Measuring Performance

Measurement tools and techniques

0 Fundamental strategies

A Interval timers & cycle counters
0 Program profiling

Q Tracing

0 Indirect measurement

Events

0 Most measurement tools based on events
» Some predefined change to system state
O Definition depends on metric being
measured
> Memory reference
> Disk access
> Change in a register's state
> Network message
> Processor interrupt

Event Classification

Q Count metrics
> The number of times event X occurs
> Number of cache misses
> Number of I/O operations

Event Classification

0 Secondary-event metrics

> Record a value when triggered
by some event

> Record block size for each I/0
operation

» Count number of operations
> Find average I/0 transfer size

Event Classification

Q Profiles

> Characterization of overall
behavior

> Aggregate/big picture view of an
application program
> Time spent in each function

Event-Driven Strategies

0 Record necessary information only when
selected event occurs

0 Modify system to record event

0O Dump data when program terminates
> May need intermediate dumps also

0 E.g. simple counter in page fault routine

Event-Driven Strategies

0 System overhead
> Only when the event of interest actually occurs
> Infrequent events — little perturbation
> Frequent events — high perturbation
0 No longer "typical” behavior?
» Perturbation changes system being measured

Event-Driven Strategies

O Inter-event time is unpredictable
~ Depends on when events actually occur
> Makes it hard to estimate perturbation
> How long to measure?

0 Event-driven measurement tools
» — Good for low-frequency events

Event-Driven Strategies

HERE|

+1 +1 +1 +1 +1

O Counts 8 events exactly

Tracing

O Similar to event-driven

0 But record additional system state
> Event has occurred - count

> Additional information to uniquely identify
event

> E.g. addresses that cause page faults
0 Overhead

> Additional memory or disk storage

» Time fo save state

0 Relatively large system perturbation

Tracing

+1: +1; +1 +1 +1 +1; +1 +1

Addr Addr Addr Addr Addr Addr Addr Addr

0 Counts 8 events plus extra data

Sampling

0 Record necessary state at fixed time
intervals
0 Overhead
» Independent of specific event frequency
» Depends on sampling frequency
0 Misses some events
0 Produces statistical summary
> May miss infrequent events
> Each replication will produce different results

Sampling

I T

+1 +1 +1

O Counts 3 events out of 5 samples

Comparisons

Event
Traci S li
count racing ampling
. Exact Detailed | Statistical
Resolution :
count info summary
Overhead Low High Constant
Perturbation | ~ #events High Fixed
15
Comparison

a Event counting

> Best for low frequency events

> Required if exact counts needed
0 Sampling

> Best for high frequency events

» If statistical summary is adequate
QO Tracing

> When additional detail is required

Indirect Measurements

0 Used when desired meftric is not directly
accessible

0 Measure one thing directly
> Derive or deduce desired metric

0 Highly dependent on creativity of
performance analyst

Time Measurement

Based on Ch 9 of Computer Systems:
A Programmer’s Perspective -
Bryant & O'Halloran

Computer Time Scales

Microscopic Time Scale (1 Ghz Machine) Macroscoplc
Integer Add Dlsk Access
FP Multiply Keystroke Screen Refresh
FP Divide Interrupt Keystroke
J Handler
1¥4s 1ms
1.E-09 1.E-06 Time (seconds) 1.E-03 1.E+00
OTwo Fundamental Time Scales O Implication
> Processor: ~1079 sec. > Can execute many instructions
> External events: ~102 sec. while waiting for external
» Keyboard input event to occur
; > Can alternate among
= Disk seek h
processes without anyone

= Screen refresh noticing

Measurement Challenge

0 How Much Time Does Program X Require?
> CPU time
= How many total seconds are used when executing X?
= Measure used for most applications
= Small dependence on other system activities
> Actual ("Wall") Time

= How many seconds elapse between the start and the completion
of X?

