global time
 Special assembly code instruction to access
 On (recent model) Intel machines:

 64 bit counter.
 RDTSC instruction sets %edx to high order 32-

bits, %eax to low order 32-bits

30

Cycle Counter Period

 Wrap Around Times for 550 MHz machine
 Low order 32 bits wrap around every 232 / (550 * 106) =

7.8 seconds
 High order 64 bits wrap around every 264 / (550 * 106) =

33539534679 seconds
 1065 years

 For 2 GHz machine
 Low order 32-bits every 2.1 seconds
 High order 64 bits every 293 years
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Measuring with Cycle Counter
 Idea

 Get current value of cycle counter
 store as pair of unsigned’s cyc_hi and cyc_lo

 Compute something
 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
  /* Get current value of cycle counter */
  access_counter(&cyc_hi, &cyc_lo);
}

32

Accessing the Cycle Cntr.
 GCC allows inline assembly code with mechanism for matching

registers with program variables
 Code only works on x86 machine compiling with GCC

 Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
  /* Get cycle counter */
  asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
      : "=r" (*hi), "=r" (*lo)
      : /* No input */
      : "%edx", "%eax");
}
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Completing Measurement

 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles
 Express as double to avoid overflow problems

double get_counter()
{
  unsigned ncyc_hi, ncyc_lo
  unsigned hi, lo, borrow;
  /* Get cycle counter */
  access_counter(&ncyc_hi, &ncyc_lo);
  /* Do double precision subtraction */
  lo = ncyc_lo - cyc_lo;
  borrow = lo > ncyc_lo;
  hi = ncyc_hi - cyc_hi - borrow;
  return (double) hi * (1 << 30) * 4 + lo;
}

34

Timing With Cycle Counter

 Determine Clock Rate of Processor
 Count number of cycles required for some fixed

number of seconds

 Time Function P
 First attempt: Simply count cycles for one

execution of P
  double tsecs;
  start_counter();
  P();
  tsecs = get_counter() / (MHZ * 1e6);

  double MHZ;
  int sleep_time = 10;
  start_counter();
  sleep(sleep_time);
  MHZ = get_counter()/(sleep_time * 1e6);
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Measurement Pitfalls

 Overhead
 Calling get_counter() incurs small amount of overhead
 Want to measure long enough code sequence to compensate

 Unexpected Cache Effects
 artificial hits or misses
 e.g., these measurements were taken with the Alpha cycle

counter:
foo1(array1, array2, array3);   /* 68,829 cycles */
foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */
foo1(array1, array2, array3);   /* 23,203 cycles */

36

Dealing with Overhead & Cache Effects

 Always execute function once to “warm up” cache
 Keep doubling number of times execute P() until reach some

threshold
 Used CMIN = 50000

  int cnt = 1;
  double cmeas = 0;
  double cycles;
  do  {
    int c = cnt;
    P(); /* Warm up cache */
    get_counter();
    while (c-- > 0)
      P();
    cmeas = get_counter();
    cycles = cmeas / cnt;
    cnt += cnt;
  } while (cmeas < CMIN);  /* Make sure have enough */
  return cycles / (1e6 * MHZ);
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Multitasking Effects

 Cycle Counter Measures Elapsed Time
 Keeps accumulating during periods of inactivity

 System activity
 Running other processes

 Key Observation
 Cycle counter never underestimates program run time
 Possibly overestimates by large amount

 K-Best Measurement Scheme
 Perform up to N (e.g., 20) measurements of function
 See if fastest K (e.g., 3) within some relative factor ε (e.g.,

0.001)

K

38

K-Best
Validation

 Very good accuracy for <
8ms
 Within one timer interval
 Even when heavily loaded

 Less accurate of > 10ms
 Light load: ~4% error

 Interval clock interrupt
handling

 Heavy load: Very high error

Intel Pentium III, Linux
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How are “actual” run times of programs
determined?
 Write a procedure that repeatedly writes

values to an array of 2048 integer and then
reads them back

 Let r be the number of repetitions
 Determine expected run time T(r) of

procedure as a function of r by timing it
for r = 1…10 and performing a least squares
fit to T(r) = mr + b
 Linear regression (will discuss later this

semester)

40

Compensate
For Timer
Overhead

 Subtract Timer Overhead
 Estimate overhead of single

interrupt by measuring periods of
inactivity

 Call interval timer to determine
number of interrupts that have
occurred

 Better Accuracy for > 10ms
 Light load: 0.2% error
 Heavy load: Still very high error

