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Abstract –A distributed system’s allocation of software components to hardware nodes (i.e., deployment architecture) can have a 

significant impact on its quality of service (QoS). For a given system, there may be many deployment architectures that provide 

the same functionality, but with different levels of QoS. The parameters that influence the quality of a system's deployment archi-

tecture are often not known before the system’s initial deployment and may change at runtime. This means that redeployment of 

the software system may be necessary to improve the system’s QoS properties. This paper presents and evaluates a framework 

aimed at finding the most appropriate deployment architecture for a distributed software system with respect to multiple, possibly 

conflicting QoS dimensions. The framework supports formal modeling of the problem and provides a set of tailorable algorithms 

for improving a system’s deployment. We have realized the framework on top of a visual deployment architecture modeling and 

analysis environment. The framework has been evaluated for precision and execution-time complexity on a large number of si-

mulated distributed system scenarios, as well as in the context of two third-party families of distributed applications. 

 

Index Terms—Software Architecture, Software Deployment, Quality of Service, Self-Adaptive Software 

I. INTRODUCTION 

onsider the following scenario, which addresses distributed deployment of personnel in cases of natural 

disasters, search-and-rescue efforts, and military crises. A computer at “Headquarters” gathers informa-

tion from the field and displays the current status and locations of the personnel, vehicles, and obstacles. The 

headquarters computer is networked to a set of PDAs used by “Team Leads” in the field. The team lead 

PDAs are also connected to each other and to a large number of “Responder” PDAs. These devices commu-

nicate with one another, and potentially with a large number of wireless sensors deployed in the field, and 

help to coordinate the actions of their distributed users. The distributed software system running on these 

devices provides a number of services to the users: exchanging information, viewing the current field map, 

managing the resources, etc. 

An application such as the one just described is frequently challenged by the fluctuations in the system’s 

parameters: network disconnections, bandwidth variations, unreliability of hosts, etc. Furthermore, the dif-

ferent users’ usage of the functionality (i.e., services) provided by the system and the users’ quality of service 

(QoS) preferences for those services will differ, and may change over time. For example, in the case of a 

natural disaster (e.g., wildfire) scenario, “Team Lead” users may require a secure and reliable messaging ser-

vice with the “Headquarters” when exchanging search-and-rescue plans. On the other hand, “Responder” 

users are likely to be more interested in having a low latency messaging service when sending emergency 

assistance requests. 
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For any such large, distributed system, many deployment architectures (i.e., mappings of software com-

ponents onto hardware hosts) will be typically possible. While all of those deployment architectures may 

provide the same functionality, some will be more effective in delivering the desired level of service quality 

to the user. For example, a service’s latency can be improved if the system is deployed such that the most 

frequent and voluminous interactions among the components involved in delivering the service occur either 

locally or over reliable and capacious network links. The task of quantifying the quality of a system’s dep-

loyment and determining the most effective deployment architecture becomes quickly intractable for a hu-

man engineer if multiple QoS dimensions (e.g., latency, security, availability, power usage) must be consi-

dered simultaneously, while taking into account any additional constraints (e.g., component X may not be 

deployed on host Y). Further exacerbating the problem is the fact that many of the parameters that influence 

the optimal distribution of a system may not be known before the system’s initial deployment and are likely 

to change during the system’s lifetime.  

In this paper, we consider the problem of quantifying the quality of a system’s deployment and finding a 

deployment architecture such that the QoS preferences stated by a collection of distributed end-users are met; 

in other words, the overall utility of the system to all its users is maximized. Our objective is for the solution 

to be applicable in a wide range of application scenarios (i.e., differing numbers of users, hardware hosts, 

software components, application services, QoS dimensions, etc.). Providing a widely applicable solution to 

this problem is difficult for several reasons:  

• In the general case, the number of possible deployments for a given distributed software system is 

exponential in the number of the system’s components. The amount of computation required for ex-

ploring a system’s deployment space may thus be prohibitive, even for moderately large systems.  

• A very large number of parameters influence a software system’s QoS dimensions. In turn, many 

services and their corresponding QoS dimensions influence the users’ satisfaction. Developing ge-

neric solutions that can then be customized for any application scenario is non-trivial.  

• Different QoS dimensions may be conflicting, and users with different priorities may have conflict-

ing QoS preferences. Fine-grain trade-off analysis among the different dimensions and/or prefe-

rences is very challenging without relying on simplifying assumptions (e.g., particular definition of a 

QoS objective or predetermined, fixed constraints).  

• Different application scenarios are likely to require different algorithmic approaches. For example, a 

system’s size, the users’ usage of the system, stability of system parameters, and system distribution 

characteristics may influence the choice of algorithm.  



 

 

• Traditional software engineering tools are not readily applicable to this problem. Instead, engineers 

must adapt tools intended for different purposes (e.g., constraint satisfaction or multidimensional op-

timization) to the deployment improvement problem, which limits the potential for reuse and cross-

evaluation of the solutions. 

To deal with the above challenges, we have developed a tailorable approach for quantifying, continuous-

ly monitoring, and improving a software-intensive system’s deployment architecture. The overall approach, 

depicted in Figure 1, is a specialization of our architecture-based system adaptation framework [49, 50] to 

the redeployment problem, presented in light of Kramer and Magee’s three-layer reference model of self-

management [27]. This paper describes in detail the goal management layer of our approach, called deploy-

ment improvement framework (DIF), which consists of two activities:  

(1) Modeling – An extensible architectural model supports inclusion of arbitrary system parameters (soft-

ware and hardware), definition of arbitrary QoS dimensions using those parameters, and specification of 

QoS preferences by system users. Using the model, utility of any deployment of the system can be quan-

tified.  

(2) Analysis – Several tailored algorithms allow rapid exploration of the space of possible deployment archi-

tectures, and analysis of both the effects of changes in system parameters and of the system downtime 

 
 

Figure 1. A three-layer view of our approach for improving a software system’s QoS through redeployment 

of its components. This paper describes the deployment improvement framework (DIF), which corresponds to 

the goal management layer in our approach. 



 

 

incurred during runtime adaptation on a system’s QoS. No other approach known to us provides such ca-

pabilities in tandem. 

As depicted in Figure 1, DIF relies on the presence of an underlying implementation platform and run-

time support (i.e., change management and component control layers) for improving the system’s QoS 

through redeployment. The platform needs to provide four types of capabilities: Component Migration—the 

ability to move a software component from one host to another [6]; (Re)Deployment Coordination—the abil-

ity to manage the component's state and the order in which changes should be applied, such that the system is 

not placed in an inconsistent state; Runtime Probing—the ability to instrument a running system with probes 

for collecting usage data and samples of system's resources; Monitoring Gauge—the ability to continuously 

assess changes in the collected data, fuse information from various sources, and report significant variations 

to the goal management layer (i.e., DIF) [15]. To thoroughly evaluate DIF in actual running software sys-

tems, we have integrated it with an implementation platform (i.e., middleware) developed in our previous 

work [34][37] that provides sufficient support for the aforementioned capabilities.  

For any given application, the system architect instantiates (configures) DIF by defining the appropriate 

system parameters and the QoS of interest. DIF is then populated with the actual hardware and software pa-

rameters from a distributed application and by the users’ preferences for the QoS dimensions of each applica-

tion service. Using these values, the utility (i.e., the cumulative satisfaction with the system by all its users) 

of a given deployment is calculated. Finally, one of the algorithms supplied by DIF is used to find a deploy-

ment architecture that improves the overall utility.  