= Depends on system load, I/O times, etc.
O Confounding Factors
> How does time get measured?
> Many processes share computing resources
= Transient effects when switching from one process to another

= Suddenly, the effects of alternating among processes become
noticeable

20

10

"Time" on a Computer System

real (wall clock) time

v

I:l = user time (fime executing instructions in the user process)

/7, = system time (time executing instructions in kernel on behalf
////‘ of user process)

I:l = some other user’s time (time executing instructions in
different user’s process)

:l + ///// + |:| = real (wall clock) time

We will use the word “time” to refer to user time.

| I | | cumulative user time

21

Activity Periods: Light Load

Activity Periods, Load =1
D Active
. Inactive
A A A A A A A
0 10 20 30 40 50 60 70 80
» Most of the time spent ~ T™e(™S) . Other interrupts
executing one process = Due to I/O activity
> Periodic interrupts every Inactivit iod
10ms > Inactivity perlo S
= Interval timer = System fime spent
* Keep system from processing interrupts
executing one process to = ~250,000 clock cycles

exclusion of others

22

11

Activity Periods: Heavy Load

Activity Periods, Load = 2

D Active
. Inactive

A A A A A A A A

0 10 20 30 40 50 60 70 80
Time (ms)

> Sharing processor with one other active
process

> From perspective of this process, system
appears to be “inactive” for ~60% of the time

= Other process is executing

23

Interval Counting

0 OS Measures Runtimes Using Interval
Timer
> Maintain 2 counts per process
= User time
= System time

» Each time get timer interrupt, increment
counter for executing process
= User time if running in user mode
= System time if running in kernel mode

24

12

Interval Counting Example

(a) Interval Timings

A] B [A [B A A 110u + 40s
T T T T T T TTTITTTTTTITTTTITTITT] g 704+30s

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

(b) Actual Times

LA] A | A | A 120.0u+33.3s
| B [B] B 73.3u+23.3s
[T A A A
0

10 20 30 40 50 60 70 80 90 100110120130 140150160

25

Unix time Command

time make osevent

gcc -02 -Wall -g -march=i486 -c clock.c

gcc -02 -Wall -g -march=i486 -c options.c

gcc -02 -Wall -g -march=i486 -c load.c

gcc -02 -Wall -g -march=i486 -o osevent osevent.c .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

0.82 seconds user time
= 82 timer intervals

0.30 seconds system time
= 30 timer intervals

1.32 seconds wall time

84.8% of total was used running these processes
= (.82+0.3)/1.32 = .848

v

v

v

v

26

13

Accuracy of Interval Counting

A | Minimum

A | Maximum

Computed time = 70ms
Min Actual =60 + ¢

Max Actual =80 —¢

0 10 20 30 40 50 60 70 80

0O Worst Case Analysis

> Timer Interval = §
> Single process segment measurement can be of f by =6

> No bound on error for multiple segments
= Could consistently underestimate, or consistently
overestimate

27

Accuracy of Int. Cntg. (cont.)

Computed time = 70ms
Min Actual =60 + ¢
Max Actual =80 — ¢

| A | Minimum

A | Maximum

0 10 20 30 40 50 60 70 80

O Average Case Analysis
» Over/underestimates tend to balance out
> As long as total run time is sufficiently large
= Min run time ~1 second

= 100 timer intervals
» Consistently miss 4% overhead due to timer interrupts

28

Cycle Counters

> Most modern systems have built in registers that are
incremented every clock cycle

= Very fine grained
= Maintained as part of process state
— In Linux, counts elapsed global time
> Special assembly code instruction to access
> On (recent model) Intel machines:
= 64 bit counter.

= RDTSC instruction sets $edx to high order 32-
bits, $eax to low order 32-bits

29

Cycle Counter Period

O Wrap Around Times for 550 MHz machine

> Low order 32 bits wrap around every 232 / (550 * 106) =
7.8 seconds

> High order 64 bits wrap around every 2%4 / (550 * 10°) =
33539534679 seconds

= 1065 years
O For 2 6Hz machine
> Low order 32-bits every 2.1 seconds
> High order 64 bits every 293 years

30

15

Measuring with Cycle Counter

0 Idea
> Get current value of cycle counter
= store as pair of unsigned's cyc_hi and cyc lo
> Compute something
> Get new value of cycle counter
> Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()

{
/* Get current value of cycle counter */
access_counter (&cyc hi, &cyc 1lo);

}

31

Accessing the Cycle Cnftr.

