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CS 700 Stuff !

By An AI Researcher !



AI Experiments

Often require both experiment and proof. 

Often involve stochastic (semi-random) 
experiments.

Often involve comparing multiple 
techniques over several objectives.

Often use simulations with large 
numbers of parameters.



Experimental Issues 
Common in AI

Good Experiments (randomness, open 
source verification, replicability, honesty)

Reporting: LaTeX, gnuplot, R, good writing 

Making Valid Claims (T-tests/ANOVAs, 
nonparametric tests, multiobjective)

Proving Generality (multiple problem 
domains, train/test methodologies)

Optimization and Experimental Design



Good Experimental 
Methodology



Verification and 
Replicability

Report more than enough information 
necessary for others to replicate your 
experiments or verify your proof.

What if your system is so large and 
complex that no one can reasonably be 
expected to replicate it just to verify 
your crazy claim?



Open Source And Good 
Experimental Claims
Make all your code available so others 
can verify your claims.

Reasons not to:

You’re hiding something

Your code is embarassingly bad

You want to sell your code



Random Number 
Generators

Absolutely critical for good stochastic 
experimental work

If you have relied on java.util.Random or 
C/C++’s rand() for your work, it’s time to 
redo all of your experiments.



Random Number 
Generators

Statistically Random 

Long Period

Fast

Replicable      (pseudorandom)

R1 ... Rn-1 cannot predict Rn  (crypto)



Random Number 
Generators

Horrifying: Linear Congruential

Rn = aRn-1 + b (mod m)

Used in Java, C, C++      alife.co.uk/nonrandom/

Better

Knuth Subtractive, Linear Feedback 
Shift Register, Lagged Fibonacci

Mersenne Twister



Plagiarism and Faking 
or Misreporting Results



Plagiarism and Faking 
or Misreporting Results

Your career is over.



Ways to End Your 
Career

Your technique did poorly in some tests.  
Report only where it did well.

Your technique did poorly in all tests.  
Modify the test results.

You find out that someone else already 
invented the method.  Don’t cite them.

Your results were due to an error.  Don’t 
report it.



Ways to End Your 
Career

Plagiarize.

Use figures without permission.

Someone else said something better 
than you can.  Use his text instead.

This includes former co-authors.

Quote someone without making it 
brutally clear that it’s a quote.



Example

Since most jobs have 
small memory 
requirements, relatively 
fine-grain (or short-term) 
time-slicing among 
several memory-resident 
jobs is distinctly possible.

Figure 1



Example

Since most jobs have 
small memory 
requirements, relatively 
fine-grain (or short-term) 
time-slicing among 
several memory-resident 
jobs is distinctly possible 
[Setia et al, 1999]. Figure 1 from 

[Setia et al, 1999]



Example

[Setia et al 1999] 
argued that since most 
jobs have small memory 
requirements, relatively 
fine-grain (or short-term) 
time-slicing among 
several memory-resident 
jobs is distinctly possible. Figure 1 from 

[Setia et al, 1999]



Example

[Setia et al 199] have 
argued: “Since most jobs 
have small memory 
requirements, relatively 
fine-grain (or short-term) 
time-slicing among 
several memory-resident 
jobs is distinctly 
possible.”

Figure 1 from 
[Setia et al, 1999]

with permission



Example

Setia et al have argued 
that the small size of 
many memory-resident 
jobs enables fine-grain 
time-slicing. [Setia et al 
1999]

(This is dangerous)
Figure 1 from 

[Setia et al, 1999]
with permission



Reporting Tools



Do Not Use MS Word

Math looks horrible in Word

Word does not properly typeset 
paragraphs of text

Word does not handle PDF/EPS files well

Word does not lend itself to long 
documents or to customization

Word is not portable



LaTeX

Nearly all computer science, 
mathematics, physics, and engineering 
journals and conferences permit LaTeX

Many require LaTeX

Your dissertation should almost 
certainly be in LaTeX

If you use Word, you will be noted as 
someone unable to learn LaTeX



LaTeX has:

A huge open source community and 
library of tools

The best math typesetting anywhere

The best bibliographic reference system

Excellent long-document handling 
(macros, sophisticated style files, etc.)

Extensibility to presentations, reports...



LaTeX does not have...

