
1

Replication and
Consistency in distributed
systems (cont’d)

Distributed Software Systems

A basic architectural model for the
management of replicated data

FE

Requests and
replies

C

ReplicaC

ServiceClients Front ends

managers

RM

RMFE

RM

2

System model

Five phases in performing a request
`Front end issues the request

⌧Either sent to a single replica or multicast to all replica
mgrs.

`Coordination
⌧Replica managers coordinate in preparation for the

execution of the request, I.e. agree if request is to be
performed and the ordering of the request relative to others

• FIFO ordering, Causal ordering, Total ordering

`Execution
⌧Perhaps tentative

`Agreement
⌧Reach consensus on effect of the request, e.g. agree to

commit or abort in a transactional system
`Response

Transactions on replicated data

B

A

Client + front end

BB BA A

getBalance(A)

Client + front end

Replica managers
Replica managers

deposit(B,3);

UT

3

One copy serializability

a Replicated transactional service
`Each replica manager provides concurrency control

and recovery of its own data items in the same way
as it would for non-replicated data

a Effects of transactions performed by various clients on
replicated data items are the same as if they had been
performed one at a time on a single data item

a Additional complications: failures, network partitions
`Failures should be serialized wrt transactions, i.e. any

failure observed by a transaction must appear to
have happened before a transaction started

Replication Schemes

aPrimary Copy
aRead one – Write All
`Cannot handle network partitions

aSchemes that can handle network partitions
`Available copies with validation
`Quorum consensus
`Virtual Partition

4

Replication Schemes cont’d

a Read-one write-all
`Each write operation sets a write lock at each replica

manager
`Each read sets a read lock at one replica manager

a Two phase commit
`Two-level nested transaction

⌧Coordinator -> Workers
⌧If either coordinator or worker is a replica manager, it has

to communicate with replica managers
a Primary copy replication
`ALL client requests are directed to a single primary

server

Available copies replication

a Can handle some replica managers are unavailable
because they have failed or communication failure

a Reads can be performed by any available replica
manager but writes must be performed by all available
replica managers

a Normal case is like read one/write all
`As long as the set of available replica managers does

not change during a transaction

5

Available copies

A
X

Client + front end

P

B

Client + front end

Replica managers

deposit(A,3);

UT

deposit(B,3);

getBalance(B)

getBalance(A)

Replica managers

Y

M

B

N
A

B

Available copies replication

a Failure case
`One copy serializability requires that failures and

recovery be serialized wrt transactions
`This is not achieved when different transactions

make conflicting failure observations
`Example shows local concurrency control not enough
`Additional concurrency control procedure (called local

validation) has to be performed to ensure correctness
a Available copies with local validation assumes no

network partition - i.e. functioning replica managers can
communicate with one another

6

Local validation - example

a Assume X fails just after T has performed GetBalance
and N fails just after U has performed GetBalance

a Assume X and N fail before T & U have performed their
Deposit operations
`T’s Deposit will be performed at M & P while U’s

Deposit will be performed at Y
`Concurrency control on A at X does not prevent U

from updating A at Y; similarly concurrency control
on B at N does not prevent Y from updating B at M &
P

`Local concurrency control not enough!

Local validation cont’d

aT has read from an item at X, so X’s failure must
be after T.

aT observes the failure of N, so N’s failure must
be before T
`N fails -> T reads A at X; T writes B at M & P

-> T commits -> X fails
`Similarly, we can argue:

X fails -> U reads B at N; U writes A at Y ->
U commits -> N fails

7

Local validation cont’d

aLocal validation ensures such incompatible
sequences cannot both occur

aBefore a transaction commits it checks for
failures (and recoveries) of replica managers of
data items it has accessed

aIn example, if T validates before U, T would
check that N is still unavailable and X,M, P are
available. If so, it can commit

aU’s validation would fail because N has already
failed.

Network partition

Client + front end

B

withdraw(B, 4)

Client + front end

Replica managers

deposit(B,3);

UT
Network
partition

B

B B

8

Handling Network Partitions
aNetwork partitions separate replica managers

into two or more subgroups, in such a way that
the members of a subgroup can communicate
with one another but members of different
subgroups cannot communicate

aOptimistic approaches
`Available copies with validation

aPessimistic approaches
`Quorum consensus

Available Copies With Validation
aAvailable copies algorithm applied within each

partition
`Maintains availability for Read operations

aWhen partition is repaired, possibly conflicting
transactions in separate partitions are validated
`The effects of a committed transaction that

is now aborted on validation will have to be
undone
⌧Only feasible for applications where such

compensating actions can be taken

9

Available copies with validation cont’d

a Validation
`Version vectors (Write-Write conflicts)
`Precedence graphs (each partition maintains a log of

data items affected by the Read and Write operations
of transactions

`Log used to construct precedence graph whose
nodes are transactions and whose edges represent
conflicts between Read and Write operations
⌧No cycles in graph corresponding to each partition

`If there are cycles in graph, validation fails

Quorum consensus

a A quorum is a subgroup of replica managers whose size
gives it the right to carry out operations

a Majority voting one instance of a quorum consensus
scheme
`R + W > total number of votes in group
`W > half the total votes
`Ensures that each read quorum intersects a write

quorum, and two write quora will intersect
a Each replica has a version number that is used to detect

if the replica is up to date.

