
1

1

Porcupine: A Highly
Available Cluster-based
Mail Service

Yasushi Saito
Brian Bershad

Hank Levy

University of Washington
Department of Computer Science and Engineering,

Seattle, WA

http://porcupine.cs.washington.edu/

0:10

2

2

Why Email?

Mail is important
Real demand

Mail is hard
Write intensive
Low locality

Mail is easy
Well-defined API
Large parallelism
Weak consistency

I first want to motivate this talk by discussing why we chose email as a research target. There
are several reasons. First is that mail is important. The use of large scale email service are
rapidly expanding these days, and we see a real demand for systems like porcupine..
The next reason that mail is a difficult problem, especially compared to a typical web service,
which has been studied very extensively. Unlike simple web, mail is a type of application that
is more write intensive, is disk-bound, and has lower access locality. These properties make it
difficult to use techniques that are effective in scaling we services, such as proxying.

On the other hand, mail turns out to be substantially easier than distribute file systems or data
base services, which are traditional solutions to write-intensive service,. First, mail has a well
defined and narrow API, which is a message send and receive rather than a generic byte
read/write. Also, the mail workload has large inherent parallism, so we can scale the system
without worrying much about access conflicts. Finally, consistency requirement for mail is
fairly weak. We experience delay in mail delivery or duplicate messages all so often. To
summarize, the service requirements for mail sits somewhere between web and database, and we
believed we could come up with a better architecture by not binding ourselves to either web or
database.
1:35

3

3

Goals

Use commodity hardware to build a large,
scalable mail service

Three facets of scalability ...
• Performance: Linear increase with cluster size
• Manageability: React to changes automatically
• Availability: Survive failures gracefully

The goal of the P project is to build a very large scale email service using just a cheap
commodity hardware. When we say large, today’s large mail sites, such as AOL or hotmail
handles about 100 million messages per day, and given that Internet is still growing rapidly,
we can expect an order of magnitude growth in the scale of email servers. That’s the area
we target, about 1 billion messages per day.
The key word in our project is to “scale”, and we define the work along three axes. First, of
course, we need the system performance to scale. Not only that, we need to scale in terms of
managing. We expect the mail traffic to constantly grow, and therefore the mail server
needs to grow continuously as well. We don’t want human to be forced to manage such
system changes manually -- it quickly becomes unmanageable as the system heterogeneity
grows. Therefore, we want the system itself to react to such changes. Finally, our decision
to use commodity hardware makes the system more prone to component failures. Thus, we
want the system to survive gracefully various types of failures, including multiple node
failures and network partitions.

4

4

Conventional Mail Solution

Static partitioning

Performance problems:
No dynamic load balancing

Manageability problems:
Manual data partition

decision
Availability problems:

Limited fault tolerance

SMTP/IMAP/POP

Bob’s
mbox

Ann’s
mbox

Joe’s
mbox

Suzy’s
mbox

NFS servers

The existing servers are implemented by using a number nodes that run
distributed file systems or database servers, and statically assigns each user to
one of these nodes. We are not satisfied at this conventional solution because it
doesn’t scale in this three areas. For example, it has performance scaling
problem because it cannot load balance to react to changes in traffic or
configuration. It is difficult to manage since the administrator needs to know
the speed or the disk capacity of each node and manually assign each user to a
node. In addition, this architecture it provides little fault tolerance. If a file
server goes down, all the users who have mailboxes on the server are locked
out of the system.. 1:30

5

5

Presentation Outline

Overview
Porcupine Architecture

Key concepts and techniques
Basic operations and data structures
Advantages

Challenges and solutions
Conclusion

In the next few slides, I’ll overview the architecture of Porcupine. First, I
summarize key techniques used in P and how it solve our goals. Next, I
explain how it works at high level, and then I discuss why we think P is better
than the conventional solution. 0:30

6

6

Key Techniques and
Relationships

Functional Homogeneity
“any node can perform any task”

Automatic
Reconfiguration

Load
BalancingReplication

Manageability PerformanceAvailability

Framework

Techniques

Goals

The most significant difference between P and conventional servers is that P is
FH. This means that any node can perform any task, either being interaction
with mail clients or mail storage, and any piece of data can potentially be
managed by any node. Especially, mail messages for a single user can be
scattered on multiple nodes, and they are collected only when the user request
reading them. All the data and task placement decisions are made dynamically.