Good unicode handling 

(though XeTeX is great)

Good modern font handling 

(though XeTeX is great)

A GUI 

(it’s a programming language)



Do Not Use Excel

Excel is famous for math errors

Excel’s statistics are primitive

Use R

Excel’s chart facilities are very poor for 
scientific publishing, and cannot output 
to PDF

Use R, Mathematica, gnuplot



Official Style 

A long time ago, scientists used to write 
well.

Then the Victorian period occurred.

Administrators and politicians 
developed a unique style of writing 
called “Official Style” which was 
designed to obsfucate and avoid 
responsibility.



Official Style

Use I and Me

Avoid passive voice unless it is awkward

Do not use a word if there exists a 
shorter, more common word which 
means the same thing

Utilize ! Use



Official Style

Four experiments were performed 
utilizing the technique.

We utilized the technique in performing 
four experiments.

I ran four experiments using the 
technique.



Note to Foreign 
Students

Regularly schedule ESL writing tutoring

writingcenter.gmu.edu/eslservices.html

Read all of Strunk and White

www.bartleby.com/141/



Making Valid Claims



Two Primary Goals

Demonstrating that my technique is best

Demonstrating why my technique is best



Comparisons

T-Test is the absolute minimum

Nonparametric tests are preferred 
(data is rarely normally distributed)

Rank all data, do T-test on ranks

LARGE sample sizes: 50 is minimum

ANOVA for multiple comparisons

Bonferroni Correction:  "’ = "/N



Good Tutorial

Statistics for EC

http://www.cis.uoguelph.ca/~wineberg/



Picking a Metric

Scenario: I want to show that the output 
of my stochastic optimization technique 
is better than existing technique A.

Average best result over N runs?

How often I found the optimum?

How often I got within ! of the optimum?



Multiobjective Tests

Example: Tree “Bloat” in Genetic 
Programming

Technique must produce trees which are 
both highly fit and very small

Technique A makes smaller trees

Technique B makes fitter trees

Which is better?  What if N techniques?



Combining to a Single 
Quality Value

s = tree size, f = tree fitness, q = quality

q = as + bf  (linear)

q = safb   (nonlinear)

Yuck: how do we know what the 
experimenter wants?



Pareto Optimality

Solution A pareto-dominates Solution b 
iff both are true:

1. for all criteria c, A(c) is not inferior 
to B(c)

2. exists a criterion d for which A(d) is 
superior to B(d)

Pareto Front: all pareto-nondominated 
solutions in your collection



The Front

2-dimensional front shown



Comparing Pareto 
Methods

Find the Pareto front

Identify “unacceptable” regions of each 
criterion

Trim the Pareto front

How do we know front-technique A is 
statistically significantly superior to 
non-front-technique B?    Not easy.



Proving Generality



Testing over multiple 
test problems

Scenario: I wish to show that my new 
constraint satisfaction system beats 
branch-and-bound techniques.



Testing over multiple 
problem domains

MANY test problems

STANDARDIZED test problems

At least ones that others have done in 
the past so you can be relevant

REAL test problems

HIGHLY VARIANT test problems



Train/Test 
Methodologies

Scenario: two machine learning 
techniques A and B each generate rules 
describing the world based on a limited 
set of N samples from the world.

Neural networks, decision trees, 
support vector machines, etc.

How do I verify that technique A has 
figured out how the world works better 
than technique B?



Train/Test 
Methodologies

Gather a set U of uniformly distributed 
samples.

Divide U into two sets, the training set 
and the testing set.

Feed each technique the training set.

Verify the degree to which each 
technique then got the testing set 
correct.



Train/Test 
Methodologies

Performance on the training set doesn’t 
really matter.

All that matters is performance on the 
testing set, demonstrating 
generalization.



Optimization and 
Experimental Design



Experimental Design

Scenario: a large multiagent simulation 
with parameters with many possible 
settings and likely significant nonlinear 
parameter interaction.

The Scientist’s Goal: understanding and 
verifying the model’s parameter space.

The Engineer’s Goal: optimizing the 
parameter space.



Optimization

I need to optimize N parameters for my 
method.

Local Optima?

Expensive to perform Experiments?

Experiments can be performed in 
parallel?