The key contributions of this paper are (1) the theoretical underpinnings for modeling, quantifying, as-

sessing, and improving a software system’s deployment; (2) support for quantitative exploration of a sys-

tem’s, typically very large, deployment space; and (3) the accompanying tool suite that enables software en-

gineers to use our framework.  

 The model and algorithms underlying this work are empirically analyzed for execution-time complexity 

and accuracy on a large number of distributed system scenarios. In particular, the algorithms are compared 

with the current state-of-the-art approaches in this area. DIF has also been in use by a third-party organiza-

tion, in the context of their family of sensor network applications [37]. We report on this, as well as our own 

experience with applying DIF to another software system developed in collaboration with an external organi-

zation. 

The remainder of paper is organized as follows. Section II provides some background on the challenges 

of assessing a system’s deployment architecture, and our approach to overcoming them. We then describe in 



 

 

detail the two components of our framework: Section III details our system model, and Section IV describes 

the QoS-driven architectural analysis, including the redeployment algorithms we have devised.  In Section V 

we provide an overview of the framework’s implementation, and its integration with an existing middleware 

platform, which has been used extensively for evaluating the framework in real-world applications. Our ex-

perience and evaluation results are provided in Section VI. Finally, Section VII discusses the related work, 

and the paper concludes with a recap of contributions and an outline of future work. 

II. ASSESSING DEPLOYMENT ARCHITECTURES 

For illustration, let us consider the very simple software system conceptually depicted in Figure 2, con-

sisting of one application-level service (ScheduleResources) provided to two users by two software compo-

nents (ModifyResourceMap and ResourceMonitor) that need to be deployed on two network hosts (a laptop 

and a PDA). In the absence of any other constraints, the system has four possible deployments (i.e., number 

of hosts
number of components

 = 2
2
) that provide the same functionality. Two of the deployments correspond to the 

situations where the two components are collocated on the same host, while the other two deployments cor-

respond to the situations where each component is deployed on a separate host.  

Let us assume that it is possible to measure (or estimate, provided that appropriate models and analytical 

tools are available to the engineers) the four deployments’ QoS properties, as shown in Figure 3a.
4
 It is clear 

that deployment Dep1 has the shortest latency, while deployment Dep3 has the longest battery life, defined 

as the inverse of the system’s energy consumption rate. Dep1 is the optimal deployment with respect to la-

tency, while Dep3 is the optimal deployment with respect to battery life. If the objective is to minimize the 

latency and at the same time maximize the battery life of the system, none of the four deployments can be 

argued to be optimal. This phenomenon is known as Pareto Optimal in multidimensional optimization [65].  

For any software system composed of many users and services, the users will likely have varying QoS 

preferences for the system’s services. To deal with the QoS trade-offs, we can leverage the users’ QoS prefe-

rences (i.e., the utility that a given level of quality for a given service would have for a user). As an example, 

Figure 3b shows the Team Lead’s utility for the rates of change in the latency and battery life of ScheduleRe-

sources. While the figure shows linear functions, users may express their QoS preferences in many ways, 

                                                      

4  This assumption is essential in order to be able to consider any objective strategy for assessing and improving a software sys-

tem’s deployment.  We assume that, even if it is not feasible to quantify a QoS property as a whole, it is possible to quantify dif-

ferent aspects of it.  For example, while it may not be possible to represent a system’s security as a single numerical quality, it is 

possible to quantify different aspects of security for the system (e.g., security of communication, encryption, and authentication). 

 



 

 

including by using much less precise 

phrasing. Any deployment improvement 

model must be able to capture effectively 

such preferences. We will discuss this 

issue further in Sections III and VI.  

In this particular example, Figure 3c 

shows the results of assessing the four 

deployments based on Team Lead’s utili-

ty functions. As shown in Figure 3c, as-

suming Dep2 is the current deployment 

of the system, the quality of the other 

three deployments can be calculated as 

follows: (1) from Figure 3a find the 

change in each QoS dimension from the 

current deployment to the new deploy-

ment, (2) look up the utility for the new 

level of QoS in Figure 3b, and (3) aggre-

gate the utilities, as shown in Figure 3c. In this (hypothetical) case, Dep3 provides the highest total utility to 

Team Lead and can be considered to be the optimal deployment for her. In a multi-user system, the other us-

ers also have to be considered in a similar manner, and all of the users’ utilities must be aggregated to deter-

mine a globally optimal deployment.
5
 

However, even this solution quickly runs into problems. Consider the following, slightly more complex 

variation of the scenario depicted in Figure 2, where we introduce a single additional element to each layer of 

the problem: we end up with three users who are interested in three QoS dimensions of two services provided 

by three software components deployed on three hosts. In this case, the engineer will have to reason about 18 

utility functions (3 users * 3 QoS dimensions * 2 services) across 27 different deployments (3 hosts and 3 

components, or 3
3
 deployments). The problem quickly becomes intractable for a human engineer. This has 

been the primary motivation for this research. 

                                                      

5  Note that, according to our definition of utility, a globally optimal deployment may result in suboptimal QoS levels for specific 

services and specific users. 

 
Figure 2. A hypothetical application scenario. 
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III. DEPLOYMENT MODEL 

Modeling has been a key thrust of software 

architecture research and practice, resulting in a 

large number of specialized architecture de-

scription languages (ADLs) [29,32] as well as 

the broadly scoped UML [48]. These languages 

enable the specification of a software system’s 

architectural structure, behavior, and interaction 

characteristics. Languages such as AADL [1] 

and UML [48] even allow capturing the hard-

ware hosts on which the software components 

are deployed. However, none of the existing 

languages provide the modeling constructs ne-

cessary for properly examining a system’s dep-

loyment architecture in terms of its, possibly 

arbitrarily varying, QoS requirements. This mo-

tivated us to develop our deployment improve-

ment framework’s underlying model, which 

provides the foundation for precisely quantify-

ing the quality of any system’s deployment and 

for formally specifying the deployment im-

provement problem. This model is intended to 

be used in conjunction with traditional software 

architecture modeling approaches; as a proof-

of-concept we have demonstrated the model’s integration with two third-party ADLs, xADL and FSP 

[12,13]. 

A primary objective in designing DIF was to make it practical, i.e., to enable it to capture realistic distri-

buted system scenarios and avoid making overly restrictive assumptions. To that extent, we want to avoid 

prescribing a predefined number of system parameters or particular definitions of QoS dimensions; this ob-

jective forms one of the key contributions of our work and sets it apart from the previous research in this area 

[1,5,20,22,25,35,41,42,47]. DIF provides: (1) a minimum skeleton structure for formally formulating the ba-
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Figure 3. (a) Latency and battery life measurements for the 

four candidate deployments of the system in Figure 2. (b) 

Team Lead’s utility for latency and battery life of  the Sche-

duleResources service. (c) Utility calculation for each dep-

loyment architecture. 



 

 

sic concepts that are common across different instances of our problem, and (2) a technique for representing 

the variations among the different instances of this problem by refining and extending this skeleton.  

A. BASIC MODELING CONSTRUCTS 

We model a software system’s deployment architecture as follows:  

1. A set H of hardware nodes (hosts), a set HP of associated parameters (e.g., available memory or CPU on 

a host), and a function  �������: �� 	 
 that maps each parameter to a value.
6
  

2. A set C of software component instances, a set CP of associated parameters (e.g., required memory for 

execution or JVM version), and a function ������� : 
� 	 
 that maps each parameter to a value. 