We have developed several techniques that takes advantage of FH. Automatic
reconfiguration and replication keeps P functional after various kinds of
failures. Dynamic load balancing ensures each node stores email message as
their processing capability allows, and it masks skew in both workload and
cluster configuration. These techniques in turn achieves the set of scalability
goals I described in the earlier slide.

7

7

Porcupine Architecture

Node A ...Node B Node Z...

SMTP
server

POP
server

IMAP
server

Mail mapMailbox
storage

User
profile

Replication Manager

Membership
Manager

RPC

Load Balancer
User map

The picture shows the main components of the system. Porcupine consists of a
set of nodes connected by a fast network. Because Porcupine is functionally
homogeneous, all the nodes run the identical set of software.
The close up figure in the left shows the structure of one node. Each node runs
internet protocols such as SMTP and IMAP. In addition, it contains backend
include mailbox storage, user database. The mailmap is to track the location of
mail messages, and the stuff in middle is used to dispatch tasks among nodes.
I’ll explain how they are used in later slides.

8

8

Porcupine Operations

Internet

A B...

A

1. “send
mail to
bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ C

DNS-RR
selection

4. “OK,
bob has
msgs on
C and D 6. “Store

msg”
B

C

Protocol
handling

User
lookup

Load
Balancing

Message
store

...C

Now, I want to show a birds-eye view of how P works. This picture shows the
steps performed during mail delivery. A client somewhere in the Inet chooses
a node to contact using some naming mechanism such as DNSRR. Because of
functional homogeneity, the client can in fact pick any node, but in this
example, lets suppose it picked B. The client lets B know that it wants to send
a msg to bob.

The node B first needs to check who bob is. B first learns where the Bob’s user
information is managed, say, A in this example. B asks A about bob, and A
replies that bob is a valid user and that he has mail msgs on C and D at this
point. Next, B makes a load balancing decision to determine where to store
this new message. Lets say C is picked . B asks C to store the new message,
and the session is complete. In step 4, B can also pick a node other than C or
D, say, E for load balancing purpose. In such case, E needs to let A know that
E has now stored a message for bob.
This picture reveals several data structures that needs to be managed. First,
each user must be managed by some node, and all the nodes must agree on
who is managed where. Also, the manager of each node must keep track of
there the user’s messages are.

9

9

Basic Data Structures

“bob”

BCACABAC

bob: {A,C}
ann: {B}

BCACABAC

suzy: {A,C} joe: {B}

B CACABAC

Apply hash
function

User map

Mail map
/user info

Mailbox
storage

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

The data structures I hinted in the previous slide are actually shown here. In P,
the information about a single user is managed by a single node. The entire
user population is partitioned into a equivalence class using a hash function on
user names. Therefore, all the users whose names have the same hash value are
managed by a single node. The small in-memory table called user map is
replicated on each node and it maps hash value into the node that manages the
users in the class. The mgr of each user keeps track of which set of nodes store
msgs for the user. We call this information mailmap. This picture shows how
Bob can read his messages on node B. First, a hash function is applied to the
string “bob” and user map is looked up, and the node B learns that A is
responsible for managing bob. B does an RPC to the node A and get bob’s
mailmap, which contains the set {A, C}. Subsequently, B does another round
of A and C to obtain bob’s messages.

