
1

Distributed Software Systems 1

Introduction to Distributed
Computing

Prof. Sanjeev Setia
Distributed Software Systems
CS 707
Spring 2000

Distributed Software Systems 2

About this Class
z Distributed systems are ubiquitous
z Focus: designing and writing moderate-

sized distributed applications
z Prerequisites:
yCS 571 (Operating Systems)
yCS 706 (Concurrent Software)

Distributed Software Systems 3

What you will learn
“I hear and I forget, I see and I remember, I do

and I understand” –Chinese proverb
z Issues that arise in the development of

distributed software
z Middleware technology
yThreads, sockets, RPC
yCORBA
y Javaspaces (JINI), XML, Javabeans
xDepending on time available

Distributed Software Systems 4

Logistics
z Grade: 70% projects, 30% exams
z Slides, assignments, reading material on class

web page
http://www.cs.gmu.edu/~setia/cs707/
z 3 or 4 small (2 week) programming assignments

+1 larger project all to be done individually
z Use any platform; all the necessary software will

be available on IT&E lab computers

2

Distributed Software Systems 5

Schedule
z Client-server application design
z Sockets; Application-level protocols
z RPC
z CORBA
z Other middleware technologies
z Designing Reliable and Scalable

distributed applications –case studies,
research articles

Distributed Software Systems 6

Distributed systems
z “Workgroups”
z ATM (bank) machines
z WWW
z Multimedia conferencing
z Computing landscape will soon consist of

ubiquitous network-connected devices
y “The network is the computer”

Distributed Software Systems 7

Distributed applications
z Applications that consist of a set of processes

that are distributed across a network of
machines and work together as an ensemble to
solve a common problem
z In the past, mostly “client-server”
yResource management centralized at the server

z But the next few years may see a movement
towards more “truly” distributed applications

Distributed Software Systems 8

Benefits
z Performance
yParallel computing a subset of distributed

computing
z Scalability
z Resource sharing
z Fault tolerance and availability
z Elegance

3

Distributed Software Systems 9

Challenges(Differences
from Local Computing)
z Heterogeneity
z Latency
yInteractions between distributed processes

have a higher latency
z Memory Access
yRemote memory access is not the same as

local memory access
xLocal pointers are meaningless outside address

space of process

Distributed Software Systems 10

Challenges cont’d
z Synchronization
yConcurrent interactions the norm

z Partial failure
yApplications need to adapt gracefully in the

face of partial failure
yLamport once defined a distributed system as

“One on which I cannot get any work done
because some machine I have never heard of
has crashed”

Distributed Software Systems 11

Communication Patterns
z Client-server
z Group-oriented
yApplications that require reliability

z Function-shipping
yPostscript, Java

Distributed Software Systems 12

Distributed Software:
Goals
z Middleware handles heterogeneity
z Higher-level support
yMake distributed nature of application transparent

to the user/programmer
xRemote Procedure Calls
xRPC + Object orientation = CORBA

z Higher-level support BUT expose remote
objects, partial failure, etc. to the programmer
y JINI, Javaspaces

z Scalability

4

Distributed Software Systems 13

Transparency
z Access – local and remote objects are accessed

using identical operations
z Location –no knowledge of location of resource
z Concurrency –several processes can operate

concurrently on shared objects without
interference
z Replication –no knowledge of replicas
z Failure –graceful degradation
z Parallelism –tasks automatically parallelized

Distributed Software Systems 14

Example: NFS
z A very successful distributed “application” based

on RPC
y Illustrates both arguments

z Interface for remote files same as interface for
local files
z Soft mounts vs Hard mounts
ySoft mounts expose network or server failures
yHard mounts force application to hang until server

recovers

Distributed Software Systems 15

NFS cont’d
“Limitations on robustness and reliability of

NFS have nothing to do with the
implementation … The problem can be
traced to the interface upon which NFS is
built, an interface that was designed for
non-distributed computing where partial
failure was not possible” –Waldo et al

Distributed Software Systems 16

Scalability
z Becoming increasingly important because of the

changing computing landscape
z Key to scalability: decentralized algorithms and

data structures
y No machine has complete information about the

state of the system
yMachines make decisions based on locally available

information
y Failure of one machine does not ruin the algorithm
yThere is no implicit assumption that a global clock

exists

5

Distributed Software Systems 17

Readings
z Chapters in Tannenbaum’s “Modern

Operating Systems” or “Distributed
Operating Systems”
z “A Note on Distributed Computing” –

Waldo, Wyant, Wollrath, Kendall
yLink on class web page

