Client-Server Applications

Prof. Sanjeev Setia Distributed Software Systems CS 707

Network Protocols

Common bandwidths available

Service	Bandwidth
ISDN	64 Kbps
Τ1	1.544 Mbps
Т3	44.7 Mbps
STS-1	51.84 Mbps
STS-3	155.25 Mbps
STS-12	622 Mbps
STS-24	1.233 Gbps
STS-48	2.488 Gbps

Issues in Networks

- Naming
- Routing strategies fixed, virtual circuit, dynamic
- Connection strategies connectionoriented vs connectionless
- Contention

EthernetIEEE 803.210FDDIFDDI-I100IBM token ringIEEE 803.54 or 16Apple LocalTalk–0.23	Network type	Standard	Data transfer rate (megabits per second
FDDIFDDI-I100IBM token ringIEEE 803.54 or 16Apple LocalTalk-0.23	Ethernet	IEEE 803.2	10
IBM token ringIEEE 803.54 or 16Apple LocalTalk-0.23	FDDI	FDDI-I	100
Apple LocalTalk – 0.23	IBM token ring	IEEE 803.5	4 or 16
	Apple LocalTalk	_	0.23
	Apple LocalTalk	_	0.23

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) © Addison-Wesley Publishers 1994

Figure 3.6 Protocol layers in the ISO *Open Systems Interconnection (OSI)* protocol model.

Figure 3.7	Figure 3.7 OSI protocol summary.				
Layer	Description	Examples			
Application	<i>plication</i> Protocols that are designed to meet the communication requirements of specific applications, often defining the interface to a service.				
Presentation	Protocols at this level transmit data in a network representation that is independent of the representations used in individual computers, which may differ. Encryption is also performed in this layer, if required.	XDR, ASN.1, encryption			
Session	At this level communication between processes is established and error recovery is performed. It is not required for connectionless communication.				
Transport	This is the lowest level at which messages (rather than packets) are handled. Messages are addressed to communication ports, Protocols in this layer may be connection-oriented or connectionless.	TCP, UDP			
Network	Transfers data packets between computers in a specific network. In a WAN or an internetwork this involves the generation of a route passing through PSEs or routers. In a single LAN no routing is required.	X25,IP			
Data link	Responsible for error-free transmission of packets between computers that are directly connected. In a WAN the connections are between pairs of PSEs and PSEs and hosts. In a LAN they are pairs of hosts.	HDLC Ethernet: CSMA/CD			
Physical	The circuits and hardware that drives the network. It transmits sequences of binary data by analogue signalling, using amplitude or frequency modulation of electrical signals (on cable circuits), light signals (on fibre- optic circuits) or electromagnetic signals (on radio and microwave circuits).	X.21 Ethernet: baseband signalling			

Ethernet packet layout (from page 78):

6 bytes	6 bytes	2 bytes	46 bytes \leq length \leq 1500 bytes	4 bytes
Destination address	Source address	Туре	Data for transmission	Frame check sequence

Token ring packet layout (from page 81):

3 bytes	6 bytes	6 bytes	\leq 5000 bytes	4 bytes	1 byte	1 byte
Token	Destination address	Source address	Data for transmission	Frame check seq.	End delimiter	Frame status

A token has the following format:

1 byte	1 byte	1 byte
Starting delimiter	Access control	Frame control

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) © Addison-Wesley Publishers 1994

Figure 3.9 ATM protocol layers.

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) © Addison-Wesley Publishers 1994

Figure 3.15 Decimal representation of Internet Addresses.

	octet 1		octet 2		octet 3		octet 4
_	Network id	_			Host id		
Class A:	1 to 127		0 to 255		0 to 255		0 to 255
	Netw	work id		Но	st	id	
Class B:	128 to 191		0 to 255		0 to 255		0 to 255
			Network id				Host id
Class C:	192 to 233		0 to 255		0 to 255	1 [1 to 254
_			Multica	st	address		
Nulticast:	234 to 255		0 to 255		0 to 255		1 to 254

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) © Addison-Wesley Publishers 1994

The Client-Server Model

Client Server Systems

Client/Server Application

Overview

- Common communication patterns in a distributed applications
 - Client-server
 - Group (multicast) communication
- Client: process that requests service
- Server: process that provides service
- client usually *blocks* until server responds

- client usually invoked by end users when they require service
- server usually waits for incoming requests
- server can have many clients making concurrent requests
- server often a program with special system privileges

Middleware

Client & Server Functions

• Clients

- interacts with user through a user interface
- performs application functions
- interacts with *client middleware* using middleware API
- recieves response and displays them if needed

• Servers

- implement services
- invoked by server middleware
- provide error-recovery and failurehandling services

Client Middleware

- provide an API that can be invoked by clients
- establish connection with server middleware using network services
- send request to server middleware using an exchange protocol
- recieve response from the server middleware
- handle failure and synchronization of activity if needed
- handle access control

Server Middleware

- recieve client request from network services
- authenticate request
- schedule a server process to handle the client request
- receive response from the server process and send it back to the client middleware
- provide concurrency control
- handle failures on client side, network, servers, etc.

Middleware

Definitions:

- Middleware is a set of common businessunaware services that enable applications and end-users to interact with each other across a network
- distributed system services that have standard programming interfaces and protocols....services "sit in the middle" above OS and network software and below industry-specific applications
- the "/" in client/server applications
- software nobody wants to pay for

Examples

- ftp, email
- Web browsers
- Database drivers and gateways
- OSF's DCE (Distributed Computing Environment)
- OMG's CORBA (Common Object Request Broker Architecture)

Functional View of Middleware

- information exchange services
- application-specific services
 - specialized services, e.g., transactional services and replication services for distributed databases, groupware services for collaborative applications, specialized services for multimedia applications
 - business-unaware
- management and support services
 - needed for locating distributed resources and administering resources across the network

Commercial Middleware

- Middleware components that provide only one service
 - HTTP for retrieving remote documents, SUNRPC for RPC, etc.
- Middleware environments that combine many services
 - OSF DCE integrates RPC, security, directory, time, and file services
 - CORBA
- Compound middleware environments that combine many middleware environments into a single framework
 - IBM's Open Distributed Computing (ODC) Blueprint combines DCE, CORBA, and transaction management

Application Software Architectures

- many applications can be considered to be made up of three software components or logical tiers
 - user interface
 - processing layer
 - data layer
- Client/Server architectures
 - single-physical-tiered, two-physical-tiered, three-physical-tiered

"Gartner Group" Configurations

Distributed Data

Example: Distributed Database

presentation				
logic				
data				

data

Remote Data

Example: Network File Systems

data

Distributed Programs

Example: World Wide Web

Distributed Presentation

Example: X Windows

presentation

presentation logic data

Remote Presentation

Example: telnet

Three-tier architectures

Motivation for multi-tier architectures

- Frees clients from dependencies on the exact implementation of the database
- It allows "business logic" to be concentrated in one place
 - Software updates are restricted to middle layer
- Performance improvements possible by batching requests from many clients to the database
- Database and business logic tiers could be implemented by multiple servers for scalability

Fat vs thin clients

- Thin client = network computer
 - Typically no local storage
- Fat client = typical desktop PC, workstation
- Motivation for thin clients: hidden costs of system administration and support
 - Network computers a move towards *centralized* system admin but *local* processing at client
 - Java (mobile code) an enabling technology
 - Degrees of "thinness", e.g. PDAs