10

10

Porcupine Advantages

Advantages:
Optimal resource utilization
Automatic reconfiguration and task re-distribution

upon node failure/recovery
Fine-grain load balancing

Results:
Better Availability
Better Manageability
Better Performance

The functional homogeneous architecture of P yields many potential benefits.
First, because all the data/task placement decisions are dynamic, the system
can make use of node resources optimally without forcing human to decide
how. Also, the system is able to react to configuration changes, such as node
failures automatically by re-partitioning the tasks and data among remaining
active nodes. Finally, the system can be faster than the conventional solution
because it can do fine-grain load balancing during data placement.

All these advantages combine into a system that is more available, more
manageable and faster than conventional systems.

0:45

11

11

Presentation Outline

Overview
Porcupine Architecture
Challenges and solutions

Scaling performance
Handling failures and recoveries:

Automatic soft-state reconstruction
Hard-state replication

Load balancing
Conclusion

We had several problems we needed to solve to realize these potential
advantages. I’ll discuss three of them and how we solved. First is how we scale
the system performance. Next is how we actually react to failures, and third is
how we react to skew in workload or system configuration using load
balancing mechanism. Along the discussion of these issues, I’ll mix the
performance graphs of our prototype implementation to demonstrate the
effectiveness of our solutions.

0:30

12

12

Performance

Goals
Scale performance linearly with cluster size

Strategy: Avoid creating hot spots
Partition data uniformly among nodes
Fine-grain data partition

Now our first issue is how we scale performance linearly with the cluster size,
and the strategy is to partition data management responsibility uniformly
among nodes to avoid creating hot spots, and to make the partition very fine
grain to further reduce the chance of creating hot spots.
I actually already described the data structures such as user map and mail map
that achieves these goals, so I don’t repeat them. I’ll just show you a graph
tells how our design scales in practice.

13

13

Measurement Environment

30 node cluster of not-quite-all-identical PCs
100Mb/s Ethernet + 1Gb/s hubs
Linux 2.2.7
42,000 lines of C++ code

Synthetic load
Compare to sendmail+popd

We show the baseline performance of Porcupine to show how the system
scales. We measured P a cluster consisting of 30 nodes because that’s only
what we had. The PC consists of a mix of various types of CPUs and disks.
Traffic shape is based on that of the mail server in our department.
We also compare P to sendmail to show that we are no slower than a popular
mail server despite all the additional benefits P provides. I compare ourselves
against sendmail, the most popular mail server software in use today.

14

14

How does Performance Scale?

0
100

200
300
400
500

600
700
800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

X axis is the number of nodes in the cluster, and Y axis is the maximum
number of mail messages a cluster can handle per second. Our workload runs
both senders and readers concurrently, and the readers are designed to delete
messages after they are read. So, the Y numbers really represent the number of
mail messages that a cluster can receive, read, and delete per second. The most
important point of this graph is that Porcupine cluster scales completely
linearly. This shows we achieved our goal of performance scalability although
up to 30 nodes. Next, porcupine is no slower than sendmail, despite the fact
that P provides all the management and availability benefits that don’t exist in
sendmail. In fact, P is more than twice as fast as sendmail. Sendmail is slow
just because it uses the file system less efficiently than porcupine .
1:20

15

15

Availability

Goals:
Maintain function after failures
React quickly to changes regardless of cluster size
Graceful performance degradation / improvement

Strategy: Two complementary mechanisms
Hard state: email messages, user profile

⇒ Optimistic fine-grain replication
Soft state: user map, mail map

⇒ Reconstruction after membership change

Now I switch topic and talk about how P deals with node failures and
additions. Our first goal is to maintain system function after failures, and that
to react changes quickly regardless of cluster size. We also want the system
performance to degrade or improve quickly. To achieve these goals, we use
two mechanisms, depending on the nature of data. On one hand, there are
types of data that users really care and must be stored on disk. We call such
data hard state, and that includes email and profile. Such data are replicated on
multiple nodes. Other types of data are derived from another source, most
often from hard state. We call them soft state, and that includes user map and
mail map. Instead of replicating, we reconstruct them from source on demand
and P runs a protocol to minimize that effort.. In the following slides, I first
show hot soft state reconstruction works, and then explain optimistic
replication briefly.
1:15

