
Remote Procedure Calls

CS 707

CS 707 2

Motivation

• Send and Recv calls ⇔ I/O

• Goal: make distributed nature of system
transparent to the programmer

• RPC provides procedural interface to
distributed services

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 46

Figure 4.5 Request-reply communication.

Request

ServerClient

DoOperation

(wait)

(continuation)
•

Reply
message

GetRequest

SendReply

execute
request

message•
•

•

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 55

Figure 5.2 Stub procedures.

Local
call

Local
return

Marshal
arguments

Unmarshal
results

Send
Request

Receive
Reply

Receive
Request

Send
Reply

Unmarshal
arguments

Marshal
results

Execute
procedure

Return

Select
procedure

Client computer Server computer

Client Client stub
procedure

Communication
module

Communi-
cation
module

Despatcher
Server stub

Service
procedure

Client process Server process

CS 707 3

Issues in RPC

• Parameter Passing
– marshalling

– big endian vs little endian

0 0 0 5

J I L L

5 0 0 0

L L I J

Intel 386 Sparc

0 1 2 3 3 2 1 0

4 5 6 7 7 6 5 4

CS 707 4

Parameter Passing

• Passing arrays
– in C by reference

• Canonical forms
– SUN XDR, Xerox Courier

• Passing pointers?

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 42

4

Figure 4.1 XDR message.

 5 length of sequence

" S m i t " ‘Smith’

" h _ _ _ "

 6 length of sequence

" L o n d " ‘London’

" o n _ _ "

 1 9 3 4 CARDINAL

4 bytes

The message is: ‘Smith’, ‘London’, 1934

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 47

Figure 4.6 Request-reply message structure.

messageType (Request, Reply)

requestId CARDINAL

procedureId CARDINAL

arguments (* flattened list*)

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 48

Figure 4.7 RPC protocols.

Name Messages sent by

Client Server Client

R Request

RR Request Reply

RRA Request Reply Acknowledge reply

CS 707 5

Handling Failures

• Types of failure
– client unable to locate server

– request message lost

– reply message lost

– server crashes after receiving a request

– client crashes after sending a request

CS 707 6

Handling failures

• Client cannot locate server
– Reasons

• server crashed

• client compiled using old version of server interface

– RPC system must be able to report error to
client

– loss of transparency

CS 707 7

Handling failures

• Lost request message
– retransmit a fixed number of times

• Lost reply message
– client retransmits request

– server choices
• filter duplicates ⇒ hold on to results until ACK

• re-execute procedure ⇒ service should be
idempotent so that it can be safely repeated

CS 707 8

Handling failures

• Server crashes

Recv
exec
reply

REQ

REP

Recv
exec
crash

REQ

NO
REP

Recv
crash

REQ

NO
REP

Client cannot tell difference

CS 707 9

Handling failures

• Server crashes
– at least once (keep trying till server comes up)

– at most once (return immediately)

– exactly once impossible to achieve

• ONC RPC (Sun) uses at least once
semantics if a RPC is successful and “zero
or more” semantics if call fails

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 54

Delivery guarantees RPC call
semantics

Retry request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No Not applicable Not applicable Maybe

Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once

CS 707 10

Handling failures
• Client crashes

– if a client crashes before RPC returns, we have
an “orphan” computation at server

– wastes resources, could also start other remote
computations

– orphan detection
• reincarnation (client broadcasts new “epoch” when

it comes up)

• expiration (RPC has fixed amount of time T to do
work)

CS 707 11

Binding

• Dynamic
– Servers

• register service with binder

• withdraw

– Client
• lookup address of service

– SUN RPC portmapper runs on every host

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 56

Figure 5.3 Binder Interface.

PROCEDURE Register (serviceName:String; serverPort:Port; version:integer)
causes the binder to record the service name and server port of a service in its table,
together with a version number.

PROCEDURE Withdraw (serviceName:String; serverPort:Port; version:integer)
causes the binder to remove the service from its table.

PROCEDURE LookUp (serviceName:String; version:integer): Port
 the binder looks up the named service and returns its address(or set of addresses) if
the version number agrees with the one stored in its table.

CS 707 12

RPC protocols

• Connection-oriented or connection-less
– connectionless has better performance on LANs

• UDP/IP or roll your own protocol
– specialized protocol better but more effort

• large RPCs have to be broken up into
multiple packets

CS 707 13

Interface definition languages

• SUN XDR

• rpcgen (IDL compiler)
– creates client and server stub procedures,

header files, despatcher, server main procedure

– stubs use XDR for marshalling and
unmarshalling

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 53

5

Figure 5.1 Levels in the client software.

Client program

User package

Client stub procedures
RPC interface

User package interface

Communication handler

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 57

Figure 5.4 Files interface in Sun XDR.

 /* FileReadWrite service interface definition in file FileReadWrite.x
*/
const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};
struct readargs {

FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
 version VERSION {

void WRITE(writeargs)=1;
Data READ(readargs)=2;
}=2;

} = 9999;

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 58

Figure 5.5 C program for client in Sun RPC.

/* File : C.c - Simple client of the FileReadWrite service. */

#include <stdio.h>
#include <rpc/rpc.h>
#include "FileReadWrite .h"
main(int argc, char ** argv)
{

CLIENT *clientHandle;
char *serverName = "coffee";
readargs a;
Data *data;

clientHandle= clnt_create(serverName, FILEREADWRITE,
VERSION, "udp"); /* creates socket and a client handle*/

if (clientHandle==NULL){
 clnt_pcreateerror(serverName); /* unable to contact server */
exit(1);

}
a.f = 10;
a.position = 100;
a.length = 1000;
data = read_2(&a, clientHandle);/* call to remote read procedure */
•••
clnt_destroy(clientHandle); /* closes socket */

}

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)

 Addison-Wesley Publishers 1994 59

Figure 5.6 C program for server procedures in Sun RPC.

/* File S.c - server procedures for the FileReadWrite service */
#include <stdio.h>
#include <rpc/rpc.h>
#include"FileReadWrite.h"

void * write_2(writeargs *a)
{
 /* do the writing to the file */
}

Data * read_2(readargs * a)
{

static Data result; /* must be static */
result.buffer = ... /* do the reading from the file */
result.length = ... /* amount read from the file */
return &result;

}

