
Time and Coordination in
Distributed Systems

Distributed Software
Systems

Clock Synchronization
z Physical clocks drift, therefore need for

clock synchronization algorithms
yMany algorithms depend upon clock

synchronization
yClock synch. Algorithms –Christian, NTP,

Berkeley algorithm, etc.
z However, since we cannot perfectly

synchronize clocks across computers, we
cannot use physical time to order events

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F117

9

Figure 10.1 Drift between computer clocks in a distributed system.

NetworkNetwork

This document was created with FrameMaker 4.0.4

Logical time & clocks
z Lamport proposed using logical clocks

based upon the “happened before”
relation
yIf two events occur at the same process, then

they occurred in the order observed
yWhenever a message is sent between

processes, the event of sending occurred
before the event of receiving
yX happened before Y denoted by X→ Y

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F121

Figure 10.5 Events occurring at three processes.

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F122

Figure 10.6 Logical timestamps for the events shown in Figure 10.5.

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport’s algorithm
z Each process has its own logical clock
z LC1: Cp is incremented before each

event at process p
z LC2:

1. When process p sends a message it
piggybacks on it the value Cp

2. On receiving a message (m,t) a process q
computes Cq = max(Cq,t) and then applies
LC1 before timestamping the receive event

Totally ordered logical
clocks
z Logical clocks only impose partial ordering
z For total order, use (Ta,Pa) where Pa is

processor id
z (Ta,Pa) < (Tb,Pb) if and only if either

Ta < Tb or (Ta = Tb and Pa < Pb)

Distributed mutual
exclusion
z Central server algorithm
z Ricart and Agrawal algorithm
yA distributed algorithm that uses logical clocks

z Ring-based algorithms
NOTE: the above algorithms are not fault-tolerant

and not very practical. However, they illustrate
issues in the design of distributed algorithms
z Several other mutual exclusion algorithms have

been proposed
yWe will discuss majority voting in the context of

replicated data management

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F123

Figure 10.7 Server managing a mutual exclusion token for a set of processes.

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p3p2

p1

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F124

Figure 10.8 Ricart and Agrawala’s algorithm.

On initialization:
state := RELEASED;

To obtain the token:
state := WANTED;
Multicast request to all processes;
T := request’s timestamp;
Wait until (number of replies received = (n – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j):
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To release token:
state := RELEASED;
reply to any queued requests;

Request processing deferred here

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F125

Figure 10.9 Multicast synchronization.

Processes request mutual exclusion by multicasting.

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F126

pn

p1 p
2

p3

p
4

Token

Figure 10.10 A ring of processes transferring a mutual exclusion token.

Election Algorithms
z An election is a procedure carried out to chose a

process from a group, for example to take over
the role of a process that has failed
z Main requirement: elected process should be

unique even if several processes start an
election simultaneously
z Algorithms:
yBully algorithm: assumes all processes know the

identities and addresses of all the other processes
yRing-based election: processes need to know only

addresses of their immediate neighbors

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 F127

Figure 10.11 The bully algorithm.

p
1 p

2
p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3 p

4

The election of coordinator p2, after the failure of p4 and then p3.

election

answer

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F128

Figure 10.12 A ring-based election in progress.

24

1

28

9

4

3

Note: The election was started by process 17. The highest process identifier encountered
so far is 24. Participant processes are shown darkened.

24

17

15