16

16

Soft-state Reconstruction

B C A B A B A C
bob: {A,C}

joe: {C}
B C A B A B A C

B A A B A B A B
bob: {A,C}

joe: {C}
B A A B A B A B

A C A C A C A C
bob: {A,C}

joe: {C}
A C A C A C A C

suzy: {A,B}

ann: {B}

1. Membership protocol
Usermap recomputation

2. Distributed
disk scan

suzy:

ann:

Timeline

A

B

ann: {B}

B C A B A B A C
suzy: {A,B}C ann: {B}

B C A B A B A C
suzy: {A,B}

ann: {B}

B C A B A B A C
suzy: {A,B}

Soft state reconstruction can best be explained using pictures. This picture
shows a three node cluster. The upper boxes in each node represents the user
map that shows which user is managed by which node. The green boxes below
are actual user information. Thus, this three-node cluster manages 4 users.
Now suppose C crashed. Here, we need to move all the users managed by C,
suzy and ann, to either A or B. This is done in two steps. First, one of the
remaining nodes initiates the membership protocol and determines who’s
alive and who’s dead, and at the same time, the user map is reconfigured by
removing nodes that are found to be dead adding nodes that found to be
recovered. The new membership and the new user map are broadcast to the
nodes and we reach this middle stage.
Here, since the user map has changed, the users managed by C are moved to A
and B, but at this stage, their mail maps are empty. Thus, in the next step, each
node scans its local disk and finds out all the messages that belong to these
moved users.
The second step looks very expensive, but it really isn’t because each node
needs to scan only a portion of disk that corresponds to user map entries that
have moved. In fact, total cost of recovery does not depend on the cluster size.
This is because the total amount of mail map information that needs to be
recovered from disks is equal to those stored on the crashed node, and that
does not depend on the cluster size. 1:40

17

17

How does Porcupine React to
Configuration Changes?

300

400

500

600

700

0 100 200 300 400 500 600 700 800
Time(seconds)

Messages
/second

No failure

One node
failure
Three node
failures
Six node
failures

Nodes
fail

New
membership
determined

Nodes
recover

New
membership
determined

In this picture, we show how Porcupine reacts to failures in practice by
articifially crashing and recovering nodes. The X axis is the event timeline, the
unit is seconds, and Y axis is the system performance. We ran our 30-node
cluster into a steady state, and then artificially crashed 1, 3, or six nodes at
time 300 seconds, and later, at time 600 seconds, we recovered all the crashed
nodes. First, please take a look at the throughput during failures. The level of
performance decrease is about proportional to the number of nodes failed, and
also the performance restores to the original level after the nodes recover. This
means P achives its goal of graceful performance degradation and
improvement. Also, please notice how quickly P is able to reach the steady
state after either crash or recovery. This shows our failure recovery mechanism
is working quickly and efficiently.
1:00

18

18

Hard-state Replication

Goals:
Keep serving hard state after failures
Handle unusual failure modes

Strategy: Exploit Internet semantics
Optimistic, eventually consistent replication
Per-message, per-user-profile replication
Efficient during normal operation
Small window of inconsistency

Now I want to explain briefly how keep messages and user profile available
after crash. Our goals here are to make the hard state available, of course, and
because we are using cheap hardware, we also need to handle unusual failures
like multiple node failures, network partitions or long-lasting node failures.
Finally, to make the service non-blocking even when that means presenting
user an stale data..

The scheme we came up with is a form of optimistic replication that only
ensures eventual consistency. Optimistic replication satisfies all our
requirements nicely. The basic algorithm works by letting a coordinator, which
is usually the node that initiated the update, push updates to other replicas. The
crash of replicas other than the coordinator is handled by the coordinator wait
until the replica recover. The coordinator crash is handled by letting one of
other replicas quickly becoming the coordinator and complete the propagation.
Thus, the common case operation is simple and very efficient. In case of
failures, the protocol ensures that replicas will quickly converge into the
newest value without every blocking access to clients.