> GCC allows inline assembly code with mechanism for matching
registers with program variables

> Code only works on x86 machine compiling with GCC

void access counter (unsigned *hi, unsigned *1lo)
{
/* Get cycle counter */
asm("rdtsc; movl %$%edx,%0; movl %%eax,%1l"
M=y (*hi), N=p" (*lo)
/* No input */
" %edxﬂ , " %eaxﬂ) ,.

> Emit assembly with rdtsc and two mov1l instructions

32

16

Completing Measurement

» Get new value of cycle counter
» Perform double precision subtraction to get elapsed cycles
> Express as double to avoid overflow problems

double get counter ()

{
unsigned ncyc_hi, ncyc_lo
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter (&ncyc _hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

33

Timing With Cycle Counter

O Determine Clock Rate of Processor

> Count number of cycles required for some fixed
number of seconds

double MHZ;

int sleep time = 10;

start_counter() ;

sleep(sleep_ time);

MHZ = get_counter()/(sleep_time * leb) ;

O Time Function P

» First attempt: Simply count cycles for one
execution of P
double tsecs;
start_counter() ;

P();
tsecs = get counter() / (MHZ * 1le6);

34

17

Measurement Pitfalls

O Overhead

» Calling get counter () incurs small amount of overhead

> Want to measure long enough code sequence to compensate
O Unexpected Cache Effects

> artificial hits or misses

> e.g., these measurements were taken with the Alpha cycle

counter:

fool (arrayl, array2, array3); /* 68,829 cycles */

foo2 (arrayl, array2, array3); /* 23,337 cycles */
VS.

foo2 (arrayl, array2, array3); /* 70,513 cycles */

fool (arrayl, array2, array3); /* 23,203 cycles */

35

Dealing with Overhead & Cache Effects

» Always execute function once to "warm up” cache

> Keep doubling number of times execute P() until reach some
threshold

= Used CMIN = 50000

int ent = 1;
double cmeas = 0;
double cycles;
do {
int ¢ = cnt;
P(); /* Warm up cache */
get_counter() ;
while (c-- > 0)
P();
cmeas = get_counter();
cycles = cmeas / cnt;
cnt += cnt;
} while (cmeas < CMIN); /* Make sure have enough */
return cycles / (le6 * MHZ) ;

36

Multitasking Effects

O Cycle Counter Measures Elapsed Time
> Keeps accumulating during periods of inactivity
= System activity
= Running other processes
0 Key Observation
» Cycle counter never underestimates program run fime
> Possibly overestimates by large amount
0O K-Best Measurement Scheme
> Perform up to N (e.g., 20) measurements of function
> See if fastest K (e.g., 3) within some relative factor ¢ (e.g.,

0.001)
I 000 @ -0 @ »
—
K
37
Intel Pentium Ill, Linux
K-Best
Validation o N
‘\ “ ‘f‘;\kw = A”‘,{ 'Y x =
£]
3 1 URES P = = = |
g | \H T ~Load 1
2 “‘ [—+ Load2
L"é \\H\ il —+—Load 11
§ B \‘ﬂ H‘[“. S wr/‘\’/'"'v—' A e e e
K =3, ¢ =0.001 g I ‘L“ Miaad
001 Il ”
| M‘H
I
0.001 s v l{ t t t 1
0 10 20 30 40 50
Expected CPU Time (ms)
0 Very good accuracy for < O Less accurate of > 10ms
8ms > Light load: ~4% error
> Within one timer interval = Interval clock interrupt

handling

> Even when heavily loaded . Heavy load: Very high error

38

19

How are "actual” run times of programs
determined?

