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Hardware Architectures
z Uniprocessors
z Shared-memory multiprocessors
z Distributed-memory multicomputers
z Distributed systems
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Concurrent Programming
z Process = Address space + one thread of 

control 
z Concurrent program = multiple threads 

of control
yMultiple single-threaded processes
yMulti-threaded process
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Application classes
z Multi-threaded Programs
yProcesses/Threads on same computer
yWindow systems, Operating systems

z Distributed computing
yProcesses/Threads on separate computers
y File servers, Web servers

z Parallel computing
yOn same (multiprocessor) or different computers
yGoal: solve a problem faster or solve a bigger 

problem in the same time
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Concurrent Systems

z Essential aspects of any concurrent 
system
yExecution context - state of a concurrent 

entity
yScheduling - deciding which context will run 

next
ySynchronization - mechanisms that enable 

execution contexts to coordinate their use of 
shared resources
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Threads: Motivation
z Traditional UNIX processes created and 

managed by the OS kernel 
z Process creation expensive - fork system 

call 
z Context switching expensive
z Cooperating processes - no need for 

protection (separate address spaces)

Distributed Software Systems 7

Threads
z Execute in same address space
yseparate execution stack, share access to 

code and (global) data
z Smaller creation and context-switch time
z Can exploit fine-grain concurrency
z Easier to write programs that use 

asynchronous I/O or communication
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Threads cont’d
z Less protection against programming 

errors
z User-level vs kernel-level threads
ykernel not aware of threads created by user-

level thread package (e.g. Pthreads), 
language (e.g. Java)
yuser-level threads typically multiplexed on top 

of kernel level threads in a user-transparent 
fashion 
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Creating and Using threads 
z Solaris Multi-threading Library
y supports Pthreads API + own Solaris threads API
ypthread_create, pthread_join, pthread_self, 

pthread_exit, pthread_detach
z Java
yprovides a Runnable interface and a Thread class as 

part of standard Java libraries
xusers program threads by  implementing the 

Runnable interface or extending the Thread class
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Creating threads
class Simple implements Runnable {

public void run() {
System.out.println(“this is a thread”);

}
}
Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative  strategy: Extend Thread class (not recommended
unless you are creating a new type of  Thread) 
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Cooperating concurrent 
processes
z Shared Memory
ySemaphores, mutex locks, condition 

variables, monitors
yMutual exclusion

z Message-passing
yPipes, FIFOs (name pipes)
yMessage queues
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Synchronization Mechanisms
z Pthreads
ySemaphores
yMutex locks
yCondition Variables
yReader/Writer Locks

z Java
yEach object has an (implicitly) associated lock 

and condition variable



4

Distributed Software Systems 13

Mutual exclusion in Java
class Interfere {

private int data = 0;
public synchronized void update() {

data++;
}

} class Interfere {
private int data = 0;
public void update() {

synchronized(this) {      
data++;

}
}

}
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The Reader/Writer Problem
class RWbasic {        // basic read or write (no synch)
protected int data = 0;  // the "database“
protected void read() {

System.out.println("read:  " + data);
}

protected void write() {
data++;
System.out.println("wrote:  " + data);

}
}
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class ReadersWriters extends RWbasic {  // Readers/Writers
int nr = 0;  
private synchronized void startRead() {    

nr++; 
}  
private synchronized void endRead()  { 

nr--;   
if (nr==0)  notify();  // awaken waiting Writers  

} 
public void read() {

startRead();   
System.out.println("read:  " + data);
endRead();  

}
Distributed Software Systems 16

public synchronized void write() {    
while (nr>0)      

try { wait(); }         
catch (InterruptedException ex  {return;}  

data++;    
System.out.println("wrote:  " + data);   
notify(); // awaken another waiting Writer  

}
}
class Reader extends Thread { 
int rounds;
ReadersWriters RW;  
public Reader(int rounds, ReadersWriters RW) {    
this.rounds = rounds;    
this.RW = RW;  

} 
public void run() {   
for (int i = 0; i<rounds; i++) {      

RW.read();    
} } }
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class Writer extends Thread {
int rounds;
ReadersWriters RW;  
public Writer(int rounds, ReadersWriters RW) {    

this.rounds = rounds;    this.RW = RW;  
}  
public void run() {    

for (int i = 0; i<rounds; i++) {      
RW.write();    } 

}
}
class Main {          // driver program -- two readers and one writer  

static ReadersWriters RW = new ReadersWriters();  
public static void main(String[] arg) {

int rounds = Integer.parseInt(arg[0],10);    
new Reader(rounds, RW).start();    
new Reader(rounds, RW).start();    
new Writer(rounds, RW).start();  

}
}


