

 1

Measuring Performance

2

Measurement tools and techniques

 Fundamental strategies
 Interval timers & cycle counters
 Program profiling
 Tracing
 Indirect measurement

 2

3

Events

 Most measurement tools based on events
 Some predefined change to system state

 Definition depends on metric being
measured
 Memory reference
 Disk access
 Change in a register’s state
 Network message
 Processor interrupt

4

Event Classification

 Count metrics
 The number of times event X occurs
 Number of cache misses
 Number of I/O operations

 3

5

Event Classification

Secondary-event metrics
 Record a value when triggered

by some event
 Record block size for each I/O

operation
 Count number of operations
 Find average I/O transfer size

6

Event Classification

 Profiles
 Characterization of overall

behavior
 Aggregate/big picture view of an

application program
 Time spent in each function

 4

7

Event-Driven Strategies

 Record necessary information only when
selected event occurs

 Modify system to record event
 Dump data when program terminates

 May need intermediate dumps also
 E.g. simple counter in page fault routine

8

Event-Driven Strategies

 System overhead
 Only when the event of interest actually occurs
 Infrequent events → little perturbation
 Frequent events → high perturbation

 No longer “typical” behavior?
 Perturbation changes system being measured

 5

9

Event-Driven Strategies

 Inter-event time is unpredictable
 Depends on when events actually occur
 Makes it hard to estimate perturbation
 How long to measure?

 Event-driven measurement tools
 → Good for low-frequency events

10

Event-Driven Strategies

 Counts 8 events exactly

+1 +1 +1 +1 +1 +1 +1 +1

 6

11

Tracing

 Similar to event-driven
 But record additional system state

 Event has occurred – count
 Additional information to uniquely identify

event
 E.g. addresses that cause page faults

 Overhead
 Additional memory or disk storage
 Time to save state

 Relatively large system perturbation

12

Tracing

 Counts 8 events plus extra data

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

 7

13

Sampling

 Record necessary state at fixed time
intervals

 Overhead
 Independent of specific event frequency
 Depends on sampling frequency

 Misses some events
 Produces statistical summary

 May miss infrequent events
 Each replication will produce different results

14

Sampling

 Counts 3 events out of 5 samples

+1 +1 +1

 8

15

Comparisons

FixedHigh~ #eventsPerturbation

ConstantHighLowOverhead

Statistical
summary

Detailed
info

Exact
countResolution

SamplingTracing
Event
count

16

Comparison

 Event counting
 Best for low frequency events
 Required if exact counts needed

 Sampling
 Best for high frequency events
 If statistical summary is adequate

 Tracing
 When additional detail is required

 9

17

Indirect Measurements

 Used when desired metric is not directly
accessible

 Measure one thing directly
 Derive or deduce desired metric

 Highly dependent on creativity of
performance analyst

Time Measurement

Based on Ch 9 of Computer Systems:
A Programmer’s Perspective -

Bryant & O’Halloran

 10

19

Computer Time Scales

Two Fundamental Time Scales
 Processor: ~10–9 sec.
 External events: ~10–2 sec.

 Keyboard input
 Disk seek
 Screen refresh

 Implication
 Can execute many instructions

while waiting for external
event to occur

 Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

20

Measurement Challenge

 How Much Time Does Program X Require?
 CPU time

 How many total seconds are used when executing X?
 Measure used for most applications
 Small dependence on other system activities

 Actual (“Wall”) Time
 How many seconds elapse between the start and the completion

of X?
 Depends on system load, I/O times, etc.