3. A set N of physical network links, a set NP of associated parameters (e.g., available bandwidth, reliabili-

ty of links), and a function �������: �� 	 
 that maps each parameter to a value. 

4. A set I of logical interaction links between software components in the distributed system, a set IP of 

associated parameters (e.g., frequency of component interactions, average event size), and a function 

�������: �� 	 
 that maps each parameter to a value. 

5. A set S of services, and a function �������,���������: ��� � 
� � �� � ��� 	 
 that provides values 

for service-specific system parameters. An example such parameter is the number of component interac-

tions resulting from an invocation of an application service (e.g., “find best route”). 

6. A set DepSpace of all possible deployments (i.e., mappings of software components C to hardware hosts 

H), where |��������| � |�||�|. 
7. A set Q of QoS dimensions, and associated functions  !�"#�$: � % �������� 	 
 that quantify a QoS 

dimension for a given service in the current deployment mapping. For instance, the information pre-

sented in Figure 3a can be modeled using two qValue functions (for latency and battery life). 

8. A set U of users, and a function  &'�"(,$,�: 
 	 )*��&'�", *�+&'�", that denotes a user’s preferences 

(in terms of the achieved utility) for a given level of QoS. A user may denote a utility between the range 

of MinUtil and MaxUtil. Relative importance of different users is determined by MaxUtil. In general, a 

larger value of MaxUtil indicates higher importance (or relative influence) of the user, allowing us to 

specify a particular user priority scheme, including for example completely subordinating the priorities 

of some users to those of others. As an example, the information presented in Figure 3b can be modeled 

using two qUtil functions, one for the Team Lead’s latency preferences and another for her battery life 

                                                      

6  For simplicity, we show the functions as mappings to real numbers. This need not be the case for certain parameters relevant in 

a given context.  Our model will support such additional mappings in the same manner. 



 

 

preferences. As detailed later in the paper, DIF does not place a constraint on the format of utility func-

tions. In fact, for exposition purposes the functions shown in Figure 3b are expressed in terms of rate of 

change in QoS, but utility functions could be specified very similarly using concrete levels of QoS.  

9. A set PC of parameter constraints, and a function ����'��-��./�: �������� 	 01 0 4 that given a con-

straint and a deployment architecture, returns 1 if the constraint is satisfied and 0 otherwise. For exam-

ple, if the constraint is “bandwidth satisfaction”, the corresponding function may ensure that the total vo-

lume of data exchanged across any network link does not exceed that link’s bandwidth in a given dep-

loyment architecture.  The set PC and function pcSatisfied could also be used to specify QoS constraints.  

10. Using the following two functions, the deployment of components can be restricted:  

"5�: 
 % � 	 6 1 �- � 7 
 ��� 8� .��"59�. 5�'5 � 7 �0 �- � 7 
 ����5' 8� .��"59�. 5�'5 � 7 �4   
�5""5�: 
 % 
 	 : 1 �- �1 7 
 ��� '5 8� 5� '�� ���� �5�' �� �2 7 
<1 �- �1 7 
 ����5' 8� 5� '�� ���� �5�' �� �2 7 
0 �- '���� ��� �5 ���'���'�5�� 4   

For example, loc can be used to restrict the deployment of a computationally expensive component to 

hosts with sufficient CPU power, while colloc may prohibit two components providing the primary and 

backup of the same service to be collocated on the same host. 

Note that some elements of the framework model are intentionally left “loosely” defined (e.g., the sets of 

system parameters or QoS dimensions). These elements correspond to the many and varying factors that are 

found in different distributed applications. As we will show below, when the framework is instantiated, the 

system architect specifies these loosely defined elements.  

For brevity we use the following notations in the remainder of the paper: Hc is a host on which compo-

nent c is deployed; Ic1,c2 is an interaction between components c1 and c2; Nh1,h2 is a network link between 

hosts h1 and h2; finally, Cs and Hs represent respectively a set of components and hosts that participate in 

provisioning the service s. 

Figure 4 shows the formal definition of the utility of a single system’s deployment, and the deployment 

optimization problem based on our framework model. The function overallUtil represents the overall satis-

faction of the users with the QoS delivered by the system. The goal is to find a deployment architecture that 

maximizes overallUtil and meets the constraints on location, collocation, and system parameters (recall items 

9 and 10 above). Note that the scope of our work is limited to finding and effecting an improved software 

deployment. Other types of adaptation decisions that may also impact a system’s QoS (e.g., changing the 

amount of system resources at the software component’s disposal, or replacing one version of a component 

with another) are complementary to our work, but we do not consider them here.  



 

 

B. MODEL INSTANTIATION 

As mentioned earlier, some aspects of our framework’s model have been intentionally left loosely de-

fined. To actually use the framework, one needs to precisely specify an application scenario. Framework in-

stantiation is the process of configuring the framework model for an application scenario. We illustrate the 

instantiation using four QoS dimensions: availability, latency, communication security, and energy consump-

tion. Note that any QoS dimension that can be quantitatively estimated can be used in our framework..   

The first step in instantiating the framework is to define the relevant system parameters. Item 1 of Figure 

5 shows a list of parameters that we have identified to be of interest for estimating the four selected QoS di-

mensions in the mobile emergency response setting. If additional parameters are found to be relevant, they 

can be similarly instantiated in our framework. Once the parameters of interest are specified, the parameter 

realization functions (e.g., hParam, cParam) need to be defined. These functions can be defined in many 

ways: by monitoring the system, by relying on system engineers’ knowledge, by extracting them from the 

architectural description, etc. For example, hParamh1 (hostMem) designates the available memory on host h1. 

A software system’s availability is commonly defined as the degree to which the system is operational 

when required for use [21,52]. In the context of mobile software systems, where a common source of failure 

is the network, we estimate availability in terms of successfully completed inter-component interactions in 

the system. Item 2 of Figure 5 estimates the availability for a single service s in a given deployment d. 

A software service’s latency is commonly defined as the time elapsed between making a request for ser-

vice and receiving the response [21,51]. The most common causes of communication delay in a distributed 

mobile system are the network transmission delay, unreliability of network links, and low bandwidth. Item 3 

of Figure 5 estimates latency for a service s.  

Given the current deployment of the system DepSpaced ∈ , find an improved deployment 'd  such 

that the users’ overall utility defined as the function  

    qqUtilddloverallUti

Uu Ss Qq

qsu∑ ∑ ∑
∈ ∈ ∈

∆=′ )(),( ,, ,  where 
),(

),(),(

dsqValue

dsqValuedsqValue
q

q

qq −′
=∆  

is maximized, and the following conditions are satisfied:     

1.  1),( =∈∀ cHclocCc  

2. CcCc ∈∀∈∀ 21  )()1)2,1(( 21 cc HHcccollocif =⇒=     

      )()1)2,1(( 1 lcc HHcccollocif ≠⇒−=  

3. 1)( =∈∀ ddpcSatisfiePCconstr constr  

In the most general case, the number of possible deployment architectures is 
|C|

|H||DepSpace|   = . 

However, some of these deployments may not satisfy one or more of the above three conditions.  
Figure 4. Problem definition. 

 



 

 

A major factor in the security of distributed mobile systems is the level of encryption supported in re-

mote communication (e.g., 128-bit vs. 40-bit encryption) [60]. This is reflected in item 4 of Figure 5.  