K = 3, ε = 0.001

Intel Pentium III, Linux
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K-Best
on NT

 Acceptable accuracy for <
50ms
 Scheduler allows process

to run multiple intervals

 Less accurate of > 10ms
 Light load: 2% error
 Heavy load: Generally very

high error

K = 3, ε = 0.001

Pentium II, Windows-NT
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Time of Day Clock
 Unix gettimeofday() function
 Return elapsed time since reference time (Jan 1, 1970)
 Implementation

 Uses interval counting on some machines
– Coarse grained

 Uses cycle counter on others
– Fine grained, but significant overhead and only 1 microsecond resolution

#include <sys/time.h>
#include <unistd.h>

  struct timeval tstart, tfinish;
  double tsecs;
  gettimeofday(&tstart, NULL);
  P();
  gettimeofday(&tfinish, NULL);
  tsecs = (tfinish.tv_sec - tstart.tv_sec) +
      1e6 * (tfinish.tv_usec - tstart.tv_usec);
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K-Best Using gettimeofday

 Linux
 As good as using cycle counter
 For times > 10 microseconds

 Windows
 Implemented by interval

counting
 Too coarse-grained

Using gettimeofday
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Measurement Summary

 Timing is highly case and system dependent
 What is overall duration being measured?

 > 1 second: interval counting is OK
 << 1 second: must use cycle counters

 On what hardware / OS / OS version?
 Accessing counters

– How gettimeofday is implemented
 Timer interrupt overhead
 Scheduling policy

 Devising a Measurement Method
 Long durations: use Unix timing functions
 Short durations

 If possible, use gettimeofday
 Otherwise must work with cycle counters
 K-best scheme most successful
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Approximate Measures of Short
Intervals
 Suppose no access to cycle counters
 How to measure an event that is shorter

than the resolution of the clock?
 Cannot directly measure events with

Te < Tc

 Overhead makes it hard to measure even
when Te > nTc,
 n is small integer

46

Approximate Measures of Short
Intervals

Tc

Te

Te

Case 1:
Count+1

Case 2:
Count+0
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Approximate Measures of Short
Intervals
 Bernoulli experiment

 Outcome = +1 with probability p
 Outcome = +0 with probability (1-p)
 Equivalent to flipping a biased coin

 Repeat n times
 Approximates a binomial distribution
 Only approximate since each measurement

cannot be guaranteed to be independent
 Usually close enough in practice

48

Approximate Measures of Short
Intervals
 m = number of times Case 1 occurs

 Count+1
 n = total number of measurements
 Average duration is ratio of m/n
 Use confidence interval for proportions

ce
T
n

m
T =
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Example

 Clock resolution = 10 us
 n = 8764 measurements
 m = 467 clock ticks counted
 95% confidence interval

10 us

?

?

Case 1:
467

Case 2:
8297

50

Example

)0580.0,0486.0(

8764

8764

467
1

8764

467

96.1
8764

467
),( 21

=

!
"

#
$
%

&
'

= mcc

 Scale by clock period = 10 us
 95% chance that measured event is

 (0.49, 0.58) us
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Important Aside

 Confidence interval calculation for
proportions discussed in last class (and
textbooks) is controversial
 Recently, statisticians have shown that it is

problematic
 The approach used on the previous slide + in the

textbooks (Lilja, Jain, others) is somewhat
discredited

 Link on class web page

52

Profiling

 Overall view of program’s execution-time
behavior

 Fraction of total time spent in specific
states
 Fraction of time in each subroutine
 Fraction of time in OS kernel
 Fraction of time doing I/O

 Find bottlenecks, code hot-spots
 Optimize those sections first
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Statistical Sampling

 Select a random
subset of a population

 Gather information on
only this subset

 Extrapolate this
information to overall
population

 Results are a
statistical summary
with corresponding
error probabilities

54

PC Sampling

 Periodically interrupt program at fixed intervals
 Record appropriate state information in interrupt

service routine
 Post-process to obtain overall profile

+1 +1 +1
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PC Sampling

 At each interrupt
 Examine PC on return address stack
 Use address map to translate this PC to

subroutine i
 Increment array element H[i]

Addr map
0-1298:  Subr 1
1299-3455:  Subr 2
3456-5567:  Subr 3
5568-9943:  Subr 4

PC:  4582 Histogram
counters:
H[3]=H[3]+1

56

PC Sampling
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PC Sampling

 n total interrupts
 Post-processing step

 H[i]/n = fraction of time executing in
subroutine i

 (H[i]/n) * (interrupt period) = time in each
subroutine

58

PC Sampling

 This is a statistical process
 Different counts each time the experiment is

performed
 Infer behavior of entire program from

small sample
 Apply confidence intervals to quantify

precision of results
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Example

 40 us interrupt
 36,128 interrupts in subroutine A
 Program runs for 10 seconds
 Time in this subroutine?