Hill-climbing

S # random solution

1. S’ # tweak(copy(S))

2. If S’ better than S:  S # S’

3. Go to 1



S # random solution, T # High Value

1. S’ # tweak(copy(S))

2. If S’ better than S
  or with P(T, Q(S), Q(S’)):  S # S’

3. Decrease T 

4. Unless T ! 0, Go to 1

Simulated Annealing

P (T, S′, S) = e
Q(S′)−Q(S)

T



Evolutionary 
Computation Methods

P # { S1 ... Sn } random solutions

1.  P’ # { }

2. Until P’ is filled,

3. P’ # P’ ∪ { tweak(copy(select(P))) }

4.  P # P’

5.  Go to 1



What does it mean to...

tweak?

copy?

select?

Assess the quality of a solution?

... how would you do this for multiple 
objectives?



EC Methods

Genetic Algorithms

Genetic Programming

Evolution Strategies

Friends of the family:

Particle Swarm Optimization

Ant Colony Optimization



Parameter Search

Situation: I have a simulation with a 
real-valued parameter space for which 
there are complex interactions among 
the parameters.  Testing is costly.

I wish to test N times to get a feel for 
what the parameter space looks like.

How do I focus tests on areas of the 
space mostly like to be “interesting”?



What is Interesting?

Interesting is: a steep 
slope in parameter space

Differentiate the space?

Take M samples, fit a model, 
sample more where the model is steep?

Iteratively sample along a line 
between two very different quality 
samples?

A

B

C

D

Figure 1: Four different “bracketing lines” travers-
ing a hilly region in the search space.

those samples (known in statistics as the model’s response
surface). We might develop this curve using a neural net-
work, a regression technique, or a mixture of gaussians, for
example. Assuming the curve was differentiable, we could
then select new points under the magnitude of its gradi-
ent similar to the sampling method from the previous para-
graph. Unfortunately, constructing this curve requires us
to make fairly strong assumptions about the model in order
to pick a response surface technique with the appropriate
learning bias.

We propose instead a novel approach which performs this
adaptive sampling without the need for fitting a curve to the
model. Instead, we iteratively pick pairs of samples from a
preexisting sample set such that the samples’ model outputs
are very different from one another, and secondarily, such
that the two samples are fairly close to one another. We then
generate a new sample along the line between the two, using
the heuristic that there is very likely a strong slope transition
somewhere in-between them. We then add this new sample
to the set. We may augment this with a local optimization
procedure, repeating the sample-generation along this line
some N times in a bracketing fashion, each time using the
child to replace the parent closest and most similar in fitness
to the child.

The method is population-oriented and bears important
relationships with evolutionary computation (EC), so we de-
scribe it roughly in EC terms. An evaluated sample in the
search space is an individual and the collective samples pro-
duced so far may be viewed as a population. The output
of the system at a given sample is equivalent to the fitness
of an individual, and the procedure we will use to generate
new individuals applies certain kinds of tournament selection
and crossover to the population. The algorithm is roughly a
steady-state procedure, except that no individuals are ever
deleted from the population: it just continues to grow. We
will use EC terminology in the remainder of the paper.

2. THE ALGORITHM
Let us assume, for the time being, that our search space

is real-valued and multidimensional. Our algorithm repeat-
edly selects pairs of individuals from the population, crosses
them over in a certain fashion to produce a child, and then

adds the child to the population. The objective is to pro-
duce children which are closer to steep-slope transitions in
the search space. The search heuristic is very simple: if two
individuals in the population have wildly different fitnesses,
then some kind of fitness transition exists in the region be-
tween them. Figure 1, line A, shows this situation. Line
B shows a related situation where multiple transitions may
appear between the two individuals. In either case, at least
one transition exists somewhere between the two points. By
contrast, if the individuals’ fitness is similar to one another,
then either there is no transition between them (Figure 1,
line D) or there exists an entire hill or valley between them
(line C). We have no evidence if the hill or valley exists, and
so will ignore this possibility except to include some ran-
dom exploration to allow for its discovery. Our secondary
heuristic is also simple: the closer the individuals are to one
another, the more likely that this transition is steep in slope.

Parents are selected as follows. We select the first parent
at random from the existing population. We then use a dou-
ble tournament selection procedure to select the second par-
ent. Specifically, we perform several tournament-selection
tournaments, preferring individuals near to the first parent.
The winners of these tournaments then compete together in
a final tournament preferring the individual which is most
different from the first parent in fitness. The winner of this
final tournament becomes the second parent.

Once we have selected parents, we then produce a child
lying somewhere on the line segment between them. The
child is then added to the population. We may then per-
form a local optimization procedure in the form of iterated
bracketing to focus more closely on the steep transitions:
given the parents p1 and p2 and child c, we replace with c
the parent pi whose difference in fitness with c, divided by
the distance between them, is highest. Along the line seg-
ment between the revised parents pj and pi = c we produce
yet another child, add c to the population, and repeat the
process.

