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About this Class
z Distributed systems are ubiquitous
z Focus: designing and writing moderate-

sized distributed applications
z Prerequisites: 
yCS 571 (Operating Systems)
yCS 706 (Concurrent Software)
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What you will learn
“I hear and I forget, I see and I remember, I do 

and I understand” –Chinese proverb
z Issues that arise in the development of 

distributed software
z Middleware technology
yThreads, sockets, RPC
yCORBA
y Javaspaces (JINI), XML, Javabeans 
xDepending on time available
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Logistics
z Grade: 70% projects, 30% exams
z Slides, assignments, reading material on class 

web page 
http://www.cs.gmu.edu/~setia/cs707/
z 3 or 4 small (2 week) programming assignments 

+1 larger project all to be done individually
z Use any platform; all the necessary software will 

be available on IT&E lab computers  
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Schedule
z Client-server application design
z Sockets; Application-level protocols
z RPC
z CORBA
z Other middleware technologies
z Designing Reliable and Scalable 

distributed applications –case studies, 
research articles
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Distributed systems
z “Workgroups” 
z ATM (bank) machines
z WWW
z Multimedia conferencing
z Computing landscape will soon consist of 

ubiquitous network-connected devices
y “The network is the computer”
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Distributed applications
z Applications that consist of a set of processes 

that are distributed across a network of 
machines and work together as an ensemble to 
solve a common problem
z In the past, mostly “client-server”
yResource management centralized at the server

z But the next few years may see a movement 
towards more “truly” distributed applications 
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Benefits
z Performance 
yParallel computing a subset of distributed 

computing
z Scalability
z Resource sharing
z Fault tolerance and availability
z Elegance



3

Distributed Software Systems 9

Challenges(Differences 
from Local Computing)
z Heterogeneity
z Latency
yInteractions between distributed processes 

have a higher latency 
z Memory Access
yRemote memory access is not the same as 

local memory access
xLocal pointers are meaningless outside address 

space of process
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Challenges cont’d
z Synchronization
yConcurrent interactions the norm

z Partial failure
yApplications need to adapt gracefully in the 

face of partial failure
yLamport once defined a distributed system as 

“One on which I cannot get any work done 
because some machine I have never heard of 
has crashed”
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Communication Patterns
z Client-server
z Group-oriented
yApplications that require reliability

z Function-shipping
yPostscript, Java
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Distributed Software: 
Goals
z Middleware handles heterogeneity
z Higher-level support
yMake distributed nature of application transparent

to the user/programmer
xRemote Procedure Calls
xRPC + Object orientation = CORBA

z Higher-level support BUT expose remote 
objects, partial failure, etc. to the programmer
y JINI, Javaspaces

z Scalability
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Transparency
z Access – local and remote objects are accessed 

using identical operations
z Location –no knowledge of location of resource
z Concurrency –several processes can operate 

concurrently on shared objects without 
interference
z Replication –no knowledge of replicas
z Failure –graceful degradation
z Parallelism –tasks automatically parallelized
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Example: NFS
z A very successful distributed “application” based 

on RPC
y Illustrates both arguments

z Interface for remote files same as interface for 
local files
z Soft mounts vs Hard mounts
ySoft mounts expose network or server failures
yHard mounts force application to hang until server 

recovers
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NFS cont’d
“Limitations on robustness and reliability of 

NFS have nothing to do with the 
implementation … The problem can be 
traced to the interface upon which NFS is 
built, an interface that was designed for 
non-distributed computing where partial 
failure was not possible” –Waldo et al 
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Scalability
z Becoming increasingly important because of the 

changing computing landscape
z Key to scalability: decentralized algorithms and 

data structures
y No machine has complete information about the 

state of the system
yMachines make decisions based on locally available 

information
y Failure of one machine does not ruin the algorithm
yThere is no implicit assumption that a global clock 

exists



5

Distributed Software Systems 17

Readings
z Chapters in Tannenbaum’s “Modern 

Operating Systems” or “Distributed 
Operating Systems”
z “A Note on Distributed Computing” –

Waldo, Wyant, Wollrath, Kendall
yLink on class web page