 90% confidence interval

 m = 36,128
 n = 10 sec / 40 us = 250,000
 p = m/n = 0.144

60

Example

)146.0,144.0(

250000

)855488.0(144512.0
645.1144512.0),( 21

=

= mcc

 90% chance that the program spent 14.4-14.6% of
its time in subroutine A
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Example

 10 ms interrupt
 12 interrupts in subroutine A
 n = 800 samples

 8 seconds total execution time
 Time in this subroutine?

 99% confidence interval

 p = m/n = 0.015

62

Example

)0261.0,0039.0(

800

)015.01(015.0
576.2015.0),( 21

=

!
= mcc

 99% chance that the program spent  31-210 ms in
subroutine A

 A pretty wide range!
 But only <3% of total execution time
 Start optimizing somewhere else first
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Reducing the Interval Size

 Use a lower confidence level
 Obtain more samples

 Run program longer
 May not be possible

 Increase sample rate
 May be fixed by system
 Will increase overhead and perturbation

 Run multiple times and add samples from each
run

64

PC Sampling

 Interrupts must occur asynchronously w.r.t. any program events
 Samples must be independent of each other
 Else over/under-sample events synchronous with interrupt

 Periodic versus random sampling

+1 +1 +1
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Basic Block Counting

 Basic block
 Sequence of instructions with no branches into

or out of the block
 When first instruction is executed, guaranteed

that all instructions in block will be executed
 Single entry, single exit

66

Basic Block Counting

 Generate a program profile by inserting
additional instructions in each block
 Increment a unique counter each time a block is

entered
 Produces a histogram of program execution
 Can post-process to find instruction

execution frequencies
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Comparison

PerfectWithin statistical
varianceRepeatability

HighRandomly
distributedPerturbation

Extra
instructions per

block

Interrupt service
routineOverhead

Exact countStatistical
estimateOutput

Basic block
countingPC sampling

68

Profiling Tools

 UNIX gprof
 Uses PC-sampling

 Intel VTUNE
 Apple Shark
 Many others…
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Event Tracing

 Profile shows overall frequency-of-
execution behavior
 Ignores time-ordering of events

 Program trace
 Dynamic list of events generated by program
 Events = anything you want to instrument

 Sequence of memory addresses
 I/O blocks accessed

 Typically used to drive a simulator

70

Trace Generation

Application
program

Compress

Uncompress

Trace
consumer

Modify to generate trace
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Trace Generation

Application
program

Compress

Uncompress

Trace
consumer

Online trace
consumption

Modify to generate trace

72

Trace Generation

 Source-code modification
 Allows precise control of what events are

traced and what data is recorded
 Typically a manual process

Source
code

Object
code Proc TraceCompiler
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Trace Generation

 Software exceptions
 HW forces an exception before each

instruction
 Exception routine decodes instruction

 Store instr type, PC, operand addresses, etc.
 “Trace” bit in many processors
 Tremendous slowdown

Source
code

Object
code Proc TraceCompiler

74

Trace Generation

 Emulation
 Make a system appear to

be something else
 Modify emulator to

generate trace
 E.g. Java Virtual Machine

Source
code

Object
code Proc TraceCompiler
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 Microcode modification
 Modify instruction execution directly
 Allows tracing of all instructions

 Including operating system
 Depends on access to lower levels of the

processor
 E.g. Transmeta Crusoe processor

Trace Generation

Source
code

Object
code Proc TraceCompiler

76

Trace Generation

 Compiler modification
 Insert trace code directly in object file
 Requires access to the compiler itself

Source
code

Object
code Proc TraceCompiler
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Trace Generation

 Compiler modification
 Insert trace code directly in object file
 Requires access to the compiler itself
 Write post-compilation binary editor/rewrite

tool

Source
code

Object
code Proc TraceCompiler

78

Trace Data Compression

 Standard compression
algorithms as trace is
written to disk

 Uncompress when
reading

 Typical reduction
 20-70%

 Tradeoff is compress-
uncompress time

Application
program

Compress

Uncompress

Trace
consumer

Modify to generate trace
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Online Trace Consumption

 Use trace data as it is
generated

 Never stored on disk
 Multitasking may lead to

non-deterministic behavior
 Repeatability issue

 Before-and-after
comparison tests
 Difference due to change

in system or change in
trace?