Finally, energy consumption (or battery usage) of each service is determined by the energy required for 

the transmission of data among hosts plus the energy required for the execution of application logic in each 

software component participating in providing the service. Item 5 of Figure 5 estimates energy consumption 

of service s. For ease of exposition, we have provided a simplified definition of energy consumption; a more 

sophisticated model can be found in our prior work [55,56]. 

To illustrate parameter constraints we use the memory available on each host. The constraint in item 6 of 

Figure 5 specifies that the cumulative size of the components deployed on a host may not be greater than the 

total available memory on that host. Other constraints are included in an analogous manner. 

As the reader may recall from the previous section, we also need to populate the set S with the system 

services and the set U with the users of the system. Finally, each user’s preferences are determined by defin-

ing the function qUtil. The users define the values this function takes based on their preferences, with the 

help of our tool support described in Section V. 

1. System parameters 

HPhostMem∈  available memory on a host 

 HPshostEnrCon ∈ average energy consumption per opcode 

CPcompMem∈  required memory for a component 

CPopcodeSize∈  average amount of computation per event 

IPfreq∈  frequency of interaction between two components 

IPevtSize∈ average event size exchanged between two components 

NPbw∈ available bandwidth on a network link 

NPrel∈  reliability of a network link 

NPtd ∈  transmission delay of a network link 

NPenc∈ encryption capability of a network link 

NPscommEnrCon ∈ energy consumption of transmitting data 

Qenergyurity,secy,ty, latencavailabili ∈   four QoS dimensions 

PCmemConst∈  constraint on host’s available memory parameter 

2. Availability: ( )∑ ∑
∈ ∈

×=
s s

cHcHcc
Cc Cc

NIstyavailabili (rel)nParam(freq)sParamd) (s,qValue

1 2

,
2,12,1  
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∑ ∑
∈ ∈









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+×=
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ccIsIs
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2,1
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4.  Communication security: ( )∑ ∑
∈ ∈

××=
s s

cHcHcccc
Cc Cc

NIsIsurity (enc)nParam(evtSize)sParam(freq)sParam(s,d)qValue

1 2

,,sec
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5.  Energy consumption: ∑ ∑
∈ ∈






 ×
=

s s cHcH
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Cc Cc N

s,Is,I
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ns)(commEnrConParam
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1 2 2,1
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Figure 5. Framework instantiation example. 



 

 

C. UNDERLYING ASSUMPTIONS 

The definitions in Figure 5 are intended to serve as an illustration of how QoS dimensions are estimated 

and used in DIF. We do not argue that these are the only, “correct”, or even most appropriate quantifications. 

DIF does not place any restrictions a priori on the manner in which QoS dimensions are estimated. This al-

lows an engineer to tailor DIF to the application domain and to her specific needs. Our instantiation of the 

framework model, shown in Figure 5, is based on our experience with mobile emergency response software 

systems [34,36,37], such as those described in Section I.  

Other researchers have acknowledged the impact of deployment on a system’s QoS in several other do-

mains, e.g., data-intensive systems [22], wireless sensor networks [47], and online multimedia systems [28]. 

We also believe that the emergence of new computing paradigms further underlines the importance of scala-

ble deployment analysis techniques, e.g., large-scale data centers that depend on clusters of hundreds or 

thousands of general purpose servers (e.g., popular search engines), and cloud computing whereby distri-

buted and often virtualized computing resources are dynamically provisioned and shared among many users. 

In other application domains, some of the simplifying assumptions we have made may not hold, and oth-

er estimations of QoS may be more appropriate. For instance, consider the following simplifying assump-

tions made in the analytical models presented in Figure 5: 

• Availability: In other domains, such as data centers, other system parameters (e.g., unavailability of re-

sources due to high workload) may need to be considered. 

• Latency: In our specification of latency we did not consider the computational delay associated with each 

software component’s execution. This can be justified, e.g., in the context of emergency response mobile 

systems, where the implementations of system services are often relatively simple and network commu-

nication is the predominant source of delay. As before, in other domains, such as data centers or scientif-

ic applications, a reasonable estimation of latency would certainly need to account for the execution time 

of software components.  

• Security: We assume that a single encryption algorithm is used, where the size of the key indicates the 

difficulty of breaking ciphered data. In cases where this assumption is not true or multiple encryption al-

gorithms are available, the model would have to be extended to account for the unique behavior of each 

algorithm.  

The assumptions listed above are not intended to be comprehensive, but rather highlight the fact that (1) 

by its nature, any analytical formulation of a QoS makes certain simplifying assumptions based on what is 

considered negligible in a given domain, and (2) different domains are likely to have different QoS concerns. 



 

 

Indeed, one of the key contributions of DIF is that, unlike existing approaches [1,5,20,25,35,41,42] that pre-

scribe a particular model, through the extensible modeling methodology described above the engineer tailors 

the framework for a given domain.  

Utility functions originated in economics [23], but have been extensively used in many areas of computer 

science, including autonomic computing [64], performance analysis [5], and software engineering [53], to 

denote the usefulness of a system or its properties to the users. While the ability to represent the users’ prefe-

rences is clearly a prerequisite for accurate analysis of a system’s deployment, it is a topic that has been in-

vestigated extensively in the existing literature, and we consider it to be outside the focus of this paper. For 

instance, interested readers may refer to [57,58], where authors have demonstrated the feasibility of accurate-

ly inferring users’ QoS preferences in terms of utility via user-friendly graphical widgets. These techniques 

have influenced DIF’s tool support as detailed in Section V.  

DIF is also independent of the type of utility functions and the approach employed in extrapolating them. 

Arguably, any user can specify hard constraints, which can be trivially represented as step functions. Alterna-

tively a utility function may take on more advanced forms to express more refined preferences. Most notably, 

sigmoid curves have shown to provide an appropriate middle ground between expressiveness and usability, 

and used in many existing approaches (e.g., [5,40,53]).  

IV. DEPLOYMENT ANALYSIS 

Once a system’s architectural model is completed, the model can be analyzed for properties of interest.  

Traditionally, architectural analysis has been the prevailing reason for using ADLs [29]. The objective of our 

framework’s analysis activity is to ensure an effective deployment of the modeled system, both prior to and 

during the system’s execution.  This analysis is based on a set of algorithms specifically developed for this 

purpose. Determining an effective deployment for a system is challenging for reasons discussed in Section I: 

the problem space is exponential, while a very large set of system parameters must be taken into account and 

must satisfy arbitrary constraints. Because of this, most of our algorithms are heuristic-based and provide 

approximate solutions. We have developed multiple algorithms in order to best leverage the characteristics of 

different scenarios involving varying QoS requirements, user preferences, and hardware and/or software per-

formance characteristics. These algorithms provide the foundation for an automated deployment analyzer 

facility that is a centerpiece of our framework. In this section, we first present our deployment improvement 

algorithms and then discuss other factors that impact a system’s preferred deployment architecture. 



 

 

A. DEPLOYMENT IMPROVEMENT ALGORITHMS 

The deployment optimization problem as we have stated it is an instance of multi-dimensional optimiza-

tion problems, characterized by many QoS dimensions, system users and user preferences, and constraints 

that influence the objective function. Our goal has been to devise reusable algorithms that provide accurate 

results (assuming accurate model parameter estimates are available and appropriate QoS dimension quantifi-

cations are provided) regardless of the application scenario. A study of strategies applicable to this problem 

has resulted in four algorithms to date, where each algorithm has different strengths and is suited to a particu-

lar class of systems. Unlike previous works, which depend on the knowledge of specific system parameters 

[4,5,20,25] or assume specific architectures [22,47], we have introduced several heuristics for improving the 

performance and accuracy of our algorithms independently of the system parameters or architectures. There-

fore, regardless of the application scenario, the architect simply executes the algorithm most suitable for the 

system (e.g., based on the size of the system or stability of parameters, further discussed in Section VI.G) 

without any modification. 