 Confounding Factors
 How does time get measured?
 Many processes share computing resources

 Transient effects when switching from one process to another
 Suddenly, the effects of alternating among processes become

noticeable

 11

21

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

22

Activity Periods: Light Load

 Most of the time spent
executing one process

 Periodic interrupts every
10ms
 Interval timer
 Keep system from

executing one process to
exclusion of others

 Other interrupts
 Due to I/O activity

 Inactivity periods
 System time spent

processing interrupts
 ~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

 12

23

Activity Periods: Heavy Load

 Sharing processor with one other active
process

 From perspective of this process, system
appears to be “inactive” for ~50% of the time
 Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

24

Interval Counting

 OS Measures Runtimes Using Interval
Timer
 Maintain 2 counts per process

 User time
 System time

 Each time get timer interrupt, increment
counter for executing process
 User time if running in user mode
 System time if running in kernel mode

 13

25

Interval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

26

Unix time Command

 0.82 seconds user time
 82 timer intervals

 0.30 seconds system time
 30 timer intervals

 1.32 seconds wall time
 84.8% of total was used running these processes

 (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

 14

27

Accuracy of Interval Counting

 Worst Case Analysis
 Timer Interval = δ
 Single process segment measurement can be off by ±δ
 No bound on error for multiple segments

 Could consistently underestimate, or consistently
overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε

28

Accuracy of Int. Cntg. (cont.)

 Average Case Analysis
 Over/underestimates tend to balance out
 As long as total run time is sufficiently large

 Min run time ~1 second
 100 timer intervals

 Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε

 15

29

Cycle Counters

 Most modern systems have built in registers that are
incremented every clock cycle
 Very fine grained
 Maintained as part of process state

– In Linux, counts elapsed global time
 Special assembly code instruction to access
 On (recent model) Intel machines:

 64 bit counter.
 RDTSC instruction sets %edx to high order 32-

bits, %eax to low order 32-bits

30

Cycle Counter Period

 Wrap Around Times for 550 MHz machine
 Low order 32 bits wrap around every 232 / (550 * 106) =

7.8 seconds
 High order 64 bits wrap around every 264 / (550 * 106) =

33539534679 seconds
 1065 years

 For 2 GHz machine
 Low order 32-bits every 2.1 seconds
 High order 64 bits every 293 years

 16

31

Measuring with Cycle Counter
 Idea

 Get current value of cycle counter
 store as pair of unsigned’s cyc_hi and cyc_lo

 Compute something
 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
 /* Get current value of cycle counter */
 access_counter(&cyc_hi, &cyc_lo);
}

32

Accessing the Cycle Cntr.
 GCC allows inline assembly code with mechanism for matching

registers with program variables
 Code only works on x86 machine compiling with GCC

 Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

 17

33

Completing Measurement

 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles
 Express as double to avoid overflow problems

double get_counter()
{
 unsigned ncyc_hi, ncyc_lo
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

34

Timing With Cycle Counter

 Determine Clock Rate of Processor
 Count number of cycles required for some fixed

number of seconds

 Time Function P
 First attempt: Simply count cycles for one

execution of P
 double tsecs;
 start_counter();
 P();
 tsecs = get_counter() / (MHZ * 1e6);

 double MHZ;
 int sleep_time = 10;
 start_counter();
 sleep(sleep_time);
 MHZ = get_counter()/(sleep_time * 1e6);

 18

35

Measurement Pitfalls

 Overhead
 Calling get_counter() incurs small amount of overhead
 Want to measure long enough code sequence to compensate

 Unexpected Cache Effects
 artificial hits or misses
 e.g., these measurements were taken with the Alpha cycle

counter:
foo1(array1, array2, array3); /* 68,829 cycles */
foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */
foo1(array1, array2, array3); /* 23,203 cycles */

36

Dealing with Overhead & Cache Effects

 Always execute function once to “warm up” cache
 Keep doubling number of times execute P() until reach some

threshold
 Used CMIN = 50000

 int cnt = 1;
 double cmeas = 0;
 double cycles;
 do {
 int c = cnt;
 P(); /* Warm up cache */
 get_counter();
 while (c-- > 0)
 P();
 cmeas = get_counter();
 cycles = cmeas / cnt;
 cnt += cnt;
 } while (cmeas < CMIN); /* Make sure have enough */
 return cycles / (1e6 * MHZ);

