Concurrent Programming

Prof. Sanjeev Setia
Distributed Software Systems
Cs 707

Spring 2000

Distributed Software Systems 1

Hardware Architectures

Uniprocessors

Shared-memory multiprocessors
Distributed-memory multicomputers
Distributed systems

Distributed Software Systems

Concurrent Programming

Process = Address space + one thread of
control
Concurrent program = multiple threads
of control
Multiple single-threaded processes
Multi-threaded process

Distributed Software Systems 3

Application classes

Multi-threaded Programs

Processes/Threads on same computer

Window systems, Operating systems
Distributed computing

Processes/Threads on separate computers

File servers, Web servers
Parallel computing

On same (multiprocessor) or different computers

Goal: solve a problem faster or solve a bigger
problem in the same time

Distributed Software Systems




Concurrent Systems

Essential aspects of any concurrent
system
Execution context - state of a concurrent
entity
Scheduling - deciding which context will run
next

Synchronization - mechanisms that enable
execution contexts to coordinate their use of
shared resources

Distributed Software Systems

Threads: Motivation

Traditional UNIX processes created and
managed by the OS kernel

Process creation expensive - fork system
call

Context switching expensive

Cooperating processes - no need for
protection (separate address spaces)

Distributed Software Systems 6

Threads

Execute in same address space

separate execution stack, share access to
code and (global) data

Smaller creation and context-switch time
Can exploit fine-grain concurrency

Easier to write programs that use
asynchronous 1/0 or communication

Distributed Software Systems

Threads contd

Less protection against programming
errors

User-level vs kernel-level threads

kernel not aware of threads created by user-
level thread package (e.g. Pthreads),
language (e.g. Java)

user-level threads typically multiplexed on top
of kernel level threads in a user-transparent
fashion

Distributed Software Systems 8




Creating and Using threads

Solaris Multi-threading Library
supports Pthreads API + own Solaris threads API
pthread_create, pthread_join, pthread_self,
pthread_exit, pthread_detach

Java
provides a Runnable interface and a Thread class as
part of standard Java libraries

users program threads by implementing the
Runnable interface or extending the Thread class

Distributed Software Systems 9

Creating threads

class Simple implements Runnable {
public void run() {
System.out.printin(“this is a thread’};
}
}

Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative strategy: Extend Thread class (not recommended
unless you are creating a new type of Thread)

Distributed Software Systems 10

Cooperating concurrent
processes

Shared Memory

Semaphores, mutex locks, condition
variables, monitors

Mutual exclusion
Message-passing

Pipes, FIFOs (name pipes)

Message queues

Distributed Software Systems 11

Synchronization Mechanisms

Pthreads
Semaphores
Mutex locks
Condition Variables
Reader/Writer Locks
Java

Each object has an (implicitly) associated lock
and condition variable

Distributed Software Systems 12




Mutual exclusion in Java

class Interfere {
private int data = O;
public synchronized void update() {
data++;

} class Interfere {
} private int data = 0;
public void update() {
synchronized(this) {
data++;
}
}

}

Distributed Software Systems

13

The Reader/Writer Problem

class RWbasic { // basic read or write (no synch)
protected int data = 0; // the "database“*
protected void read() {
System.out.printin("read: " + data);
}

protected void write() {
data++;
System.out.printin("wrote: " + data);
}
}

Distributed Software Systems 14

class ReadersWriters extends RWbasic { // Readers/Writers
intnr=0;

private synchronized void startRead() {
nr++;
}

private synchronized void endRead() {
nr--;
if (nr==0) notify(); // awaken waiting Writers

public void read() {
startRead();
System.out.printin("read: " + data);
endRead();
}

Distributed Software Systems

15

public synchronized void write() {
while (nr>0)
try { wait(); }
catch (InterruptedException ex {return;}
data++;
System.out.printin("wrote: " + data);
notify(); // awaken another waiting Writer
}
}

class Reader extends Thread {
int rounds;
ReadersWriters RW;
public Reader(int rounds, ReadersWriters RW) {
this.rounds = rounds;
this.RW = RW;
}
public void run() {
for (int i = O; i<rounds; i++) {
RW.read();
I8

Distributed Software Systems 16




class Writer extends Thread {
int rounds;
ReadersWriters RW;
public Writer(int rounds, ReadersWriters RW) {
this.rounds = rounds; this.RW = RW;

public void run() {
for (inti = O; i<rounds; i++) {
RW.write(); }
}

class Main { // driver program -- two readers and one writer
static ReadersWriters RW = new ReadersWriters();
public static void main(String[] arg) {
int rounds = Integer.parselnt(arg[0],10);
new Reader(rounds, RW).start();
new Reader(rounds, RW).start();
new Writer(rounds, RW).start();
}
}

Distributed Software Systems 17




