

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F207

9

Entries in recovery file l To deal with recovery of a server that can be involved in distributed
transactions, further information in addition to the data items is stored in the recovery file. This
information concerns the status of each transaction – whether it is committed, aborted or prepared to
commit. In addition, each data item in the recovery file is associated with a particular transaction by
saving the intentions list in the recovery file. To summarize, the recovery file includes the following
types of entry:

Type of entry Description of contents of entry

Data item A value of a data item

Transaction
status

Transaction identifier, transaction status (prepared, committed,
aborted) – and other status values used for the two-phase commit
protocol and for nested transactions (when in use)

Intentions list Transaction identifier and a sequence of intentions, each of which
consists of <identifier of data item>, <position in recovery file of
value of data item>

This document was created with FrameMaker 4.0.4

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F208

Figure 15.1 Log for banking service.

P0 P1 P2 P3 P4 P5 P6 P7

Data:A Data:B Data:C Data:A Data:B Trans:T Trans:T Data:C Data:B Trans:U

100 200 300 96 204 prepared committed 297 207 prepared

<A, P1> <C, P5>

<B, P2> <B, P6>

P0 P3 P4

Checkpoint End
of log

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F209

This technique is illustrated with the same example involving transactions T and U. The first
column in the table shows the map before transactions T and U when the balances of the accounts A,
B and C are $100, $200 and $300. The second column shows the map after transaction T has
committed:

Map at start Map when T commits

A → P0 A → P3

B → P1 B → P4

C → P2 C → P2

P0 P1 P2 P3 P4

Version store 100 200 300 96 204 297 207

Checkpoint

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F210

Figure 15.2 Log with entries relating to two-phase commit protocol.

Trans:T Coord’r:
T

• • Trans:T Trans:U • • Worker:U Trans:U Trans:U

prepared worker
list: . . .

committed prepared Coord’r:... uncertain committed

Intentions
list

Intentions
list

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F211

Figure 15.3 Recovery of the two-phase commit protocol.

Role Status Action of recovery manager

Coordinator prepared No decision had been reached before the server failed. It
sends AbortTransaction to all the servers in the worker list
and adds the transaction status aborted in its recovery file.
Same action for state aborted. If there is no worker list the
workers will eventually time-out and abort the transaction.

Coordinator committed A decision to commit had been reached before the server
failed. In case it had not done so before, it sends a
DoCommit to all of the workers in its worker list and
resumes the two-phase protocol at Step 4 (see Figure 14.5).

Worker committed The worker sends a HaveCommitted message to the
coordinator in case this was not done before the worker
failed. This will allow the coordinator to discard
information about this transaction at the next checkpoint.

Worker uncertain The worker failed before it knew the outcome of the
transaction. It cannot determine the status of the
transaction until the coordinator informs it of the decision.
It will send a GetDecision to the coordinator to determine
the status of the transaction. When it receives the reply it
will commit or abort accordingly.

Worker prepared The worker has not yet voted and can abort the transaction.

Coordinator done No action is required.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F213

Cristian [1991] provides a useful classification of failures. A request to a server can change the state of
its resources and may produce a result for the client. Cristian’s classification assumes that for a service
to perform correctly, both the effect on a server’s resources and the response to the client must be
correct. Part of the classification is given in the following table:

Class of failure Subclass Description

Omission failure A server omits to respond to a request

Response failure Server responds incorrectly to a request

Value failure Returns wrong value

State transition failure Has wrong effect on resources (for
example, sets wrong values in data items)

Examples of Faults

• Omission Failure
– UDP

• Response Failure
– At once RPC semantics masks omission

failures but may convert faults into response
failures if service is not idempotent

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F214

An important aspect of a server failure is its state after it has been restarted. For example, a
transactional service restarts with the effects of all committed transactions reflected in its data items.
Cristian gives the following classification of server failures:

Class of failure Subclass description

Crash failure Repeated omission failure: a server repeatedly
fails to respond to requests until it is restarted

Amnesia-crash A server starts in its initial state, having
forgotten its state at the time of the crash

Pause-crash A server restarts in the state before the crash

Halting-crash Server never restarts

Failure Semantics

• Fail-stop services
• Byzantine failure

– Byzantine general’s problem
• If message originators can be authenticated, 2N+1

servers can tolerate N faulty servers
• If no sender authentication, need at least 1/3 of the

participants to be non-faulty

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F215

Figure 15.5 Byzantine Generals.

(a) Message originators can be
authenticated by receivers

(b) Message originators cannot be
authenticated by receivers

.

A

B C (bad)

A yesA
ye

s
C no

{A: yes, B: yes, C: no}

B
ye

s

{A: yes, B: yes, C: yes}

C yes

B yes

A

B C

A yesA
ye

s

{A: yes, no?}
A no

Masking of Faults

• Hierarchical
– Server at higher level masks faults at lower

level
• Group failure masking

– Closely synchronized group of servers
• Each replica executes on a different computer and

executes same requests
– Loosely synchronized group of servers

• Primary server + backup servers

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F216

Figure 15.6 Three-way message from A to B.

A'

B

B'

A