 19

37

Multitasking Effects

 Cycle Counter Measures Elapsed Time
 Keeps accumulating during periods of inactivity

 System activity
 Running other processes

 Key Observation
 Cycle counter never underestimates program run time
 Possibly overestimates by large amount

 K-Best Measurement Scheme
 Perform up to N (e.g., 20) measurements of function
 See if fastest K (e.g., 3) within some relative factor ε (e.g.,

0.001)

K

38

K-Best
Validation

 Very good accuracy for <
8ms
 Within one timer interval
 Even when heavily loaded

 Less accurate of > 10ms
 Light load: ~4% error

 Interval clock interrupt
handling

 Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

K = 3, ε = 0.001

 20

39

How are “actual” run times of programs
determined?
 Write a procedure that repeatedly writes

values to an array of 2048 integer and then
reads them back

 Let r be the number of repetitions
 Determine expected run time T(r) of

procedure as a function of r by timing it
for r = 1…10 and performing a least squares
fit to T(r) = mr + b
 Linear regression (will discuss later this

semester)

40

Compensate
For Timer
Overhead

 Subtract Timer Overhead
 Estimate overhead of single

interrupt by measuring periods of
inactivity

 Call interval timer to determine
number of interrupts that have
occurred

 Better Accuracy for > 10ms
 Light load: 0.2% error
 Heavy load: Still very high error

K = 3, ε = 0.001

Intel Pentium III, Linux

Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

 21

41

K-Best
on NT

 Acceptable accuracy for <
50ms
 Scheduler allows process

to run multiple intervals

 Less accurate of > 10ms
 Light load: 2% error
 Heavy load: Generally very

high error

K = 3, ε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

42

Time of Day Clock
 Unix gettimeofday() function
 Return elapsed time since reference time (Jan 1, 1970)
 Implementation

 Uses interval counting on some machines
– Coarse grained

 Uses cycle counter on others
– Fine grained, but significant overhead and only 1 microsecond resolution

#include <sys/time.h>
#include <unistd.h>

 struct timeval tstart, tfinish;
 double tsecs;
 gettimeofday(&tstart, NULL);
 P();
 gettimeofday(&tfinish, NULL);
 tsecs = (tfinish.tv_sec - tstart.tv_sec) +
 1e6 * (tfinish.tv_usec - tstart.tv_usec);

 22

43

K-Best Using gettimeofday

 Linux
 As good as using cycle counter
 For times > 10 microseconds

 Windows
 Implemented by interval

counting
 Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Win-NT

Linux

Linux-comp

44

Measurement Summary

 Timing is highly case and system dependent
 What is overall duration being measured?

 > 1 second: interval counting is OK
 << 1 second: must use cycle counters

 On what hardware / OS / OS version?
 Accessing counters

– How gettimeofday is implemented
 Timer interrupt overhead
 Scheduling policy

 Devising a Measurement Method
 Long durations: use Unix timing functions
 Short durations

 If possible, use gettimeofday
 Otherwise must work with cycle counters
 K-best scheme most successful

 23

45

Approximate Measures of Short
Intervals
 Suppose no access to cycle counters
 How to measure an event that is shorter

than the resolution of the clock?
 Cannot directly measure events with

Te < Tc

 Overhead makes it hard to measure even
when Te > nTc,
 n is small integer

46

Approximate Measures of Short
Intervals

Tc

Te

Te

Case 1:
Count+1

Case 2:
Count+0

 24

47

Approximate Measures of Short
Intervals
 Bernoulli experiment

 Outcome = +1 with probability p
 Outcome = +0 with probability (1-p)
 Equivalent to flipping a biased coin

 Repeat n times
 Approximates a binomial distribution
 Only approximate since each measurement

cannot be guaranteed to be independent
 Usually close enough in practice

48

Approximate Measures of Short
Intervals
 m = number of times Case 1 occurs

 Count+1
 n = total number of measurements
 Average duration is ratio of m/n
 Use confidence interval for proportions

ce
T
n

m
T =

 25

49

Example

 Clock resolution = 10 us
 n = 8764 measurements
 m = 467 clock ticks counted
 95% confidence interval

10 us

?