10

Gifford’s quorum consensus examples

Example 1Example 2 Example 3

Latency Replica 1 75 75 75
(milliseconds) Replica 2 65 100 750

Replica 3 65 750 750
Voting Replica 1 1 2 1
configuration Replica 2 0 1 1

Replica 3 0 1 1
Quorum R 1 2 1
sizes W 1 3 3

Derived performance of file suite:

Read Latency 65 75 75

Blocking probability 0.01 0.0002 0.000001
Write Latency 75 100 750

Blocking probability 0.01 0.0101 0.03

Virtual Partitions scheme

aCombines available copies and quorum
consensus

aVirtual partition = set of replica managers that
have a read and write quorum

aIf a virtual partition can be formed, available
copies is used
`Improves performance of Reads

aIf a failure occurs, and virtual partition changes
during a transaction, it is aborted

aHave to ensure virtual partitions do not overlap

11

Two network partitions

Replica managers

Network partition

VX Y Z

TTransaction

Virtual partition

X V Y Z

Replica managers

Virtual partition Network partition

12

Two overlapping virtual partitions

Virtual partition V1 Virtual partition V2

Y X V Z

Creating a virtual partition

Phase 1:
• The initiator sends a Join request to each potential member. The
argument of Join is a proposed logical timestamp for the new virtual
partition.
• When a replica manager receives a Join request, it compares the
proposed logical timestamp with that of its current virtual partition.

– If the proposed logical timestamp is greater it agrees to join and
replies Yes;

– If it is less, it refuses to join and replies No.
Phase 2:

• If the initiator has received sufficient Yes replies to have read and
write quora, it may complete the creation of the new virtual partition by
sending a Confirmation message to the sites that agreed to join. The
creation timestamp and list of actual members are sent as arguments.
• Replica managers receiving the Confirmation message join the new
virtual partition and record its creation timestamp and list of actual
members.

13

CAP Conjecture

aIs it possible to achieve consistency, availability,
and partition tolerance?

These slides are borrowed from lectures by Prof.
Ion Stoica & Scott Shenker (UC, Berkeley)

CAP conjecture attributed to Prof. Eric Brewer (UC
Berkeley)

Recent theoretical results by Prof. Nancy Lynch et
al (MIT) prove the conjecture

A Clash of Cultures

a Classic distributed systems: focused on ACID semantics
`A: Atomic
`C: Consistent
`I: Isolated
`D: Durable

a Modern Internet systems: focused on BASE
`Basically Available
`Soft-state (or scalable)
`Eventually consistent

14

ACID vs BASE

ACID

a Strong consistency for
transactions highest
priority

a Availability less important
a Pessimistic
a Rigorous analysis
a Complex mechanisms

BASE

a Availability and scaling
highest priorities

aWeak consistency
a Optimistic
a Best effort
a Simple and fast

Why the Divide?

aWhat goals might you want from a shared-data system?
`C, A, P

a Strong Consistency: all clients see the same view,
even in the presence of updates

a High Availability: all clients can find some replica of
the data, even in the presence of failures

a Partition-tolerance: the system properties hold even
when the system is partitioned

15

CAP Conjecture (Brewer)

aYou can only have two out of these three
properties

aThe choice of which feature to discard
determines the nature of your system

Consistency and Availability

a Comment:
`Providing transactional semantics requires all nodes

to be in contact with each other

a Examples:
`Single-site and clustered databases
`Other cluster-based designs

a Typical Features:
`Two-phase commit
`Cache invalidation protocols
`Classic DS style

16

Consistency and Partition-Tolerance

aComment:
`If one is willing to tolerate system-wide blocking,

then can provide consistency even when there are
temporary partitions

aExamples:
`Distributed databases
`Distributed locking
`Quorum (majority) protocols

aTypical Features:
`Pessimistic locking
`Minority partitions unavailable
`Also common DS style

⌧Voting vs primary replicas

Partition-Tolerance and Availability

aComment:
`Once consistency is sacrificed, life is easy….

aExamples:
`DNS
`Web caches
`Coda
`Bayou

aTypical Features:
`TTLs and lease cache management
`Optimistic updating with conflict resolution

17

Techniques

aExpiration-based caching: AP

aQuorum/majority algorithms: PC

aTwo-phase commit: AC

	Replication and Consistency in distributed systems (cont’d)
	A basic architectural model for the management of replicated data
	System model
	Transactions on replicated data
	One copy serializability
	Replication Schemes
	Replication Schemescont’d
	Available copies replication
	Available copies
	Available copies replication
	Local validation - example
	Local validation cont’d
	Local validation cont’d
	Network partition
	Handling Network Partitions
	Available Copies With Validation
	Available copies with validation cont’d
	Quorum consensus
	Gifford’s quorum consensus examples
	Virtual Partitions scheme
	Two network partitions
	Virtual partition
	Two overlapping virtual partitions
	Creating a virtual partition
	CAP Conjecture
	A Clash of Cultures
	ACID vs BASE
	Why the Divide?
	CAP Conjecture (Brewer)
	Consistency and Availability
	Consistency and Partition-Tolerance
	Partition-Tolerance and Availability
	Techniques