Of the four approaches that we have used as the basis of our algorithms, two (Mixed-Integer Nonlinear 

Programming, or MINLP, and Mixed Integer Linear Programming, or MIP [65]) are best characterized as 

techniques developed in operations research to deal with optimization problems. They are accompanied by 

widely used algorithms and solvers. We tailor these techniques to our problem, and thereby improve their 

results. The remaining two approaches (greedy and genetic) can be characterized as generally applicable 

strategies, which we have employed in developing specific algorithms tailored to our problem.  

1. Mixed-Integer Nonlinear Programming (MINLP) Algorithm 

The first step in representing our problem as a MINLP problem is defining the decision variables. We de-

fine decision variable xc,h to correspond to the decision of whether component c is to be deployed on host h. 

Therefore, we need |
| % |�| binary decision variables, where xc,h=1 if component c is deployed on host h, 

and xc,h=0 otherwise.  

The next step is defining the objective function, which in our case is to maximize the overallUtil func-

tion, as shown in Eq. 1 of Figure 6. The definition of overallUtil is the same as in Figure 4.  However, note 

that the qValue functions of our instantiated model (recall Figure 5) are now rewritten to include the decision 

variables xc,h. This is illustrated for the availability dimension in Eq. 2 of Figure 6.  



 

 

Finally, we need to specify the constraints. We have depicted two common constraints: Eq. 3 enforces 

the constraint that a single software component can only be deployed on a single host and Eq. 4 enforces the 

memory constraint that was defined previously in our instantiated model (item 6 of Figure 5).  

The product of variables in Eq. 2 of Figure 6 demonstrates why the deployment problem is inherently 

non-linear. There is no known algorithm for solving a MINLP problem optimally other than trying every 

possible deployment. Furthermore, for problems with non-convex functions (such as ours), MINLP solvers 

are not guaranteed to find and converge on a solution [65]. Finally, given the non-standard techniques for 

solving MINLP problems, it is hard to determine a complexity bound for the available MINLP solvers.
7
 For 

all of these reasons, we needed to investigate other options. 

2. Mixed-Integer Linear Programming (MIP) Algorithm 

An important characteristic of MIP problems is that they can be solved to find the optimal solution.  We 

have leveraged a technique for transforming the above MINLP problem into MIP by adding new “auxiliary” 

variables. We introduce |
|= % |�|= new binary decision variables tc1,h1,c2,h2 to the specification formula of 

each QoS, such that tc1,h1,c2,h2=1 if component c1 is deployed on host h1 and component c2 is deployed on 

host h2, and tc1,h1,c2,h2=0 otherwise.  

To ensure that the variable t satisfies the above relationship, we add the following three constraints:

2,21,12,2,1,12,22,2,1,11,12,2,1,1 1   ,   , and hchchchchchchchchchc xxtxtxt +≥+≤≤  
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     All state-of-the-art MINLP solvers are based on proprietary algorithms, which are claimed to run in polynomial time [10].  
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Figure 6. MINLP representation of the deployment problem. 



 

 

This allows us to remove the multiplication of decision variables from the qValue functions (e.g., Eq. 2 of 

Figure 6). However, this transformation significantly increases the complexity of the original problem. Since  

MIP solvers use branch-and-bound to solve a problem efficiently, our problem has the upper bound of:  

)2()22()22()  (
2||2||||||2||2||sx variable ofnumber es t variablofnumber  treeofheight  CHCHCH OOObranchofsizeO =+=+=  

One heuristic that we have developed is to assign a higher priority to x variables and lower priority to t 

variables. Thus, we are able to reduce the complexity of the algorithm to O(2
|H||C|

): after solving the problem 

for the x variables, the values of t variables trivially follow from the three constraints introduced above. Fi-

nally, the constraint that each component can be deployed on only one host (Eq. 3 of Figure 6) allows for 

significant pruning of the branch-and-bound tree, thus reducing the complexity of our problem to O(|H|
|C|

).  

By fixing some components to selected hosts, the complexity of the exact algorithm reduces to  

> ?@ A "5�B�, �CD7�E7� F 

Similarly, specifying that a pair of components ci and cj have to be collocated on the same host could further 

reduce the algorithm’s complexity. 

Our heuristics significantly reduce the complexity of the MIP problem. However, as we will see in Sec-

tion VI, even after this reduction, the MIP algorithm remains computationally very expensive. It may still be 

used in calculating optimal deployments for smaller systems, or those whose characteristics are stable for a 

very long time. However, even in such cases running the algorithm may become infeasible very quickly, un-

less the number of allowed deployments is substantially reduced through location and collocation constraints. 

3. Greedy Algorithm 

The high complexity of MIP and MINLP solvers, and the fact that the MINLP solvers do not always find 

an improved solution, motivated us to devise additional algorithms. Our greedy algorithm is an iterative algo-

rithm that incrementally finds better solutions. Unlike the previous algorithms that need to finish executing 

before returning a solution, the greedy algorithm generates a valid and improved solution in each iteration. 

This is a desirable characteristic for systems where the parameters change frequently and the available time 

for calculating an improved deployment varies significantly.  

In each step of the algorithm, we take a single component aComp and estimate the new deployment loca-

tion (i.e., a host) for it such that the objective function overallUtil is maximized. Our heuristic is to improve 

the QoS dimensions of the “most important” services first. The most important service is the service that has 



 

 

the greatest total utility gain as a result of the smallest improvement in its QoS dimensions. The importance 

of service s is calculated via the following formula: 

�G����B�C �  A A  &'�"H,I,JJ7$H7( KLJM 

Where LJ is a configurable threshold in the algorithm and denotes a small rate of improvement in the QoS 

dimension q. Going in the decreasing order of service importance, the algorithm iteratively selects compo-

nent aComp that participates in provisioning that service, and searches for the host bestHost for deployment. 

bestHost is a host � 7 � that maximizes 5G���""&'�"B., .N�OPQ	DC, where d is the current deployment, and 

.N�OPQ	D is the new deployment if aComp were to be deployed on h. 

If the bestHost for aComp satisfies all the constraints, the solution is modified by mapping aComp to 

bestHost. Otherwise, the algorithm leverages a heuristic that finds all “swappable” components sComp on 

bestHost, such that after swapping a given sComp with aComp (1) the constraints associated with HaComp and 

bestHost are satisfied, and (2) the overall utility is increased. If more than one swappable component satisfies 

the two conditions, we choose the component whose swapping results in the maximum utility gain. Finally, 

if no swappable components exist, the next best host (i.e., the host with the next highest value of overallUtil 

if aComp were to be deployed on it) is selected and the above process repeats. 

The algorithm continues improving the overall utility by finding the best host for each component of 

each service, until it determines that a stable solution has been found. A solution becomes stable when during 

a single iteration of the algorithm all components remain on their respective hosts.  

