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Why Email?

Mail is important
Real demand

Mail is hard
Write intensive
Low locality

Mail is easy
Well-defined API
Large parallelism
Weak consistency 

I first want to motivate this talk by discussing why we chose email as a research target. There 
are several reasons. First is that mail is important. The use of large scale email service are 
rapidly expanding these days, and we see a real demand for systems like porcupine.. 
The next reason that mail is a difficult problem, especially compared to a typical web service, 
which has been studied very extensively. Unlike simple web, mail is a type of application that 
is more write intensive, is disk-bound, and has lower access locality. These properties make it 
difficult to use techniques that are effective in scaling we services, such as proxying.

On the other hand, mail turns out to be substantially easier than distribute file systems or data 
base services, which are traditional solutions to write-intensive service,.  First, mail has a well 
defined and  narrow API, which is a message send and receive rather than a generic byte 
read/write. Also, the mail workload has large inherent parallism, so we can scale the system 
without worrying much about access conflicts. Finally, consistency requirement for mail is 
fairly weak. We experience delay in mail delivery or duplicate messages all so often. To 
summarize, the service requirements for mail sits somewhere between web and database, and we 
believed we could come up with a better architecture by not binding ourselves to either web or 
database.
1:35
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Goals

Use commodity hardware to build a large,  
scalable mail service

Three facets of scalability ...
• Performance: Linear increase with cluster size 
• Manageability: React to changes automatically
• Availability: Survive failures gracefully

The goal of the P project is to build a very large scale email service using just a cheap 
commodity hardware. When we say large, today’s large mail sites, such as AOL or hotmail 
handles about 100 million messages per day, and given that Internet is still growing rapidly, 
we can expect an order of magnitude growth in the scale of email servers. That’s the area 
we target, about 1 billion messages per day. 
The key word in our project is to “scale”, and we define the work along three axes. First, of 
course, we need the system performance to scale. Not only that, we need to scale in terms of 
managing. We expect the mail traffic to constantly grow, and therefore the mail server 
needs to grow continuously as well. We don’t want human to be forced to manage such 
system changes manually -- it quickly becomes unmanageable as the system heterogeneity 
grows. Therefore, we want the system itself to react to such changes. Finally, our decision 
to use commodity hardware makes the system more prone to component failures. Thus, we 
want the system to survive gracefully various types of failures, including multiple node 
failures and network partitions. 
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Conventional Mail Solution

Static partitioning

Performance problems:
No dynamic load balancing

Manageability problems:
Manual data partition 

decision
Availability problems:

Limited fault tolerance

SMTP/IMAP/POP

Bob’s
mbox

Ann’s
mbox

Joe’s
mbox

Suzy’s
mbox

NFS servers

The existing servers are implemented by using a number nodes that run 
distributed file systems or database servers, and statically assigns each user to 
one of these nodes. We are not satisfied at this conventional solution because it 
doesn’t scale in this three areas. For example, it has performance scaling 
problem because it cannot load balance to react to changes in traffic or 
configuration. It is difficult to manage since the administrator needs to know 
the speed or the disk capacity of each node and manually assign each user to a 
node. In addition, this architecture it provides little fault tolerance. If a file 
server goes down, all the users who have mailboxes on the server are locked 
out of the system.. 1:30
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Presentation Outline

Overview
Porcupine Architecture

Key concepts and techniques
Basic operations and data structures
Advantages

Challenges and solutions
Conclusion

In the next few slides, I’ll overview the architecture of Porcupine. First, I 
summarize key techniques used in P and how it solve our goals. Next, I 
explain how it works at high level, and then I discuss why we think P is better 
than the conventional solution. 0:30
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Key Techniques and 
Relationships

Functional Homogeneity
“any node can perform any task”

Automatic
Reconfiguration

Load 
BalancingReplication

Manageability PerformanceAvailability

Framework

Techniques

Goals

The most significant difference between P and conventional servers is that P is 
FH. This means that any node can perform any task, either being interaction 
with mail clients or mail storage, and any piece of data can potentially be 
managed by any node. Especially, mail messages for a single user can be 
scattered on multiple nodes, and they are collected only when the user request 
reading them. All the data and task placement decisions are made dynamically. 

