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Motivation

• Send and Recv calls ⇔ I/O

• Goal: make distributed nature of system
transparent to the programmer

• RPC provides procedural interface to
distributed services
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Figure 4.5 Request-reply communication.
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Figure 5.2  Stub procedures.
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Issues in RPC

• Parameter Passing
– marshalling

– big endian vs little endian
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Parameter Passing

• Passing arrays
– in C by reference

• Canonical forms
– SUN XDR, Xerox Courier

• Passing pointers?
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4

 

 

Figure 4.1 XDR message.

 5 length of sequence

" S m i t " ‘Smith’

" h _ _ _ "

 6 length of sequence

" L o n d " ‘London’

" o n _ _ "

 1 9 3 4 CARDINAL

4 bytes

The message is: ‘Smith’, ‘London’, 1934
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Figure 4.6 Request-reply message structure.

messageType (Request, Reply)

requestId CARDINAL

procedureId CARDINAL

arguments (* flattened list*)
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Figure 4.7 RPC protocols.

Name Messages sent by

Client Server Client

R Request 

RR Request Reply 

RRA Request Reply  Acknowledge reply
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Handling Failures

• Types of failure
– client unable to locate server

– request message lost

– reply message lost

– server crashes after receiving a request

– client crashes after sending a request
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Handling failures

• Client cannot locate server
– Reasons

• server crashed

• client compiled using old version of server interface

– RPC system must be able to report error to
client

– loss of transparency
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Handling failures

• Lost request message
– retransmit a fixed number of times

• Lost reply message
– client retransmits request

– server choices
• filter duplicates ⇒ hold on to results until ACK

• re-execute procedure ⇒ service should be
idempotent so that it can be safely repeated
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Handling failures

• Server crashes
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reply
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Handling failures

• Server crashes
– at least once (keep trying till server comes up)

– at most once (return immediately)

– exactly once impossible to achieve

• ONC RPC (Sun) uses at least once
semantics if a RPC is successful and “zero
or more” semantics if call fails
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Delivery guarantees RPC call 
semantics

Retry request 
message

Duplicate
filtering

Re-execute procedure 
or retransmit reply

No Not applicable Not applicable Maybe

Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once
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Handling failures
• Client crashes

– if a client crashes before RPC returns, we have
an “orphan” computation at server

– wastes resources, could also start other remote
computations

– orphan detection
• reincarnation (client broadcasts new “epoch” when

it comes up)

• expiration (RPC has fixed amount of time T to do
work)
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Binding

• Dynamic
– Servers

• register service with binder

• withdraw

– Client
• lookup address of service

– SUN RPC portmapper runs on every host
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Figure 5.3  Binder Interface.

PROCEDURE Register (serviceName:String; serverPort:Port; version:integer)
causes the binder to record the service name and server port of a service in its table, 
together with a version number.

PROCEDURE Withdraw (serviceName:String; serverPort:Port; version:integer)
causes the binder to remove the service from its table.

PROCEDURE LookUp (serviceName:String; version:integer): Port
 the binder looks up the named service and returns its address(or set of addresses) if 
the version number agrees with the one stored in its table. 
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RPC protocols

• Connection-oriented or connection-less
– connectionless has better performance on LANs

• UDP/IP or roll your own protocol
– specialized protocol better but more effort

• large RPCs have to be broken up into
multiple packets
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Interface definition languages

• SUN XDR

• rpcgen (IDL compiler)
– creates client and server stub procedures,

header files, despatcher, server main procedure

– stubs use XDR for marshalling and
unmarshalling
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5 

 

 

Figure 5.1 Levels in the client software.
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Figure 5.4 Files interface in Sun XDR.

 /* FileReadWrite service interface definition in file FileReadWrite.x
*/
const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};
struct readargs {

FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
 version VERSION {

void WRITE(writeargs)=1;
Data READ(readargs)=2;
}=2;

} = 9999;
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Figure 5.5 C program for client in Sun RPC.

/* File : C.c - Simple client of the FileReadWrite service. */

#include <stdio.h>
#include <rpc/rpc.h>
#include "FileReadWrite .h"
main(int argc, char ** argv)
{

CLIENT *clientHandle;
char *serverName = "coffee";
readargs a;
Data *data;

clientHandle= clnt_create(serverName, FILEREADWRITE, 
VERSION, "udp"); /* creates socket and a client handle*/

if (clientHandle==NULL){
 clnt_pcreateerror(serverName); /* unable to contact server */
exit(1);

}
a.f = 10;
a.position = 100;
a.length = 1000;
data = read_2(&a, clientHandle);/* call to remote read procedure */
•••
clnt_destroy(clientHandle); /* closes socket */

}
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Figure 5.6 C program for server procedures in Sun RPC.

/* File S.c - server procedures for the FileReadWrite service */
#include <stdio.h>
#include <rpc/rpc.h>
#include"FileReadWrite.h" 

void * write_2(writeargs *a)
{
 /* do the writing to the file */
}

Data * read_2(readargs * a)
{

static Data result; /* must be static */
result.buffer  =  ... /* do the reading from the file */
result.length  =  ... /* amount read from the file */
return &result;

}


