
Transactions with
Replicated Data

Distributed Software
Systems

One copy serializability
z Replicated transactional service
yEach replica manager provides concurrency control

and recovery of its own data items in the same way
as it would for non-replicated data

z Effects of transactions performed by various
clients on replicated data items are the same as
if they had been performed one at a time on a
single data item
z Additional complications: failures, network

partitions
yFailures should be serialized wrt transactions, i.e. any

failure observed by a transaction must appear to
have happened before a transaction started

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F200

Figure 14.18 Replicated transactional service.

B

A

Client + front end

BB BA A

GetBalance(A)

Client + front end

Replica managers
Replica managers

Deposit(B,3);

UT

Replication Schemes
z Read one –Write All
yCannot handle network partitions

z Schemes that can handle network
partitions
yAvailable copies with validation
yQuorum consensus
yVirtual Partition

Read one/Write All
z One copy serializability
yEach write operation sets a write lock at each replica

manager
yEach read sets a read lock at one replica manager

z Two phase commit
yTwo-level nested transaction
xCoordinator -> Workers
x If either coordinator or worker is a replica manager, it has to

communicate with replica managers

z Primary copy replication
yALL client requests are directed to a single primary

server
xDifferent from scheme discussed earlier

Available copies replication
z Can handle some replica managers are

unavailable because they have failed or
communication failure
z Reads can be performed by any available replica

manager but writes must be performed by all
available replica managers
z Normal case is like read one/write all
yAs long as the set of available replica managers does

not change during a transaction

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F201

Figure 14.19 Available copies.

A
X

Client + front end

P
B

Client + front end

Replica managers

Deposit(A,3);

UT

Deposit(B,3);

GetBalance(B)

GetBalance(A)

Replica managers

Y

M

B
N

A

B

Available copies replication
z Failure case
yOne copy serializabilty requires that failures and

recovery be serialized wrt transactions
yThis is not achieved when different transactions

make conflicting failure observations
yExample shows local concurrency control not enough
yAdditional concurrency control procedure (called local

validation) has to be performed to ensure correctness
z Available copies with local validation assumes no

network partition - i.e. functioning replica
managers can communicate with one another

Local validation - example
z Assume X fails just after T has performed

GetBalance and N fails just after U has
performed GetBalance
z Assume X and N fail before T & U have

performed their Deposit operations
yT’s Deposit will be performed at M & P while U’s

Deposit will be performed at Y
yConcurrency control on A at X does not prevent U

from updating A at Y; similarly concurrency control
on B at N does not prevent Y from updating B at M &
P
y Local concurrency control not enough!

Local validation cont’d
z T has read from an item at X, so X’s

failure must be after T.
z T observes the failure of N, so N’s failure

must be before T
yN fails -> T reads A at X; T writes B at M & P

-> T commits -> X fails
ySimilarly, we can argue:

X fails -> U reads B at N; U writes A at Y ->
U commits -> N fails

Local validation cont’d
z Local validation ensures such incompatible

sequences cannot both occur
z Before a transaction commits it checks for

failures (and recoveries) of replica managers of
data items it has accessed
z In example, if T validates before U, T would

check that N is still unavailable and X,M, P are
available. If so, it can commit
z U’s validation would fail because N has already

failed.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F202

Figure 14.20 Network partition.

Client + front end

B

Withdraw(B, 4)

Client + front end

Replica managers

Deposit(B,3);
UT Network

partition

B

B B

Handling Network Partitions
z Network partitions separate replica managers

into two or more subgroups, in such a way that
the members of a subgroup can communicate
with one another but members of different
subgroups cannot communicate
z Optimistic approaches
yAvailable copies with validation

z Pessimistic approaches
yQuorum consensus

Available Copies With
Validation
z Available copies algorithm applied within each

partition
yMaintains availability for Read operations

z When partition is repaired, possibly conflicting
transactions in separate partitions are validated
yThe effects of a committed transaction that is now

aborted on validation will have to be undone
xOnly feasible for applications where such compensating

actions can be taken

Available copies with
validation cont’d
z Validation
yVersion vectors (Write-Write conflicts)
yPrecedence graphs (each partition maintains a log of

data items affected by the Read and Write operations
of transactions
y Log used to construct precedence graph whose

nodes are transactions and whose edges represent
conflicts between Read and Write operations
xNo cycles in graph corresponding to each partition

y If there are cycles in graph, validation fails

Quorum consensus
z A quorum is a subgroup of replica managers

whose size gives it the right to carry out
operations
z Majority voting one instance of a quorum

consensus scheme
yR + W > total number of votes in group
yW > half the total votes
yEnsures that each read quorum intersects a write

quorum, and two write quora will intersect
z Each replica has a version number that is used

to detect if the replica is up to date.

Virtual Partitions scheme
z Combines available copies and quorum

consensus
z Virtual partition = set of replica managers that

have a read and write quorum
z If a virtual partition can be formed, available

copies is used
y Improves performance of Reads

z If a failure occurs, and virtual partition changes
during a transaction, it is aborted
z Have to ensure virtual partitions do not overlap

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F203

Replica managers

Network partition

VX Y Z

TTransaction

Figure 14.21 Two network partitions.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F204

Figure 14.22 Virtual partition.

X V Y Z

Replica managers

Virtual partition Network partition

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F205

Figure 14.23 Two overlapping virtual partitions.

Virtual partition V1 Virtual partition V2

Y X V Z

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression) Addison-Wesley Publishers 1994 F206

Figure 14.24 Creating a virtual partition.

Phase 1:

• The initiator sends a Join request to each potential member. The argument of Join
is a proposed logical timestamp for the new virtual partition;

• When a replica manager receives a Join request it compares the proposed logical
timestamp with that of its current virtual partition;

– If the proposed logical timestamp is greater it agrees to join and replies Yes;

– If it is less, it refuses to join and replies No;

Phase 2:

• If the initiator has received sufficient Yes replies to have Read and Write quora, it
may complete the creation of the new virtual partition by sending a Confirmation
message to the sites that agreed to join. The creation timestamp and list of actual
members are sent as arguments;

• Replica managers receiving the Confirmation message join the new virtual
partition and record its creation timestamp and list of actual members.