Iterated bracketing is highly exploitative, and our
crossover procedure cannot create children outside the con-
vex hull of the current population. To add some exploration
into the procedure we add random individuals to the popu-
lation in two ways. First, instead of selecting the first parent
from the population, occasionally we generate a parent at
random from the space, evaluate it, insert it into the popu-
lation, and select it. Second, we seed the initial population
with randomly-generated and evaluated individuals.

The algorithm used is described in pseudocode below. It
requires the user to provide several items:

• A Crossover procedure, ideally one which produces
a child along the line between two individuals.

• A procedure to Create a random individual.

• A procedure to Assess the fitness of an individual.

• A procedure Dist to compute the metric distance be-
tween two individuals.

• The value initializationSize, specifying the initial num-
ber of randomly-generated individuals to seed the pop-
ulation.

• The value exploreProbability, specifying the likelihood
that the first parent will be generated at random rather
than chosen from the population.



Algorithm
Generate P = { S1 ... Sm } random samples

1. S # pick at random from P

2. S’ # select(P), which is close to S
  and very different in quality from S

3. Generate S’’ along line segment 
  between S and S’

4. P # P ∪ {S’’}

5. Go to 1



Iterated Bracketing
(replaces steps 3 and 4)

Given S and S’, iterate W times:

Generate S’’ along line segment
between S and S’

P # P ∪ {S’’}

If "(S,S’’) > "(S’,S’’) then S’ = S’’ else S = S’’

∆(S1, S2) =
|Q(S1)−Q(S2)|

||S1 − S2||



Results
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Figure 4: Description of and Experimental Results for the Two-Circle Function (Circ).

tive fashion. One possible future approach is to perform
dimensionality reduction techniques (Principal Components
Analysis for example) to help reduce the sparsity of the en-
vironment and thus, ideally, the number of points to sample.
Related to this is another problem: the method takes a while
to build up enough samples to effectively adapt the sampling
method. The technique seems to work well, but it does so
more slowly than we’d like.

The algorithm tends to ignore points along the edges of
the space. In our initial experiments we had swapped the
order of the tournament selections (doing fitness first); and
this produced a very strong tendency to avoid edges. Per-
forming tournament selection on distance first helped alle-
viate this, but ultimately we will need to use another pro-
cedure for selecting parent pairs. For example, if the first
chosen point is close to an edge, we might increase the prob-
ability that another point along that edge will also be se-
lected.

If a space has a consistent slope (such as in the Rot func-
tion), we note that the algorithm essentially ignores the mild
constant slope permeating the search space. This is due to
the use of tournament selection, which ignores candidate
pairs’ actual fitness differences and instead focuses on their
relative ordering. But is this appropriate? Such a slope
indicates that something is changing, after all. It appears
that the algorithm focuses samples not proportional to slope
values but instead on those regions which have higher slope
relative to their peers. This may or may not be desirable to
the experimenter.

The algorithm also works well when there are large “un-
interesting” spaces, but not necessarily when there are
large numbers of “interesting” ones. In informal analy-
sis, the algorithm appears to produce unfocused samples
on functions such as two-dimensional sine-waves, f(x, y) =
sin(2πx) + sin(2πy), or similar functions such as Rastri-
gin f(x, y) = x2 + y2 + a(1 − cos(2πx)) + a(1 − cos(2πy)).
Of course, these areas have few “uninteresting” areas to
skip. The function complexity is high enough, and spread
so widely throughout the space, that it’s not clear if there
really is an area that should be sampled less than others.

Last, this algorithm has not been compared against oth-
ers: largely because we have failed to find any other algo-
rithms which search for slopes in a multidimensional space.
The only real competitor we have found is our own pro-
posal to perform curve fitting in some fashion to the response
surface of the function, and then sampling proportional to
the slope of the surface. But one of the attractions our
population-based method held was that it was essentially
model-free, requiring no a priori knowledge of the space like
curve-fitting would. Even so, comparing against a curve-
fitting function would be useful in future work.

6. CONCLUSIONS AND FUTURE WORK
We introduced a novel solution to a heretofore little-

studied problem: how to adaptively sample the space so
as to focus on places in the space where the function output
is changing. Our approach, a form of population-oriented it-


