
Transactions

Distributed Software
Systems

Transactions
z Motivation
yProvide atomic operations at servers that

maintain shared data for clients
yProvide recoverability from server crashes

z Properties
yAtomicity, Consistency, Isolation, Durability

(ACID)
z Concepts: commit, abort

Concurrency control
z Motivation: without concurrency control, we

have lost updates, inconsistent retrievals, dirty
reads, etc. (see following slides)
z Concurrency control schemes are designed to

allow two or more transactions to be executed
correctly while maintaining serial equivalence
ySerial Equivalence is correctness criterion
xSchedule produced by concurrency control scheme should

be equivalent to a serial schedule in which transactions are
executed one after the other

z Schemes: locking, optimistic concurrency
control, time-stamp based concurrency control

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F149

9

Figure 12.1 A client’s banking transaction

Transaction:T:
Bank$Withdraw(A, 100);
Bank$Deposit(B, 100);
Bank$Withdraw(C, 200);
Bank$Deposit(B, 200);

This document was created with FrameMaker 4.0.4

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F150

Figure 12.2 Transactional service operations.

OpenTransaction → Trans
starts a new transaction and delivers a unique TID Trans. This identifier will be used
in the other operations in the transaction.

CloseTransaction(Trans) → (Commit, Abort)
ends a transaction: a Commit returned value indicates that the transaction has
committed; an Abort returned value indicates that it has aborted.

AbortTransaction(Trans)
aborts the transaction.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F151

Figure 12.3 Transaction life histories.

Successful Aborted by client Aborted by server

OpenTransaction OpenTransaction OpenTransaction

operation operation operation

operation operation operation

• • SERVER •

• • ABORTS→ •

operation operation operation ERROR
reported to client

CloseTransaction AbortTransaction

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F152

Figure 12.4 The lost update problem.

Transaction T:
Bank$Withdraw(A, 4);
Bank$Deposit(B, 4)

Transaction U:
Bank$Withdraw(C, 3);
Bank$Deposit(B, 3)

balance := A.Read() $100

A.Write (balance – 4) $96

balance := C.Read() $300

C.Write (balance – 3) $297

balance := B.Read() $200

balance := B.Read() $200

B.Write (balance + 3) $203

B.Write (balance + 4) $204

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F153

Figure 12.5 The inconsistent retrievals problem.

Transaction T:
Bank$Withdraw(A, 100);
Bank$Deposit(B, 100)

Transaction U:
 Bank$BranchTotal()

balance := A.Read() $200

A.Write (balance - 100) $100

balance := A.Read() $100

balance := balance + B.Read() $300

balance := balance + C.Read() $300+.

balance := B.Read() $200 •

B.Write (balance + 100) $300 •

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F154

Figure 12.6 A serially equivalent interleaving of T and U.

Transaction T:
Bank$Withdraw(A, 4);
Bank$Deposit(B, 4)

Transaction U:
Bank$Withdraw(C, 3);
Bank$Deposit(B, 3)

balance := A.Read() $100

A.Write(balance – 4) $96

balance := C.Read() $300

C.Write(balance – 3) $297

balance := B.Read() $200

B.Write (balance + 4) $204

balance := B.Read() $204

B.Write(balance + 3) $207

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F155

Figure 12.7 An inconsistent retrievals solution

Transaction T:
Bank$Withdraw(A, 100);
Bank$Deposit(B, 100)

Transaction U:
 Bank$BranchTotal()

balance :=A.Read() $200

A.Write(balance – 100) $100

balance := B.Read() $200

B.Write(balance + 100) $300

balance := A.Read() $100

balance := balance +B.Read() $400

balance := balance +C.Read() $400+

...

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F156

Figure 12.8 A dirty read when transaction T aborts.

Transaction T:
Bank.$Deposit(A, 3)

Transaction U:
Bank$Deposit(A, 5)

balance :=A.Read() $100

A.Write(balance + 3) $103

balance := A.Read() $103

A.Write (balance + 5) $108

Commit transaction

Abort transaction

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F157

Figure 12.9 Over-writing uncommitted values.

Transaction T:
 Bank$Deposit(A, 3)

Transaction U:
Bank$Deposit(A, 5)

balance :=A.Read() $100

A.Write(balance + 3) $103

balance := A.Read() $103

A.Write (balance + 5) $108

Abort transaction

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F159

Figure 12.11 Nested Transfer transaction.

T = Transfer

T1 = Deposit T2 = Withdraw

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F160

