
1

Distributed Software Systems 1

Concurrent Programming

Prof. Sanjeev Setia
Distributed Software Systems
CS 707
Spring 2000

Distributed Software Systems 2

Hardware Architectures
z Uniprocessors
z Shared-memory multiprocessors
z Distributed-memory multicomputers
z Distributed systems

Distributed Software Systems 3

Concurrent Programming
z Process = Address space + one thread of

control
z Concurrent program = multiple threads

of control
yMultiple single-threaded processes
yMulti-threaded process

Distributed Software Systems 4

Application classes
z Multi-threaded Programs
yProcesses/Threads on same computer
yWindow systems, Operating systems

z Distributed computing
yProcesses/Threads on separate computers
y File servers, Web servers

z Parallel computing
yOn same (multiprocessor) or different computers
yGoal: solve a problem faster or solve a bigger

problem in the same time

2

Distributed Software Systems 5

Concurrent Systems

z Essential aspects of any concurrent
system
yExecution context - state of a concurrent

entity
yScheduling - deciding which context will run

next
ySynchronization - mechanisms that enable

execution contexts to coordinate their use of
shared resources

Distributed Software Systems 6

Threads: Motivation
z Traditional UNIX processes created and

managed by the OS kernel
z Process creation expensive - fork system

call
z Context switching expensive
z Cooperating processes - no need for

protection (separate address spaces)

Distributed Software Systems 7

Threads
z Execute in same address space
yseparate execution stack, share access to

code and (global) data
z Smaller creation and context-switch time
z Can exploit fine-grain concurrency
z Easier to write programs that use

asynchronous I/O or communication

Distributed Software Systems 8

Threads cont’d
z Less protection against programming

errors
z User-level vs kernel-level threads
ykernel not aware of threads created by user-

level thread package (e.g. Pthreads),
language (e.g. Java)
yuser-level threads typically multiplexed on top

of kernel level threads in a user-transparent
fashion

3

Distributed Software Systems 9

Creating and Using threads
z Solaris Multi-threading Library
y supports Pthreads API + own Solaris threads API
ypthread_create, pthread_join, pthread_self,

pthread_exit, pthread_detach
z Java
yprovides a Runnable interface and a Thread class as

part of standard Java libraries
xusers program threads by implementing the

Runnable interface or extending the Thread class

Distributed Software Systems 10

Creating threads
class Simple implements Runnable {

public void run() {
System.out.println(“this is a thread”);

}
}
Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative strategy: Extend Thread class (not recommended
unless you are creating a new type of Thread)

Distributed Software Systems 11

Cooperating concurrent
processes
z Shared Memory
ySemaphores, mutex locks, condition

variables, monitors
yMutual exclusion

z Message-passing
yPipes, FIFOs (name pipes)
yMessage queues

Distributed Software Systems 12

Synchronization Mechanisms
z Pthreads
ySemaphores
yMutex locks
yCondition Variables
yReader/Writer Locks

z Java
yEach object has an (implicitly) associated lock

and condition variable

4

Distributed Software Systems 13

Mutual exclusion in Java
class Interfere {

private int data = 0;
public synchronized void update() {

data++;
}

} class Interfere {
private int data = 0;
public void update() {

synchronized(this) {
data++;

}
}

}
Distributed Software Systems 14

The Reader/Writer Problem
class RWbasic { // basic read or write (no synch)
protected int data = 0; // the "database“
protected void read() {

System.out.println("read: " + data);
}

protected void write() {
data++;
System.out.println("wrote: " + data);

}
}

Distributed Software Systems 15

class ReadersWriters extends RWbasic { // Readers/Writers
int nr = 0;
private synchronized void startRead() {

nr++;
}
private synchronized void endRead() {

nr--;
if (nr==0) notify(); // awaken waiting Writers

}
public void read() {

startRead();
System.out.println("read: " + data);
endRead();

}
Distributed Software Systems 16

public synchronized void write() {
while (nr>0)

try { wait(); }
catch (InterruptedException ex {return;}

data++;
System.out.println("wrote: " + data);
notify(); // awaken another waiting Writer

}
}
class Reader extends Thread {
int rounds;
ReadersWriters RW;
public Reader(int rounds, ReadersWriters RW) {
this.rounds = rounds;
this.RW = RW;

}
public void run() {
for (int i = 0; i<rounds; i++) {

RW.read();
} } }

5

Distributed Software Systems 17

class Writer extends Thread {
int rounds;
ReadersWriters RW;
public Writer(int rounds, ReadersWriters RW) {

this.rounds = rounds; this.RW = RW;
}
public void run() {

for (int i = 0; i<rounds; i++) {
RW.write(); }

}
}
class Main { // driver program -- two readers and one writer

static ReadersWriters RW = new ReadersWriters();
public static void main(String[] arg) {

int rounds = Integer.parseInt(arg[0],10);
new Reader(rounds, RW).start();
new Reader(rounds, RW).start();
new Writer(rounds, RW).start();

}
}