0 Write a procedure that repeatedly writes
values to an array of 2048 integer and then
reads them back

O Let r be the number of repetitions

0 Determine expected run time T(r) of
procedure as a function of r by timing it
for r = 1..10 and performing a least squares
fitto T(r)=mr+b

> Linear regression (will discuss later this

semester)
39
Intel Pentium Ill, Linux
C 1- Compensate for Timer Interrupt Handling
ompensare
100
For Timer . o
Overhead I i
= \
CHE L\‘ e —
‘{‘3 [T = T — Load1
g Ih ——Load2
% o M —u—Load 11
il
K =3, ¢=0.001] ’1
0.01
0001 M e e N T]
0 10 20 30 40 50
Expected CPU Time (ms)

O Subtract Timer Overhead

> Estimate %verhead of single ds of O Better Accuracy for > 10ms
interrupt by measuring periods o ; .20
inactivity > Light load: 0.2% error

> Call interval timer to determine - Heavy load: Still very high error

number of interrupts that have
occurred

40

Pentium Il, Windows-NT
K-Best o
on NT §
g
10
T
E —+—Load 1
|3 —»—Load 2
k- s+ Load 11
o 01
K =3, ¢ =0.001 2
2
0.01 ot
i ‘
0.001 Homh bbb
0 50 100 150 200 250 300
Expected CPU Time (ms)
O Acceptable accuracy for < O Less accurate of > 10ms
50ms > Light load: 2% error
» Scheduler allows process > Heavy load: Generally very
to run multiple intervals high error
41
Time of Day Clock
» Unix gettimeofday () function
> Return elapsed time since reference time (Jan 1, 1970)
> Implementation
= Uses interval counting on some machines
— Coarse grained
= Uses cycle counter on others
— Fine grained, but significant overhead and only 1 microsecond resolution
#include <sys/time.h>
#include <unistd.h>
struct timeval tstart, tfinish;
double tsecs;
gettimeofday (&tstart, NULL) ;
P();
gettimeofday (&tfinish, NULL) ;
tsecs = (tfinish.tv_sec - tstart.tv_sec) +
le6 * (tfinish.tv_usec - tstart.tv_usec);
12

21

K-Best Using gettimeofday

Using gettimeofday

0.5

04

0.3

0.2

0.1

o WinNT
e A P W, N, 3 S P WP, S Sy Li
I3 VAT VAR v B S S S ——Linux
150 200 250 300 |~ Linuxcomp

Measured:Expected Error

0.2

03

04 LIt

05

Expected CPU Time (ms)

O Linux 0 Windows
> As good as using cycle counter > Implemented by interval

> For times > 10 microseconds counting
> Too coarse-grained

43
Measurement Summary
O Timing is highly case and system dependent
> What is overall duration being measured?
= > 1second: interval counting is OK
= <« 1second: must use cycle counters
> On what hardware / OS / OS version?
= Accessing counters
— How gettimeofday is implemented
= Timer interrupt overhead
= Scheduling policy
O Devising a Measurement Method
> Long durations: use Unix timing functions
» Short durations
= If possible, use gettimeofday
= Otherwise must work with cycle counters
= K-best scheme most successful
44

22

Approximate Measures of Short
Intervals

0 Suppose no access to cycle counters

O How to measure an event that is shorter
than the resolution of the clock?

0 Cannot directly measure events with
T, < T,

0 Overhead makes it hard to measure even
when T, > nT,,
> nis small integer

45

Approximate Measures of Short
Intervals

Y
—

v

‘, T, , Case 1:
Count+1
‘<7 T, —4 Case 2:

Count+0

46

23

Approximate Measures of Short
Intervals

0 Bernoulli experiment
> Outcome = +1 with probability p
> Outcome = +0 with probability (1-p)
» Equivalent to flipping a biased coin
0 Repeat n times
» Approximates a binomial distribution

> Only approximate since each measurement
cannot be guaranteed to be independent

= Usually close enough in practice

47

Approximate Measures of Short
Intervals

0 m = number of times Case 1 occurs
> Count+1
0 n = total number of measurements
0 Average duration is ratio of m/n
0 Use confidence interval for proportions