?

Case 1:
467

Case 2:
8297

50

Example

)0580.0,0486.0(

8764

8764

467
1

8764

467

96.1
8764

467
),(21

=

!
"

#
$
%

&
'

= mcc

 Scale by clock period = 10 us
 95% chance that measured event is

 (0.49, 0.58) us

 26

51

Important Aside

 Confidence interval calculation for
proportions discussed in last class (and
textbooks) is controversial
 Recently, statisticians have shown that it is

problematic
 The approach used on the previous slide + in the

textbooks (Lilja, Jain, others) is somewhat
discredited

 Link on class web page

52

Profiling

 Overall view of program’s execution-time
behavior

 Fraction of total time spent in specific
states
 Fraction of time in each subroutine
 Fraction of time in OS kernel
 Fraction of time doing I/O

 Find bottlenecks, code hot-spots
 Optimize those sections first

 27

53

Statistical Sampling

 Select a random
subset of a population

 Gather information on
only this subset

 Extrapolate this
information to overall
population

 Results are a
statistical summary
with corresponding
error probabilities

54

PC Sampling

 Periodically interrupt program at fixed intervals
 Record appropriate state information in interrupt

service routine
 Post-process to obtain overall profile

+1 +1 +1

 28

55

PC Sampling

 At each interrupt
 Examine PC on return address stack
 Use address map to translate this PC to

subroutine i
 Increment array element H[i]

Addr map
0-1298: Subr 1
1299-3455: Subr 2
3456-5567: Subr 3
5568-9943: Subr 4

PC: 4582 Histogram
counters:
H[3]=H[3]+1

56

PC Sampling

 29

57

PC Sampling

 n total interrupts
 Post-processing step

 H[i]/n = fraction of time executing in
subroutine i

 (H[i]/n) * (interrupt period) = time in each
subroutine

58

PC Sampling

 This is a statistical process
 Different counts each time the experiment is

performed
 Infer behavior of entire program from

small sample
 Apply confidence intervals to quantify

precision of results

 30

59

Example

 40 us interrupt
 36,128 interrupts in subroutine A
 Program runs for 10 seconds
 Time in this subroutine?

 90% confidence interval

 m = 36,128
 n = 10 sec / 40 us = 250,000
 p = m/n = 0.144

60

Example

)146.0,144.0(

250000

)855488.0(144512.0
645.1144512.0),(21

=

= mcc

 90% chance that the program spent 14.4-14.6% of
its time in subroutine A

 31

61

Example

 10 ms interrupt
 12 interrupts in subroutine A
 n = 800 samples

 8 seconds total execution time
 Time in this subroutine?

 99% confidence interval

 p = m/n = 0.015

62

Example

)0261.0,0039.0(

800

)015.01(015.0
576.2015.0),(21

=

!
= mcc

 99% chance that the program spent 31-210 ms in
subroutine A

 A pretty wide range!
 But only <3% of total execution time
 Start optimizing somewhere else first

 32

63

Reducing the Interval Size

 Use a lower confidence level
 Obtain more samples

 Run program longer
 May not be possible

 Increase sample rate
 May be fixed by system
 Will increase overhead and perturbation

 Run multiple times and add samples from each
run

64

PC Sampling

 Interrupts must occur asynchronously w.r.t. any program events
 Samples must be independent of each other
 Else over/under-sample events synchronous with interrupt