We have developed several techniques that takes advantage of FH. Automatic 
reconfiguration and replication keeps P functional after various kinds of 
failures. Dynamic load balancing ensures each node stores email message as 
their processing capability allows, and it masks skew in both workload and 
cluster configuration. These techniques in turn achieves the set of scalability 
goals I described in the earlier slide.
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Porcupine Architecture

Node A ...Node B Node Z...

SMTP
server

POP
server

IMAP
server

Mail mapMailbox 
storage

User 
profile

Replication Manager

Membership
Manager

RPC

Load Balancer
User map

The picture shows the main components of the system. Porcupine consists of a 
set of nodes connected by a fast network. Because Porcupine is functionally 
homogeneous, all the nodes run the identical set of software.
The close up figure in the left shows the structure of one node. Each node runs 
internet protocols such as SMTP and IMAP. In addition, it contains backend 
include mailbox storage, user database. The mailmap is to track the location of 
mail messages, and the stuff in middle is used to dispatch tasks among nodes. 
I’ll explain how they are used in later slides. 
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Porcupine Operations

Internet

A B...

A

1. “send 
mail to 
bob”

2. Who 
manages 
bob? ⇒ A

3. “Verify 
bob”

5. Pick the best 
nodes to store 
new msg ⇒ C

DNS-RR 
selection

4. “OK, 
bob has
msgs on 
C and D 6. “Store 

msg”
B

C

Protocol 
handling

User 
lookup

Load 
Balancing

Message 
store

...C

Now, I want to show a birds-eye view of how P works. This picture shows the 
steps performed during mail delivery. A client somewhere in the Inet chooses 
a node to contact using some naming mechanism such as DNSRR. Because of 
functional homogeneity, the client can in fact pick any node, but in this 
example, lets suppose it picked B. The client lets B know that it wants to send 
a msg to bob. 

The node B first needs to check who bob is. B first learns where the Bob’s user 
information is managed, say, A in this example. B asks A about bob, and A 
replies that bob is a valid user and that he has mail msgs on C and D at this 
point. Next, B makes a load balancing decision to determine where to store 
this new message. Lets say C is picked . B asks C to store the new message, 
and the session is complete. In step 4, B can also pick a node other than C or 
D, say, E for load balancing purpose. In such case, E needs to let A know that 
E has now stored a message for bob. 
This picture reveals several data structures that needs to be managed. First, 
each user must be managed by some node, and all the nodes must agree on 
who is managed where. Also, the manager of each node must keep track of 
there the user’s messages are. 
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Basic Data Structures

“bob”

BCACABAC

bob: {A,C}
ann: {B}

BCACABAC

suzy: {A,C} joe: {B}

B CACABAC

Apply hash 
function

User map

Mail map
/user info

Mailbox 
storage

A B C

Bob’s 
MSGs

Suzy’s 
MSGs

Bob’s 
MSGs

Joe’s 
MSGs

Ann’s 
MSGs

Suzy’s 
MSGs

The data structures I hinted in the previous slide are actually shown here. In P, 
the information about a single user is managed by a single node. The entire 
user population is partitioned into a equivalence class using a hash function on 
user names. Therefore, all the users whose names have the same hash value are 
managed by a single node. The small in-memory table called user map is 
replicated on each node and it  maps hash value into the node that manages the 
users in the class. The mgr of each user keeps track of which set of nodes store 
msgs for the user. We call this information mailmap. This picture shows how 
Bob can read his messages on node B. First, a hash function is applied to the 
string “bob” and user map is looked up, and the node B learns that A is 
responsible for managing bob. B does an RPC to the node A and get bob’s 
mailmap, which contains the set {A, C}. Subsequently, B does another round 
of A and C to obtain bob’s messages. 
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Porcupine Advantages