The complexity of this algorithm in the worst case with k iterations to converge is
8
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Since often only a small subset of components participate in providing a service and swappable compo-

nents are only a small subset of components deployed on bestHost, the average complexity of this algorithm 

is typically much lower. Finally, just like the MIP algorithm, further complexity reduction is possible 

through specification of locational constraints, which reduces the number of times overallUtil is calculated. 

The component swapping heuristic is important in that it significantly decreases the possibility of getting 

“stuck” in a bad local optimum. Further enhancements to the algorithm are possible at the cost of higher 

                                                      
8
 Our analysis is based on the assumption that the numbers of system parameters (e.g., sets HP and CP) are significantly smaller 

than the numbers of modeling elements (i.e., sets H, C, N, and I) with which they are associated.  



 

 

complexity. For example, simulated annealing [54] could be leveraged to explore several solutions and return 

the best one by conducting a series of additional iterations over our algorithm. 

4. Genetic Algorithm 

Another approximative solution we have developed is based on a class of stochastic approaches called 

genetic algorithms [54]. An aspect of a genetic algorithm that sets it apart from the previous three algorithms 

is that it can be extended to execute in parallel on multiple processors with negligible overhead. Furthermore, 

in contrast with the two approximative algorithms that eventually stop at “good” local optima (MINLP and 

greedy), a genetic algorithm continues to improve the solution until it is explicitly terminated by a triggering 

condition or the global optimal solution has been found. However, the performance and accuracy of a genetic 

algorithm significantly depend on its design (i.e., the representation of the problem and the heuristics used in 

promoting the good properties of individuals). In fact, the genetic algorithm we developed initially without 

deployment-specific heuristics significantly under-performed in comparison to the other algorithms. As a 

result, we had to devise a novel mechanism specifically tailored at our problem, discussed below. 

In a genetic algorithm an individual represents a solution to the problem and consists of a sequence of 

genes that represent the structure of that solution. A population contains a pool of individuals. An individual 

for the next generation is evolved in three steps: (1) two or more parent individuals are heuristically selected 

from the population; (2) a new individual is created via a cross-over between the parent individuals; and (3) 

the new individual is mutated via slight random modification of its genes. 

In our problem, an individual is a string of size |C| that corresponds to the deployment mapping of all 

software components to hosts. Figure 7a shows a representation of an individual for a problem of 10 compo-

nents and 4 hosts. Each block of an indi-

vidual represents a gene and the number 

in each block corresponds to the host on 

which the component is deployed. For 

example, component 1 of Individual 1 is 

deployed on host 4 (denoted by h4), as 

are components 4, 5, and 8. The problem 

with this representation is that the genet-

ic properties of parents are not passed on 

as a result of cross-overs. This is because 

 
Figure 7. Application of the genetic algorithm to a 

problem comprising 10 components and 4 hosts: a) simple repre-

sentation, b) representation based on services. 

 



 

 

the components that constitute a service are dispersed in the gene sequence of an individual and a cross-over 

may result in a completely new deployment for the components of that service. For instance, assume that in 

Figure 7a service 1 of Individual 1 and services 2 and 3 of Individual 2 have very good deployments (with 

respect to user utility); then, as a result of a cross-over, we may create an individual that has an inferior dep-

loyment for all three services. For example, the components collaborating to provide service 2 are now dis-

tributed across hosts 1, 3, and 4, which is different from the deployment of service 2 in both Individuals 1 

and 2. 

Figure 7b shows a heuristic we have developed for representing an individual in response to this prob-

lem. The components of each service are grouped together via a mapping function, represented by the Map 

sequence. Each block in the Map sequence tells us the location in the gene sequence of an individual to 

which a component is mapped. For example, component 2 is mapped to block 5 in the gene sequence (de-

noted by i5). Thus, block 5 of Individual 1 in Figure 7b corresponds to block 2 of Individual 1 in Figure 7a, 

and both denote that component 2 is deployed on host 1. If the component participates in more than one ser-

vice, the component is grouped with the components providing the service that is deemed most important. 

Similar to the heuristic used in our greedy algorithm, the most important service results in the highest utility 

gain for the smallest improvement in its QoS dimensions. We only allow cross-overs to occur on the borders 

of services. For example, in Figure 7b, we allow cross-overs at two locations: the line dividing blocks 4 and 

5 and the line dividing blocks 7 and 8 of Individuals 1 and 2. As a result of the cross-over in Figure 7b, we 

have created an individual that has inherited the deployment of service 1 from Individual 1 and the deploy-

ment of services 2 and 3 from Individual 2.  

After the cross-over, the new individual is mutated. In our problem, this corresponds to changing the 

deployment of a few components. To evolve populations of individuals, we need to define a fitness function 

that evaluates the quality of each new individual. The fitness function returns zero if the individual does not 

satisfy all the parameter and locational constraints, otherwise it returns the value of overallUtil for the dep-

loyment that corresponds to the individual. The algorithm improves the quality of a population in each evolu-

tionary iteration by selecting parent individuals with a probability that is directly proportional to their fitness 

values. Thus, individuals with a high fitness value have a greater chance of getting selected, and increase the 

chance of passing on their genetic properties to the future generations of the population. Furthermore, anoth-

er simple heuristic we employ is to directly copy the individual with the highest fitness value (i.e., perform-

ing no cross-over or mutation) from each population to the next generation, thus keeping the best individual 

found in the entire evolutionary search.  



 

 

The complexity of this algorithm in the worst case is:  
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We can further improve the results of the algorithm by instantiating several populations and evolving 

each of them independently. These populations are allowed to keep a history of their best individuals and 

share them with other populations at pre-specified time intervals. 

B. ADDITIONAL FACTORS IN (RE)DEPLOYMENT ANALYSIS 

If the characteristics of an execution scenario change while the system is running, i.e., after the initial 

deployment is calculated and effected, the system is analyzed again by applying the most appropriate redep-

loyment algorithm(s). Then, the improved deployment architecture is effected by redeploying the system’s 

components as recommended by the algorithm(s). This process was depicted in Figure 1. 

For illustration, Figure 8 shows the overall utility of a hypothetical distributed system to its users over a 

given time interval. Let us assume that the system’s initial overall utility, U1, is deemed unsatisfactory. This 

can happen either because the system’s runtime characteristics change (e.g., a network link fails, a new host 

enters the system) or because QoS dimensions and/or user preferences change. In either case, the system’s 

operation is monitored and its model updated as appropriate during the interval TM. The new model is then 

analyzed and an improved configuration may be determined during the period TA. At that point, the system’s 

redeployment is triggered if necessary. The triggering agent may be a human architect; alternatively, an au-

tomated deployment analyzer may initiate the task if pre-specified utility thresholds are reached. We provide 

such an automated deployment analyzer, further discussed in the remainder of this section. 

Redeployment involves suspending some subset of the system’s running components, relocating those 

components among the hosts, as well 

as possibly removing existing and/or 

introducing new components. During 

this time period, TR, the system’s 

overall utility will likely decrease as 

services become temporarily un-

available. The utility “dip” depends 

on the characteristics of the system 

(e.g., frequencies of interactions,  

Figure 8. System’s overall utility over time. 



 

 

number of dependencies) as well as the support provided by the implementation platform (e.g., rerouting of 

events, replicating components). Once the redeployment is completed, however, the overall utility increases 

to U2 for the remainder of the time period T. If the system parameters change again, the system’s utility may 

decrease, and this process may be repeated (illustrated in Figure 8 with period T’). 