48

24

Example

0 Clock resolution = 10 us

0 n = 8764 measurements

0 m = 467 clock ticks counted
0 95% confidence interval

< 10 us—#

‘, ? , Case 1:
467
‘47 ? —4 Case 2:
8297

49

Example
467 (1_ 467)
(cc)) = 467 2196 8764 8764
8764 8764

= (0.0486,0.0580)

O Scale by clock period = 10 us
0 95% chance that measured event is
» (0.49,0.58) us

50

25

Important Aside

0 Confidence interval calculation for
proportions discussed in last class (and
textbooks) is controversial

> Recently, statisticians have shown that it is
problematic

» The approach used on the previous slide + in the

textbooks (Lilja, Jain, others) is somewhat
discredited

> Link on class web page

51

Profiling

0 Overall view of program'’s execution-time
behavior

O Fraction of total time spent in specific
states
> Fraction of time in each subroutine
> Fraction of time in OS kernel
> Fraction of time doing I/0
0 Find bottlenecks, code hot-spots
> Optimize those sections first

52

26

Statistical Sampling

O Select a random
subset of a population

Q Gather information on
only this subset

0 Extrapolate this
information to overall
population

O Results are a
statistical summary
with corresponding
error probabilities

53

PC Sampling

LhELT

Q Periodically interrupt program at fixed intervals

O Record appropriate state information in interrupt
service routine

0 Post-process to obtain overall profile

54

27

PC Sampling

Q At each interrupt
> Examine PC on return address stack

> Use address map to translate this PC to
subroutine i

> Increment array element H[i]

Addr map
0-1298: Subr 1 :
PC: 4582] Histogram
1299-3455: Subr 2 counters:
5568-9943: Subr 4
\/ 55
PC Sampling
140
120
100 -
80 -
60 -
40 _
20 -
o .

SO DO OSSO D
LELELLELLEELSE

56

PC Sampling

O n total interrupts

0 Post-processing step
> H[i]/n = fraction of fime executing in
subroutine i
> (H[i]/n) * (interrupt period) = time in each
subroutine

57

PC Sampling

O This is a statistical process

> Different counts each time the experiment is
performed

O Infer behavior of entire program from
small sample

O Apply confidence intervals to quantify
precision of results

58

29

Example

3 40 us interrupt
0 36,128 interrupts in subroutine A
Q Program runs for 10 seconds

O Time in this subroutine?
> 90% confidence interval

Om=36,128
0 n =10 sec / 40 us = 250,000
Q p=m/n=0.144

59

Example

0.144512(0.855488)
250000

(qu=ommsu¢L&wJ

= (0.144,0.146)

0 90% chance that the program spent 14.4-14.6% of
its time in subroutine A

60

30

Example

3 10 ms interrupt
0 12 interrupts in subroutine A

Q n =800 samples
> 8 seconds total execution time

O Time in this subroutine?
> 99% confidence interval

Qp=m/n=0.015

61

Example

0.015(1-0.015)
800

(¢,c,)=0.015F 2.576\/

= (0.0039,0.0261)

0 99% chance that the program spent 31-210 ms in
subroutine A

Q A pretfty wide range!

0 But only <3% of total execution time

O Start optimizing somewhere else first

62

31

Reducing the Interval Size

0 Use a lower confidence level

0 Obtain more samples
> Run program longer
= May not be possible
> Increase sample rate
= May be fixed by system
= Will increase overhead and perturbation

> Run multiple times and add samples from each
run

63

PC Sampling

LI

0 Interrupts must occur asynchronously w.r.t. any program events
> Samples must be independent of each other
> Else over/under-sample events synchronous with interrupt

0 Periodic versus random sampling

64

32

Basic Block Counting

O Basic block

> Sequence of instructions with no branches into
or out of the block

> When first instruction is executed, guaranteed
that all instructions in block will be executed

> Single entry, single exit

65

Basic Block Counting

0 Generate a program profile by inserting
additional instructions in each block

> Increment a unique counter each time a block is
entered

0 Produces a histogram of program execution

0 Can post-process to find instruction
execution frequencies

66

33

Comparison

PC samplin Basic block
Pling counting
Statistical
Output estimate Exact count
, Extra
Overhead Interrupt service instructions per
routine
block
. Randomly :
Perturbation distributed High
Repeatability Within statistical Perfect
variance

Profiling Tools

0 UNIX gprof

» Uses PC-sampling

O Intel VTUNE
0 Apple Shark
0 Many others...