Advantages:
Optimal resource utilization
Automatic reconfiguration and task re-distribution 

upon node failure/recovery
Fine-grain load balancing

Results:
Better Availability
Better Manageability
Better Performance

The functional homogeneous architecture of P yields many potential benefits. 
First, because all the data/task placement decisions are dynamic, the system 
can make use of node resources optimally without forcing human to decide 
how. Also, the system is able to react to configuration changes, such as node 
failures automatically by re-partitioning the tasks and data among remaining 
active nodes. Finally, the system can be faster than the conventional solution  
because it can do fine-grain load balancing during data placement.

All these advantages combine into a system that is more available, more 
manageable and faster than conventional systems.

0:45
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Presentation Outline

Overview
Porcupine Architecture
Challenges and solutions

Scaling performance
Handling failures and recoveries:

Automatic soft-state reconstruction
Hard-state replication

Load balancing
Conclusion

We had several problems we needed to solve to realize these potential 
advantages. I’ll discuss three of them and how we solved. First is how we scale 
the system performance. Next is how we actually react to failures, and third is 
how we react to skew in workload or system configuration using load 
balancing mechanism. Along the discussion of these issues, I’ll mix the 
performance graphs of our prototype implementation to demonstrate the 
effectiveness of our solutions.

0:30
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Performance

Goals
Scale performance linearly with cluster size

Strategy: Avoid creating hot spots
Partition data uniformly among nodes
Fine-grain data partition

Now our first issue is how we scale performance linearly with the cluster size, 
and the strategy is to partition data management responsibility uniformly 
among nodes to avoid creating hot spots, and to make the partition very fine 
grain to further reduce the chance of creating hot spots. 
I actually already described the data structures such as user map and mail map 
that achieves these goals, so I don’t repeat them. I’ll just show you a graph 
tells  how our design scales in practice.
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Measurement Environment

30 node cluster of not-quite-all-identical PCs
100Mb/s Ethernet + 1Gb/s hubs
Linux 2.2.7
42,000 lines of C++ code

Synthetic load 
Compare to sendmail+popd

We show the baseline performance of Porcupine to show how the system 
scales. We measured P a cluster consisting of 30 nodes because that’s only 
what we had. The PC consists of a mix of various types of CPUs and disks. 
Traffic shape is based on that of the mail server in our department.
We also compare P to sendmail to show that we are no slower than a popular 
mail server despite all the additional benefits P provides. I compare ourselves 
against sendmail, the most popular mail server software in use today.
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How does Performance Scale?

0
100

200
300
400
500

600
700
800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine 

sendmail+popd

68m/day

25m/day

X axis is the number of nodes in the cluster, and Y axis is the maximum 
number of mail messages a cluster can handle per second. Our workload runs 
both senders and readers concurrently, and the readers are designed to delete 
messages after they are read. So, the Y numbers really represent the number of 
mail messages that a cluster can receive, read, and delete per second. The most 
important point of this graph is that Porcupine cluster scales completely 
linearly. This shows we achieved our goal of performance scalability although 
up to 30 nodes. Next, porcupine is no slower than sendmail, despite the fact 
that P provides all the management and availability benefits that don’t exist in 
sendmail.  In fact, P is more than twice as fast as sendmail. Sendmail is slow 
just because it uses the file system less efficiently than porcupine . 
1:20
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Availability

Goals:
Maintain function after failures
React quickly to changes regardless of cluster size
Graceful performance degradation / improvement