The above process makes a critical assumption: The times required to monitor a system, update its mod-

el, analyze, and redeploy the system are small relative to the system’s normal operation interval TO (i.e., 

TM+TA+TR<<TO). If this is not the case, the system’s parameters will be changing too frequently, triggering 

constant redeployments. This will result in the opposite of the intended effect since the system users would 

repeatedly experience the utility “dip”. Therefore, in order to properly determine whether and how often to 

redeploy a system, our framework’s deployment analyzer needs to know (1) the rate of change in system pa-

rameters, (2) the time required to apply the algorithms, (3) the time needed to actually redeploy the system, 

and (4) the overall utility gain of the calculated redeployment. We elaborate on these factors below. 

For some systems, it may be possible to predict the frequency with which system parameters are likely to 

change (e.g., based on domain characteristics or similar past systems). In other cases, the deployment analyz-

er leverages the system’s execution history to estimate the change rate in parameters; collecting this history 

is further discussed in Section VI. It is, of course, impossible to guarantee that the predicted behavior will be 

borne out in practice or that past behavior is representative of future behavior. In particular, our approach 

will not be effective in the extreme case where changes occur so rapidly and randomly that no particular ge-

neralization of the monitored data can be made, and no particular patterns of behavior can be identified, mak-

ing it impractical to optimize the system. At the same time, an argument can be made that other remedies 

need to be considered for such systems before determining an effective deployment becomes a priority. 

While in theory one should always strive for the (re)deployment that maximizes the system’s overall util-

ity, in practice the time needed to apply the different redeployment solutions and the overall utility gain must 

be taken into account. Even though, with the exception of MIP, the algorithms we have devised run in poly-

nomial time, they have very different characteristics that significantly affect their runtime performance as 

well as accuracy. Those characteristics are extensively evaluated in Section VI, allowing us to automatically 

select the most appropriate algorithm in a given situation. 

Finally, deployment analysis must also take into account the amount of time required to actually redep-

loy the system and the intervening loss of system services. The time required to migrate a single component 

depends on the component’s size as well as the reliability and bandwidth of the network link between the 

source and destination hosts. For example, if two hosts are connected by a 100 Kbps connection with 50% 



 

 

reliability, a 100 KB component would get migrated in 16s on average. The upper bound on the total time to 

effect a system’s redeployment, TR, for the scenario instantiated in Section III can be estimated as follows:  

\] � A ^ ������_B�5��*��C������IOH_E`a,b`IcaB8TC % ������IOH_E`a,b`IcaB��"Cd_7]  

where R is the set of components to be redeployed; source and dest are the source and destination hosts, re-

spectively; and bw and rel are the bandwidth and reliability of the network link, respectively. The above equ-

ation does not include network latency introduced by the underlying network protocol. Existing network la-

tency estimation techniques (e.g., [16]) can be applied to estimate TR more accurately. Additionally, the mi-

grations on different hosts usually happen in parallel, thus significantly reducing the value of TR. Finally, the 

above discussion assumes that either no additional mechanisms (e.g., rerouting of events, component replica-

tion) are provided to reduce service disruption during redeployment or, if they are provided, that they are 

captured by updating our system model. 

The unavailability of system services during the TR interval (depicted by the utility “dip” in Figure 8) 

may be a critical factor in deciding on the best deployment for a system in a given scenario. In some cases, 

users may be willing to accept temporary losses of service, so the algorithm suggesting a deployment with 

the highest utility will be preferable. In other cases, however, losing certain critical services beyond a specif-

ic amount of time will be unacceptable to users, so redeployments that guarantee short downtimes for the 

components providing those services will be preferable (this may also result in simply retaining the current 

deployment). In such cases, the objective of applying a deployment improvement algorithm is to trade-off the 

utility gain achieved by a suggested new deployment (interval TO in Figure 8) against the utility loss caused 

by the redeployment process (interval TR). In order for our framework’s deployment analyzer to be able to 

make this trade-off autonomously, it must know the system users’ preferred utility thresholds. The thresholds 

can be obtained in a manner analogous to capturing the users’ QoS preferences (recall Section II). If such 

thresholds do not exist, the output of a deployment improvement algorithm becomes a set of suggested dep-

loyments, with their resulting utility gains during TO and losses during TR. In those cases, a human is tasked 

with determining the best option. Finally, note that if any loss of a given service is unacceptable, this be-

comes a redeployment constraint in the system model (recall Section III). 

V. TOOL SUPPORT 

We have realized DIF as a visual Eclipse-based environment. The environment can be readily employed 

for improving the deployment of any existing Eclipse software project, assuming the availability of an under-



 

 

lying implementation platform with the capabilities discussed in Section I and depicted in the bottom two 

layers of Figure 1. In this section, we provide an overview of DIF’s tool support, as well as its integration 

with an implementation platform, which has been used extensively in our evaluation.  

A. FRAMEWORK’S IMPLEMENTATION 

We have implemented DIF by extending and tailoring DeSi, a preliminary version of which was de-

scribed in [44]. DeSi is a visual deployment exploration environment that supports specification, manipula-

tion, and visualization of deployment architectures for large-scale, highly distributed systems.  

DeSi uses an enhanced variation of xADL [11], an XML-based third-party architecture description lan-

guage (ADL) [29], to model the deployment concerns. We have extended the conventional constructs found 

in commonly used ADLs [29], such as xADL, in three ways. First, xADL was extended to enable modeling 

of hardware as well as software properties of interest, the containment relationships between software and 

hardware elements, and the details of both logical and physical connectors. Second, we introduced the notion 

of a service, which as described earlier represents a user-level functionality and has a mapping to a subset of 

a system’s architecture involved in provisioning it. Finally, we extended xADL to provide the constructs ne-

cessary for capturing the user types, user preferences, and analytical models for representing QoS in the sys-

tem.  

By leveraging DeSi, an architect is able to enter desired system parameters into the model, and also to 

manipulate those parameters and study their effects. For example, as depicted in Figure 9b, the architect is 

able to use a graphical environment to specify new architectural constructs (e.g., components, hosts), param-

eters (e.g., network bandwidth, host memory), and values for the parameters (e.g., available memory on a 

host is 1MB). The architect may also specify constraints. Example constraints are the maximum and mini-

mum available resources, the location constraint that denotes the hosts on which a component may not be 

deployed, and the collocation constraint that denotes a subset of components that should not be deployed on 

the same host. DeSi also provides a tabular view that provides a comprehensive summary of the system’s 

monitored data, deployment architecture, and the results of analysis (shown in Figure 9a). In the same view, 

DeSi provides a control panel through which any of the algorithms can be executed and the impact of a new 

solution on the system’s QoS visually assessed.  



 

 

 
Figure 9. User interface of the DeSi environment: (a) the editable tabular view of a system’s deployment archi-

tecture and the control panel for executing the algorithms, and (b) the graphical view of the architecture. 
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Figure 16 shows DeSi’s graphical depiction of a system users’ preference view, where the system’s users 

(left) have expressed their QoS preferences (middle) for user-level services (right). This figure corresponds 

to one of the applications we have used for evaluating DIF and will be revisited in more detail in Section VI. 

Some possible methods of eliciting user preferences include: (1) discrete—select from a finite number of 

options (e.g., a certain level of QoS for a given service is excellent, good, poor, or very poor), (2) relative—a 

simple relationship or ratio (e.g., 10% improvement in a given QoS has 20% utility), and (3) constant feed-

back—input preferences based on the delivered QoS at run-time (e.g., given a certain QoS delivered at run-

time ask for better, same, or ignore). 