68

34

Event Tracing

QO Profile shows overall frequency-of-
execution behavior
> Ignores time-ordering of events

a Program trace
> Dynamic list of events generated by program
» Events = anything you want fo instrument

= Sequence of memory addresses
= I/0 blocks accessed

0 Typically used to drive a simulator

69

Trace Generation

li Modify to generate trace

Application
program P -
Compress
Uncompress
Trace
consumer

70

35

Trace Generation

li Modify to generate trace

Application
program L

Online trace
consumption

Trace
consumer

71

Trace Generation

O Source-code modification

> Allows precise control of what events are
traced and what data is recorded

> Typically a manual process

Source) Object
code Compiler code Proc Trace

72

36

Trace Generation

0 Software exceptions

> HW forces an exception before each
instruction

» Exception routine decodes instruction
= Store instr type, PC, operand addresses, etc.
» "Trace" bit in many processors

» Tremendous slowdown
Source) Object
code Compilef —> ¢ode Proc » Trace

73

Trace Generation

O Emulation

> Make a system appear to
be something else

> Modify emulator to
generate trace

» E.g. Java Virtual Machine

Source) Object
code Compilel —> ¢ode Proc » Trace

74

37

Trace Generation

O Microcode modification
> Modify instruction execution directly
» Allows fracing of all instructions
= Including operating system
> Depends on access to lower levels of the

processor

> E.g. Transmeta Crusoe processor
Source) Object
code Compilef —> ¢ode Proc

» Trace

75

Trace Generation

0 Compiler modification
> Insert trace code directly in object file
> Requires access to the compiler itself

!

Source) Object
code Compilel —> ¢ode Proc

» Trace

76

38

Trace Generation

0 Compiler modification
> Insert trace code directly in object file
> Requires access to the compiler itself

> Write post-compilation binary editor/rewrite
tool

Source) Object
code Compilef —> ¢ode Proc » Trace

71

Trace Data Compression

Q Modify to generate trace

O Standard compression
algorithms as trace is

ooeat written to disk

pplication

e — I o Unco.mpress when

— T, | reading
: Compress | . .
L i 0O Typical reduction

> 20-70%
0 Tradeoff is compress-
T 7 uncompress time
%Uncompressf
(S R)
Trace
consumer

78

39

Online Trace Consumption

0 Use trace data as it is
generated

Modify to generate trace .
0O Never stored on disk
O Multitasking may lead to

non-deterministic behavior

Application o
program > Repeatability issue
O Before-and-after
_ comparison tests
Online traF:e > Difference due to change
consumption in system or change in
trace?
> Becomes statistical
Trace comparison with n runs
consumer
79
Trace Data

0 Tracing generates a tremendous volume of
data

Q Trace 100,000,000 instrs/sec
016 bits of data per event

0190 Mbytes of data per second
> 11 Gbytes per minute

0 Huge perturbations
> Due to tracing code
> Time to store frace data

80

Advanced Techniques

0 Researchers have developed many
approaches to dealing with voluminous
trace data

» Abstract Execution
> Trace Sampling

0 See Lilja

Trace Sampling

0 Save only subsequences of overall trace
0 Drive simulator with samples

0 Results should be statistically similar to
driving with complete ftrace

0 One sample = k consecutive events
0 Sampling interval = P (period)

— Kk —» —— K —»

7
)
v

v

Indirect Ad Hoc Techniques

O Sometimes the desired metric cannot be
measured directly

0 Use your creativity to measure one thing
and then derive/infer the desired value

83

Example 1 - System Load

0 What is system load?
> Number of jobs in run queue?
> Number of jobs actively time-sharing?
> Fraction of time processor is not in idle loop?
> Others?
0 How to measure it?
> Modify OS
> PC sampling
> Indirect?