Strategy: Two complementary mechanisms
Hard state: email messages, user profile

⇒ Optimistic fine-grain replication
Soft state: user map, mail map 

⇒ Reconstruction after membership change

Now I switch topic and talk about how P deals with node failures and 
additions. Our first goal is to maintain system function after failures, and that 
to react changes quickly regardless of cluster size. We also want the system 
performance to degrade or improve quickly. To achieve these goals, we use 
two mechanisms, depending on the nature of data. On one hand, there are 
types of data that users really care and must be stored on disk. We call such 
data hard state, and that includes email and profile. Such data are replicated on 
multiple nodes. Other types of data are derived from another source, most 
often from hard state. We call them soft state, and that includes user map and 
mail map. Instead of replicating, we reconstruct them from source on demand 
and P runs a protocol to minimize that effort.. In the following slides, I first 
show hot soft state reconstruction works, and then explain optimistic 
replication briefly.
1:15
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Soft-state Reconstruction

B C A B A B A C
bob: {A,C}

joe: {C}
B C A B A B A C

B A A B A B A B
bob: {A,C}

joe: {C}
B A A B A B A B

A C A C A C A C
bob: {A,C}

joe: {C}
A C A C A C A C

suzy: {A,B}

ann: {B}

1. Membership protocol
Usermap recomputation

2. Distributed 
disk scan

suzy:

ann:

Timeline

A

B

ann: {B}

B C A B A B A C
suzy: {A,B}C ann: {B}

B C A B A B A C
suzy: {A,B}

ann: {B}

B C A B A B A C
suzy: {A,B}

Soft state reconstruction can best be explained using pictures. This picture 
shows a three node cluster. The upper boxes in each node represents the user 
map that shows which user is managed by which node. The green boxes below 
are actual user information. Thus, this three-node cluster manages 4 users. 
Now suppose C crashed. Here, we need to move all the users managed by C, 
suzy and ann, to either A or B. This is done in two steps. First, one of the
remaining nodes initiates the membership protocol and determines who’s 
alive and who’s dead, and at the same time, the user map is reconfigured by 
removing nodes that are found to be dead adding nodes that found to be 
recovered. The new membership and the new user map are broadcast to the 
nodes and we reach this middle stage. 
Here, since the user map has changed, the users managed by C are moved to A 
and B, but at this stage, their mail maps are empty. Thus, in the next step, each 
node scans its local disk and finds out all the messages that belong to these 
moved users. 
The second step looks very expensive, but it really isn’t because each node 
needs to scan only a portion of disk that corresponds to user map entries that 
have moved. In fact, total cost of recovery does not depend on the cluster size. 
This is because the total amount of mail map information that needs to be 
recovered from disks is equal to those stored on the crashed node, and that 
does not depend on the cluster size. 1:40
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How does Porcupine React to 
Configuration Changes?

300

400

500

600

700

0 100 200 300 400 500 600 700 800
Time(seconds)

Messages
/second

No failure

One node
failure
Three node
failures
Six node
failures

Nodes 
fail

New 
membership 
determined

Nodes 
recover

New 
membership 
determined

In this picture, we show how Porcupine reacts to failures in practice by
articifially crashing and recovering nodes. The X axis is the event timeline, the 
unit is seconds, and Y axis is the system performance. We ran our 30-node 
cluster into a steady state, and then artificially crashed 1, 3, or six nodes at 
time 300 seconds, and later, at time 600 seconds, we recovered all the crashed 
nodes. First, please take a look at the throughput during failures. The level of 
performance decrease is about proportional to the number of nodes failed, and 
also the performance restores to the original level after the nodes recover. This 
means P achives its goal of graceful performance degradation and 
improvement. Also, please notice how quickly P is able to reach the steady 
state after either crash or recovery. This shows our failure recovery mechanism 
is working quickly and efficiently. 
1:00
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Hard-state Replication

Goals:
Keep serving hard state after failures
Handle unusual failure modes 

Strategy: Exploit Internet semantics
Optimistic, eventually consistent replication
Per-message, per-user-profile replication
Efficient during normal operation
Small window of inconsistency

Now I want to explain briefly how keep messages and user profile available 
after crash. Our goals here are to make the hard state available, of course, and 
because we are using cheap hardware, we also need to handle unusual failures 
like multiple node failures, network partitions or long-lasting node failures. 
Finally, to make the service non-blocking even when that means presenting 
user an stale data..