 Periodic versus random sampling

+1 +1 +1

 33

65

Basic Block Counting

 Basic block
 Sequence of instructions with no branches into

or out of the block
 When first instruction is executed, guaranteed

that all instructions in block will be executed
 Single entry, single exit

66

Basic Block Counting

 Generate a program profile by inserting
additional instructions in each block
 Increment a unique counter each time a block is

entered
 Produces a histogram of program execution
 Can post-process to find instruction

execution frequencies

 34

67

Comparison

PerfectWithin statistical
varianceRepeatability

HighRandomly
distributedPerturbation

Extra
instructions per

block

Interrupt service
routineOverhead

Exact countStatistical
estimateOutput

Basic block
countingPC sampling

68

Profiling Tools

 UNIX gprof
 Uses PC-sampling

 Intel VTUNE
 Apple Shark
 Many others…

 35

69

Event Tracing

 Profile shows overall frequency-of-
execution behavior
 Ignores time-ordering of events

 Program trace
 Dynamic list of events generated by program
 Events = anything you want to instrument

 Sequence of memory addresses
 I/O blocks accessed

 Typically used to drive a simulator

70

Trace Generation

Application
program

Compress

Uncompress

Trace
consumer

Modify to generate trace

 36

71

Trace Generation

Application
program

Compress

Uncompress

Trace
consumer

Online trace
consumption

Modify to generate trace

72

Trace Generation

 Source-code modification
 Allows precise control of what events are

traced and what data is recorded
 Typically a manual process

Source
code

Object
code Proc TraceCompiler

 37

73

Trace Generation

 Software exceptions
 HW forces an exception before each

instruction
 Exception routine decodes instruction

 Store instr type, PC, operand addresses, etc.
 “Trace” bit in many processors
 Tremendous slowdown

Source
code

Object
code Proc TraceCompiler

74

Trace Generation

 Emulation
 Make a system appear to

be something else
 Modify emulator to

generate trace
 E.g. Java Virtual Machine

Source
code

Object
code Proc TraceCompiler

 38

75

 Microcode modification
 Modify instruction execution directly
 Allows tracing of all instructions

 Including operating system
 Depends on access to lower levels of the

processor
 E.g. Transmeta Crusoe processor

Trace Generation

Source
code

Object
code Proc TraceCompiler

76

Trace Generation

 Compiler modification
 Insert trace code directly in object file
 Requires access to the compiler itself

Source
code

Object
code Proc TraceCompiler

 39

77

Trace Generation

 Compiler modification
 Insert trace code directly in object file
 Requires access to the compiler itself
 Write post-compilation binary editor/rewrite

tool

Source
code

Object
code Proc TraceCompiler

78

Trace Data Compression

 Standard compression
algorithms as trace is
written to disk

 Uncompress when
reading

 Typical reduction
 20-70%

 Tradeoff is compress-
uncompress time

Application
program

Compress

Uncompress

Trace
consumer

Modify to generate trace

 40

79

Online Trace Consumption

 Use trace data as it is
generated

 Never stored on disk
 Multitasking may lead to

non-deterministic behavior
 Repeatability issue

 Before-and-after
comparison tests
 Difference due to change

in system or change in
trace?

 Becomes statistical
comparison with n runs

Application
program

Trace
consumer

Online trace
consumption

Modify to generate trace

80

Trace Data

 Tracing generates a tremendous volume of
data

 Trace 100,000,000 instrs/sec
 16 bits of data per event
 190 Mbytes of data per second

 11 Gbytes per minute
 Huge perturbations

 Due to tracing code
 Time to store trace data

 41

81

Advanced Techniques

 Researchers have developed many
approaches to dealing with voluminous
trace data
 Abstract Execution
 Trace Sampling
 …..

 See Lilja

82

Trace Sampling

 Save only subsequences of overall trace
 Drive simulator with samples
 Results should be statistically similar to

driving with complete trace
 One sample = k consecutive events
 Sampling interval = P (period)

k k

P

 42

83

Indirect Ad Hoc Techniques

 Sometimes the desired metric cannot be
measured directly

 Use your creativity to measure one thing
and then derive/infer the desired value

84

Example 1 – System Load

 What is system load?
 Number of jobs in run queue?
 Number of jobs actively time-sharing?
 Fraction of time processor is not in idle loop?
 Others?

