Introduction to Distributed Computing

Prof. Sanjeev Setia
Distributed Software Systems
CS 707
Spring 2001

About this Class

- Distributed systems are ubiquitous
- Focus:
  - Fundamental concepts underlying distributed computing
  - designing and writing moderate-sized distributed applications
- Prerequisites:
  - CS 571 (Operating Systems)
  - CS 706 (Concurrent Software)
What you will learn

“I hear and I forget, I see and I remember, I do and I understand” – Chinese proverb

- Issues that arise in the development of distributed software
- Middleware technology
  - Threads, sockets, RPC
  - CORBA
  - Javaspaces (JINI), XML, Javabeans
  - Depending on time available

Logistics

- Grade: 70% projects, 30% exams
- Slides, assignments, reading material on class web page
  http://www.cs.gmu.edu/~setia/cs707/
- 3 or 4 small (2 week) programming assignments to be done individually +1 larger project that can be done in a group of two students
- Use any platform; all the necessary software will be available on IT&E lab computers
**Schedule**

- Concurrent Programming (Review)
- Client-server application design
- Application-level protocols
  - Sockets
- Middleware
  - RPC, CORBA
- Designing Reliable and Scalable distributed applications
  - Distributed Coordination
  - Distributed Transactions
  - Replication
  - Fault Tolerance
  - Scalability

**Distributed systems**

- “Workgroups”
- ATM (bank) machines
- WWW
- Multimedia conferencing
- Computing landscape will soon consist of ubiquitous network-connected devices
  - “The network is the computer”
A typical portion of the Internet

A typical intranet
**Portable and handheld devices in a distributed system**

![Diagram showing various devices connected through networks]

**Distributed applications**

- Applications that consist of a set of processes that are distributed across a network of machines and work together as an ensemble to solve a common problem.
- In the past, mostly “client-server”
  - Resource management centralized at the server.
- “Peer to Peer” computing represents a movement towards more “truly” distributed applications.
Web servers and web browsers

www.google.com
Web servers
www.cdk3.net
www.w3c.org
Internet

http://www.google.com/search?q=kindberg
http://www.cdk3.net/
http://www.w3c.org/Protocols/Activity.html

File system of www.w3c.org

Protocols

Benefits

Performance
Parallel computing a subset of distributed computing

Scalability
Resource sharing
Fault tolerance and availability
Challenges (Differences from Local Computing)

- Heterogeneity
- Latency
  - Interactions between distributed processes have a higher latency
- Memory Access
  - Remote memory access is not the same as local memory access
    - Local pointers are meaningless outside address space of process

Challenges cont’d

- Synchronization
  - Concurrent interactions the norm
- Partial failure
  - Applications need to adapt gracefully in the face of partial failure
  - Lamport once defined a distributed system as “One on which I cannot get any work done because some machine I have never heard of has crashed”
Communication Patterns

- Client-server
- Group-oriented/Peer-to-Peer
  - Applications that require reliability
- Function-shipping/Mobile Code/Agents
- Postscript, Java

Clients invoke individual servers
A service provided by multiple servers

Web proxy server
A distributed application based on peer processes

Web applets

a) client request results in the downloading of applet code

b) client interacts with the applet
Thin clients and compute servers

Network computer or PC

Thin Client

network

Compute server

Application Process

Spontaneous networking in a hotel

Internet

gateway

Music service

Alarm service

Hotel wireless network

Discovery service

TV/PC

Laptop

PDA

Camera

Guests devices
Distributed Software: Goals

- Middleware handles heterogeneity
- Higher-level support
  - Make distributed nature of application transparent to the user/programmer
  - Remote Procedure Calls
  - RPC + Object orientation = CORBA
- Higher-level support BUT expose remote objects, partial failure, etc. to the programmer
  - JINI, Javaspaces
- Scalability

Software and hardware service layers in distributed systems

- Applications, services
- Middleware
- Operating system
- Computer and network hardware
Transparency

- Access - local and remote objects are accessed using identical operations
- Location - no knowledge of location of resource
- Concurrency - several processes can operate concurrently on shared objects without interference
- Replication - no knowledge of replicas
- Failure - graceful degradation
- Parallelism - tasks automatically parallelized

Transparencies

Access transparency: enables local and remote resources to be accessed using identical operations.
Location transparency: enables resources to be accessed without knowledge of their location.
Concurrency transparency: enables several processes to operate concurrently using shared resources without interference between them.
Replication transparency: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers.
Failure transparency: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.
Mobility transparency: allows the movement of resources and clients within a system without affecting the operation of users or programs.
Performance transparency: allows the system to be reconfigured to improve performance as loads vary.
Performance transparency: allows the system and applications to expand in scale without change to the system structure or the application algorithms.
Example: NFS

- A very successful distributed “application” based on RPC
  - Illustrates both arguments
- Interface for remote files same as interface for local files
- Soft mounts vs Hard mounts
  - Soft mounts expose network or server failures
  - Hard mounts force application to hang until server recovers

NFS cont’d

“Limitations on robustness and reliability of NFS have nothing to do with the implementation ... The problem can be traced to the interface upon which NFS is built, an interface that was designed for non-distributed computing where partial failure was not possible” – Waldo et al
Scalability

- Becoming increasingly important because of the changing computing landscape
- Key to scalability: decentralized algorithms and data structures
  - No machine has complete information about the state of the system
  - Machines make decisions based on locally available information
  - Failure of one machine does not ruin the algorithm
  - There is no implicit assumption that a global clock exists

Computers in the Internet

<table>
<thead>
<tr>
<th>Date</th>
<th>Computers</th>
<th>Web servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979, Dec.</td>
<td>188</td>
<td>0</td>
</tr>
<tr>
<td>1989, July</td>
<td>130,000</td>
<td>0</td>
</tr>
<tr>
<td>1999, July</td>
<td>56,218,000</td>
<td>5,560,866</td>
</tr>
</tbody>
</table>
Computers vs. Web servers in the Internet

<table>
<thead>
<tr>
<th>Date</th>
<th>Computers</th>
<th>Web servers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993, July</td>
<td>1,776,000</td>
<td>130</td>
<td>0.008</td>
</tr>
<tr>
<td>1995, July</td>
<td>6,642,000</td>
<td>23,500</td>
<td>0.4</td>
</tr>
<tr>
<td>1997, July</td>
<td>19,540,000</td>
<td>1,203,095</td>
<td>6</td>
</tr>
<tr>
<td>1999, July</td>
<td>56,218,000</td>
<td>6,598,697</td>
<td>12</td>
</tr>
</tbody>
</table>

Readings

- Chapter 1, 2 of textbook (Coulouris et al)
- "A Note on Distributed Computing" – Waldo, Wyant, Wollrath, Kendall
- Link on class web page