 Becomes statistical
comparison with n runs

Application
program

Trace
consumer

Online trace
consumption

Modify to generate trace
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Trace Data

 Tracing generates a tremendous volume of
data

 Trace 100,000,000 instrs/sec
 16 bits of data per event
 190 Mbytes of data per second

 11 Gbytes per minute
 Huge perturbations

 Due to tracing code
 Time to store trace data
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Advanced Techniques

 Researchers have developed many
approaches to dealing with voluminous
trace data
 Abstract Execution
 Trace Sampling
 …..

 See Lilja

82

Trace Sampling

 Save only subsequences of overall trace
 Drive simulator with samples
 Results should be statistically similar to

driving with complete trace
 One sample = k consecutive events
 Sampling interval = P (period)

k k

P
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Indirect Ad Hoc Techniques

 Sometimes the desired metric cannot be
measured directly

 Use your creativity to measure one thing
and then derive/infer the desired value

84

Example 1 – System Load

 What is system load?
 Number of jobs in run queue?
 Number of jobs actively time-sharing?
 Fraction of time processor is not in idle loop?
 Others?

 How to measure it?
 Modify OS
 PC sampling
 Indirect?
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Example

 Let system run for fixed time T
 Note value of counter

Monitor

Count

n

T
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Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

Count

n

n/2

T
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Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

App 1

App 2

Monitor

Count

n

n/2

n/3

T
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Example 2: The Memory Mountain

 Read throughput (read bandwidth)
 Number of bytes read from memory per second

(MB/s)
 Memory mountain

 Measured read throughput as a function of
spatial and temporal locality.

 Compact way to characterize memory system
performance.
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Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {
    int i, result = 0; 
    volatile int sink; 

    for (i = 0; i < elems; i += stride)
result += data[i];

    sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
    double cycles;
    int elems = size / sizeof(int); 

    test(elems, stride);                     /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}

90

Memory Mountain Main Routine
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10)  /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23)  /* ... up to 8 MB */
#define MAXSTRIDE 16        /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int) 

int data[MAXELEMS];         /* The array we'll be traversing */

int main()
{
    int size;        /* Working set size (in bytes) */
    int stride;      /* Stride (in array elements) */
    double Mhz;      /* Clock frequency */

    init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
    Mhz = mhz(0);              /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {

for (stride = 1; stride <= MAXSTRIDE; stride++) 
    printf("%.1f\t", run(size, stride, Mhz));
printf("\n");

    }
    exit(0);
}
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The Memory Mountain
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Ridges of Temporal Locality
 Slice through the memory mountain with stride=1

 illuminates read throughputs of different caches and
memory
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A Slope of Spatial Locality

 Slice through memory mountain with size=256KB
 shows cache block size.
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Perturbation

 To obtain more information (higher
resolution)
  → Use more instrumentation points

  More instrumentation points
  → Greater perturbation
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Perturbation

 Computer performance measurement
uncertainty principle
 Accuracy is inversely proportional to

resolution.

Resolution
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Low

High

High

96

Perturbation

 Superposition does not work here
 Non-linear
 Non-additive

 Double instrumentation ≠ double impact on
performance
 Some instrumentation cancels out
 Some multiplies impact

 No way to predict!
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Instrumentation Code

 Changes memory access patterns
 Affects memory banking optimizations

 Generates additional load/store
instructions
 More frequent cache flushes and replacements
 But may reduce set associativity conflicts

 Generates more I/O operations
 Will increase overall execution time

 More time-sharing context switches
 Alters virtual memory paging behavior

98

Summary

 Measurement strategies
 Event-driven
 Tracing
 Sampling

 Measuring program time
 Profiling
 Trace generation
 Indirect measurements when all else fails

 System load example
 Perturbations

 Have to be careful to minimize perturbations due to
instrumentation