19

19

How Efficient is Replication?

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25 30
Cluster size

M
es

sa
ge

s/
se

co
nd

Porcupine no replication

Porcupine with replication=2
68m/day

24m/day

I show evaluation of our replication mechanism. Here, X axis is the number of
nodes in the cluster, and Y axis is the performance. The blue line shows the
baseline P performance without replication, and lower black line shows what
happens when each msg is replicated on two nones. First, please see that the
replicated P still scales perfectly. However, its performance is lower than what
we expect because it really should be half of the baseline. This is because of
the disk logging overhead that happens inside the replication engine. This
overhead can be eliminated by using a fast, separate log disk or using NVRAM
as a file buffer.

20

20

How Efficient is Replication?

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25 30
Cluster size

M
es

sa
ge

s/
se

co
nd

Porcupine no replication

Porcupine with replication=2

Porcupine with replication=2, NVRAM

68m/day

24m/day
33m/day

So we pretended that we have such hardware and simply removed
synchronous disk flushing from the disk logging routines. We get this red line.
This line still scales perfectly, and in addition, its performance is exactly what
we expected, the half of the baseline case. So, to summarize, this graph shows
that our replication algorithm is scalable, and is very efficient.

21

21

Load balancing: Deciding
where to store messages

Goals:
Handle skewed workload well
Support hardware heterogeneity
No voodoo parameter tuning

Strategy: Spread-based load balancing
Spread: soft limit on # of nodes per mailbox

Large spread ⇒ better load balance
Small spread ⇒ better affinity

Load balanced within spread
Use # of pending I/O requests as the load measure

Our final topic is how we load balance, or how we decide data placement. Our
goals are is to handle workload skew, such as a few users receiving gigantic
amount of mail for a short period of time, and also to handle configuration
skew, such as a few nodes are much faster than the remaining.
The algorithm we came up with is what we call spread-based load balancing.
Spread is the limit on the number of nodes per single user’s mailbox. The limit
is soft is a sense that it can be violated when nodes crash. Spread represents a
single parameter that administrator needs to tune. When the spread is large, the
system has more nodes to choose from, thus we can balance load better. If the
spread is small, the system needs to access fewer disks per mailbox, thus we
can more streamline the disk head movement and also reduce the size of the
mail map. P chooses node to store messages from the spread, using the number
of pending I/O requests as the measure of a node’s load.

22

22

How Well does Porcupine Support
Heterogeneous Clusters?

0%

10%

20%

30%

0% 3% 7% 10%
Number of fast nodes (% of total)

Th
ro

ug
hp

ut
 in

cr
ea

se
(%

)

Spread=4

Static
+16.8m/day (+25%)

+0.5m/day (+0.8%)

Before explaining this graph, we also did experiments on how the system
reacts to workload skew, but I won’t present them in this talk. Please refer to
the paper if you are interested. This graph shows how P reacts to heterogeneity
in cluster. The X axis is the heterogeneity. 0 is the baseline and all the nodes
run at approximately at the same speed. 3,7,or10 means these percentage of
nodes have very fast disks, about three times faster than the rest. The Y axis is
the relative performance improvement over the baseline case.

got the cluster find special resources.

23

23

Conclusions

Fast, available, and manageable clusters can
be built for write-intensive service

Key ideas can be extended beyond mail
Functional homogeneity
Automatic reconfiguration
Replication
Load balancing

24

24

Ongoing Work

More efficient membership protocol
Extending Porcupine beyond mail: Usenet,

BBS, Calendar, etc
More generic replication mechanism

Also we are looking a little more ahead and trying to apply the ideas to
services that demand stronger data consistency, such as auctioning. Especially,
we are looking at more generic replication algorithm.