 How to measure it?
 Modify OS
 PC sampling
 Indirect?

 43

85

Example

 Let system run for fixed time T
 Note value of counter

Monitor

Count

n

T

86

Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

Count

n

n/2

T

 44

87

Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

App 1

App 2

Monitor

Count

n

n/2

n/3

T

88

Example 2: The Memory Mountain

 Read throughput (read bandwidth)
 Number of bytes read from memory per second

(MB/s)
 Memory mountain

 Measured read throughput as a function of
spatial and temporal locality.

 Compact way to characterize memory system
performance.

 45

89

Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {
 int i, result = 0;
 volatile int sink;

 for (i = 0; i < elems; i += stride)
result += data[i];

 sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
 double cycles;
 int elems = size / sizeof(int);

 test(elems, stride); /* warm up the cache */
 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}

90

Memory Mountain Main Routine
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)

int data[MAXELEMS]; /* The array we'll be traversing */

int main()
{
 int size; /* Working set size (in bytes) */
 int stride; /* Stride (in array elements) */
 double Mhz; /* Clock frequency */

 init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
 Mhz = mhz(0); /* Estimate the clock frequency */
 for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {

for (stride = 1; stride <= MAXSTRIDE; stride++)
 printf("%.1f\t", run(size, stride, Mhz));
printf("\n");

 }
 exit(0);
}

 46

91

The Memory Mountain

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

8
m 2

m 5
1

2
k

1
2

8
k 3
2

k 8
k 2

k

0

200

400

600

800

1000

1200

re
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

stride (words)
working set size (bytes)

Pentium III Xeon

550 MHz

16 KB on-chip L1 d-cache

16 KB on-chip L1 i-cache

512 KB off-chip unified

L2 cache

Ridges of

Temporal

Locality

L1

L2

mem

Slopes of

Spatial

Locality

xe

92

Ridges of Temporal Locality
 Slice through the memory mountain with stride=1

 illuminates read throughputs of different caches and
memory

0

200

400

600

800

1000

1200

8
m

4
m

2
m

1
0
2
4
k

5
1
2
k

2
5
6
k

1
2
8
k

6
4
k

3
2
k

1
6
k

8
k

4
k

2
k

1
k

working set size (bytes)

re
a
d

 t
h

ro
u

g
p

u
t

(M
B

/s
)

L1 cache

region

L2 cache

region

main memory

region

 47

93

A Slope of Spatial Locality

 Slice through memory mountain with size=256KB
 shows cache block size.

0

100

200

300

400

500

600

700

800

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

stride (words)

re
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

one access per cache line

94

Perturbation

 To obtain more information (higher
resolution)
 → Use more instrumentation points

 More instrumentation points
 → Greater perturbation

 48

95

Perturbation

 Computer performance measurement
uncertainty principle
 Accuracy is inversely proportional to

resolution.

Resolution

A
cc

ur
ac

y

Low

High

High

96

Perturbation

 Superposition does not work here
 Non-linear
 Non-additive

 Double instrumentation ≠ double impact on
performance
 Some instrumentation cancels out
 Some multiplies impact

 No way to predict!

 49

97

Instrumentation Code

 Changes memory access patterns
 Affects memory banking optimizations

 Generates additional load/store
instructions
 More frequent cache flushes and replacements
 But may reduce set associativity conflicts

 Generates more I/O operations
 Will increase overall execution time

 More time-sharing context switches
 Alters virtual memory paging behavior

98

Summary

 Measurement strategies
 Event-driven
 Tracing
 Sampling

 Measuring program time
 Profiling
 Trace generation
 Indirect measurements when all else fails

 System load example
 Perturbations

 Have to be careful to minimize perturbations due to
instrumentation