The scheme we came up with is a form of optimistic replication that only 
ensures eventual consistency. Optimistic replication satisfies all our 
requirements nicely. The basic algorithm works by letting a coordinator, which 
is usually the node that initiated the update, push updates to other replicas. The 
crash of replicas other than the coordinator is handled by the coordinator wait 
until the replica recover. The coordinator crash is handled by letting one of 
other replicas quickly becoming the coordinator and complete the propagation. 
Thus, the common case operation is simple and very efficient. In case of 
failures, the protocol ensures that replicas will quickly converge into the 
newest value without every blocking access to clients.
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How Efficient is Replication?
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I show evaluation of our replication mechanism. Here, X axis is the number of 
nodes in the cluster, and Y axis is the performance. The blue line shows the 
baseline P performance without replication, and lower black line shows what 
happens when each msg is replicated on two nones. First, please see that the 
replicated P still scales perfectly. However, its performance is lower than what 
we expect because it really should be half of the baseline. This is because of 
the disk logging overhead that happens inside the replication engine. This 
overhead can be eliminated by using a fast, separate log disk or using NVRAM 
as a file buffer. 
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How Efficient is Replication?
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So we pretended that we have such hardware and simply removed 
synchronous disk flushing from the disk logging routines. We get this red line. 
This line still scales perfectly, and in addition, its performance is exactly what 
we expected, the half of the baseline case. So, to summarize, this graph shows 
that our replication algorithm is scalable, and is very efficient.
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Load balancing: Deciding 
where to store messages

Goals:
Handle skewed workload well
Support hardware heterogeneity
No voodoo parameter tuning

Strategy: Spread-based load balancing
Spread: soft limit on # of nodes per mailbox

Large spread ⇒ better load balance
Small spread ⇒ better affinity

Load balanced within spread
Use # of pending I/O requests as the load measure

Our final topic is how we load balance, or how we decide data placement. Our 
goals are is to handle workload skew, such as a few users receiving gigantic 
amount of mail for a short period of time, and also to handle configuration 
skew, such as a few nodes are much faster than the remaining.
The algorithm we came up with is what we call spread-based load balancing. 
Spread is the limit on the number of nodes per single user’s mailbox. The limit 
is soft is a sense that it can be violated when nodes crash. Spread represents a 
single parameter that administrator needs to tune. When the spread is large, the 
system has more nodes to choose from, thus we can balance load better. If the 
spread is small, the system needs to access fewer disks per mailbox, thus we 
can more streamline the disk head movement and also reduce the size of the 
mail map. P chooses node to store messages from the spread, using the number 
of pending I/O requests as the measure of a node’s load.
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How Well does Porcupine Support 
Heterogeneous Clusters? 
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Before explaining this graph, we also did experiments on how the system 
reacts to workload skew, but I won’t present them in this talk. Please refer to 
the paper if you are interested. This graph shows how P reacts to heterogeneity 
in cluster. The X axis is the heterogeneity. 0 is the baseline and all the nodes 
run at approximately at the same speed. 3,7,or10 means these percentage of 
nodes have very fast disks, about three times faster than the rest. The Y axis is 
the relative performance improvement over the baseline case. 

got the cluster find special resources.
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Conclusions

Fast, available, and manageable clusters can 
be built for write-intensive service

Key ideas can be extended beyond mail
Functional homogeneity
Automatic reconfiguration
Replication
Load balancing
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Ongoing Work

More efficient membership protocol
Extending Porcupine beyond mail: Usenet, 

BBS, Calendar, etc 
More generic replication mechanism

Also we are looking a little more ahead and trying to apply the ideas to 
services that demand stronger data consistency, such as auctioning. Especially, 
we are looking at more generic replication algorithm.