84

42

Example

A
—

Count

Monitor

QO Let system run for fixed time T
O Note value of counter

85

Example

A
—

Count

Monitor

Monitor

E— — n/2
App 1 —_—

O Let system run for fixed time T

0 Compare value of loaded system monitor
counter to unloaded system count value

86

43

Example

A
—

Count

Monitor

Monitor

— n/2
App 1 —

Monitor
App 1 —_—
App 2

O Let system run for fixed time T

0 Compare value of loaded system monitor
counter to unloaded system count value

1 n/3

87

Example 2: The Memory Mountain

0 Read throughput (read bandwidth)
> Number of bytes read from memory per second
(MB/s)
0 Memory mountain

> Measured read throughput as a function of
spatial and temporal locality.

» Compact way to characterize memory system
performance.

88

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (i = 0; 1 < elems; i += stride)
result += datal[i];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;

int elems = size / sizeof (int);

test(elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

89

Memory Mountain Main Routine

/* mountain.c - Generate the memory mountain. */

#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */

#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof (int)

int data[MAXELEMS] ; /* The array we'll be traversing */

int main()

{

int size; /* Working set size (in bytes) */
int stride; /* Stride (in array elements) */
double Mhz; /* Clock frequency */

init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
Mhz = mhz (0) ; /* Estimate the clock frequency */
for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {

for (stride = 1; stride <= MAXSTRIDE; stride++)

printf("%$.1£\t", run(size, stride, Mhz));

printf("\n") ;
}
exit(0);

90

45

The Memory Mountain

/‘\\\\ Pentium Ill Xeon

550 MHz
16 KB on-chip L1 d-cache

@ 1000 — 16 KBon-chip L1 i-cache
g 512 KB off-chip unified
= L2 cache
3
£
[=)

8

£

3

= Ridges of
Temporal

Slopes of Locality

Spatial

Locality

. » -
stride (words) b & working set size (bytes)
w © E o
% £ o
® 91
Ridges of Temporal Locality
Q Slice through the memory mountain with stride=1
> illuminates read throughputs of different caches and
memory
1200
main memory L2 cache L1 cache
region region — ‘region
1000 — —
g 800 1 1
= — = = —
5
S 600 1 e e I 1
g
£
T 400 1 e e I 1
e
200 T 1 e e I 1
0 T T T T T T T T T T T
9 0 o —
working set size (bytes) 92

46

A Slope of Spatial Locality

0 Slice through memory mountain with size=256KB
> shows cache block size.

800

700 |

600 1 [— | [

500 1 [— [

_ one access per cache line
400 —{ — I+ —

300 — — 1 [[

read throughput (MB/s)

200 — — 1 [[

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16
stride (words)
93

Perturbation

O To obtain more information (higher
resolution)
» — Use more instrumentation points
O More instrumentation points
» — Greater perturbation

94

47

Perturbation

0 Computer performance measurement
uncertainty principle

> Accuracy is inversely proportional to
resolution.

Accuracy

v

Low Resolution

95

Perturbation

0 Superposition does not work here
> Non-linear
> Non-additive
0 Double instrumentation # double impact on
performance
> Some instrumentation cancels out
> Some multiplies impact
0 No way to predict!

96

48

Instrumentation Code

0 Changes memory access patterns
» Affects memory banking optimizations

0 Generates additional load/store
instructions
> More frequent cache flushes and replacements
> But may reduce set associativity conflicts

0 Generates more I/O operations

O Will increase overall execution time
> More time-sharing context switches

0 Alters virtual memory paging behavior

97

Summary

0 Measurement strategies
> Event-driven
> Tracing
» Sampling
O Measuring program time
a Profiling
0 Trace generation
O Indirect measurements when all else fails
» System load example

QO Perturbations

> Have to be careful to minimize perturbations due to
instrumentation

98

49