DeSi can be used in two modes: (1) Simulated mode—Used to automatically generate and manipulate 

large numbers of hypothetical deployment architectures (shown in the parameter ranges in Figure 9a).  As 

detailed in Section VI, we used this feature of DeSi to comprehensively evaluate the trade-offs between al-

ternative algorithms on a large number of deployment problems. (2) Online mode—Used in conjunction with 

an execution platform, most likely in the form of a middleware, that provides DeSi with the information from 

a running system. A middleware adapter is employed to integrate DeSi with a running system. The middle-

ware adapter would need to provide implementations for two Java interfaces: IMonitor and IEffector. An im-

plementation of IMonitor captures the run-time data from the running system and uses DeSi’s exported API 

to update the system’s deployment model. An implementation of IEffector, on the other hand, is used by De-

Si for effecting the calculated (improved) deployment architecture. The implementation would use the mid-

dleware’s runtime adaptation facilities to modify the running system’s deployment architecture. The details 

of this process are further elaborated below, in the context of an example middleware used in our evaluation.  

B. INTEGRATION WITH A RUNTIME PLATFORM 

As described in Section I, to achieve DIF’s goal of improving the system’s QoS through redeployment of 

its components, we rely on the availability of an underlying implementation platform with the necessary run-

time facilities. These facilities roughly correspond to those depicted in the two bottom layers of Figure 1. 

While DIF is independent of the underlying platform, for evaluating it in actual software systems we inte-

grated DeSi with Prism-MW [34], which is a middleware platform developed in our previous work, with ex-

tensive support for monitoring and component redeployment. We briefly provide an overview of Prism-MW 

and elaborate on its integration with the DIF’s implementation in DeSi. Interested reader can find a detailed 

description of Prism-MW in [34].      



 

 

Prism-MW is an architectural middleware, meaning that it provides implementation-level constructs for 

architectural concepts such as components, connectors, ports, events, architectural styles, and so on. This 

characteristic sets Prism-MW apart from general purpose middleware platforms that often lack support for 

certain facets of software architectures (e.g., architectural styles, explicit connectors [30]).  

A software system in Prism-MW is implemented as an Architecture object containing the configuration 

of the system’s Component and Connectors. Figure 14a provides an overview of an application developed on 

top of Prism-MW and described in detail as part of our evaluation. A distributed system is implemented as a 

set of interacting Architecture objects, communicating via distribution-enabled Prism-MW Ports. The one-

to-one mapping between the architectural model and its implementation in turn simplifies (re)deploying the 

system as suggested by its architectural analysis, which is one of the key motivations behind the selection of 

this middleware for the evaluation of DIF. 

To support system (re)deployment and monitoring, Prism-MW provides meta-level components, which 

contain a reference to the Architecture, as depicted in Figure 14a. This allows a meta-level component to 

achieve architectural awareness, i.e., to be able to access all architectural elements in its local configuration. 

In essence, a meta-level component acts as an agent that coexists with the application-level components, ef-

fects changes to their local configuration, and monitors changes in their execution conditions. Prism-MW 

provides two implementations of meta-level components, Admin and Deployer, which respectively provide 

the component control and change management capabilities depicted in Figure 1, as follows.  

Each host has an Admin, which acts as an agent in charge of collecting system measurements, and mak-

ing the runtime changes in the corresponding host.  In Prism-MW, the developer can associate arbitrary mon-

itoring probes with architectural constructs. For instance, Figure 15b shows an application used in our evalu-

ation, where a NetworkReliabilityMonitor is attached to a distribution-enabled port to assess the status of the 

associated network link, while EvtFrequencyMonitor is attached to a component to observe event traffic 

going through its port. Each monitoring probe compares the collected data with a “base” value and reports 

any discrepancies to the local host’s Admin, which periodically sends the updated information to the Deploy-

er. Admin provides the component migration (recall Figure 1) facility by (un)welding components from the 

architecture, and shipping them to other Admin components across the network. Prism-MW provides various 

component serialization mechanisms that we have leveraged in our work. For instance, the Java version of 

the middleware simply relies on JVM’s serialization capability, while the C++ version ships Dynamic Link 

Libraries and requires the component logic to implement an API that can read/write the state of a component 

from/to a byte array [37]. 



 

 

The Deployer component used in our evaluation implements DeSi’s IEffector and IMonitor interfaces. 

Recall from Section V.A that a middleware adapter needs to provide implementations of these two interfaces 

to allow for the collection of data and adaptation of the running system. Through these two interfaces the 

Deployer component continuously engages DeSi and provides the change management capabilities as fol-

lows. In the role of an effector, given a new deployment architecture, it coordinates the migration of compo-

nents among the Admins. For instance, it determines the order in which components should be redeployed to 

minimize the application down-time, avoid functional inconsistency, etc. In the role of a monitor, the Dep-

loyer provides a monitoring gauge facility, which aggregates the monitoring data received from the Admins, 

looks for changes that are considered significant, and makes requests of DeSi to update the system’s model 

and analyze its utility. This reinitiates the entire process depicted in Figure 1 and described above. 

The details of each of the steps performed by Deployer and Admins (e.g., ensuring that a component is 

quiescent [26] before it is removed from the local configuration or that messages are properly routed to the 

redeployed components) are enabled by Prism-MW following the techniques described in [49,50]. We elide 

these details here as they are not necessary to understand the subsequent discussion.  

VI. EVALUATION 

We have used DIF in a number of distributed system scenarios. While a majority of those were devel-

oped internally to observe and refine the framework, one was motivated by an external collaborator’s real-

world needs and another has resulted in the adoption of DIF and its accompanying tools by an industrial or-

ganization. This demonstrates that DIF is effective in some situations, but it does not indicate the extent of its 

effectiveness. To do that, we have also evaluated different facets of DIF in numerous simulated settings. We 

have focused our analysis on the critical aspects of DIF, and refer the interested reader to [34] for a thorough 

assessment of the runtime monitoring and redeployment facilities in Prism-MW. We first assess DIF’s mod-

eling and analysis capabilities along several dimensions. We then describe our collaborative experience in 

applying our technique to two third-party families of distributed applications.  

A. EXPERIMENTAL SETUP 

We have leveraged DIF’s implementation in DeSi for our evaluation. DeSi’s extensible modeling and vi-

sualization capabilities allowed us to configure it arbitrarily. The starting point of our evaluations was the 

instantiation of the framework with the system parameters and QoS dimensions discussed in Section III.B 

and shown in Figure 5. We then varied the parameters and extended the model with additional QoS dimen-

sions. The largest scenarios we have worked with to date have involved on the order of dozens of users, QoS 



 

 

dimensions, and hardware hosts, and hundreds of software com-

ponents and system services. The model from Section III has 

proven highly expressive in capturing the details of distributed 

system scenarios, as will be demonstrated in the remainder of 

this section. 

We instrumented DeSi to transform its internal model to 

GAMS [8], an algebraic optimization language. This allowed us 

to integrate DeSi with state-of-the-art MIP and MINLP solvers 

[10]. DeSi also exports an API for accessing its internal model, which we leveraged to implement the greedy 

and genetic algorithms. Finally, we leveraged DeSi’s hypothetical deployment generation capability [44] to 

evaluate the algorithms on a large number of deployment scenarios. In the generation of deployment scena-

rios, some system parameters are populated with randomly generated data within a specified range, and an 

initial deployment of the system that satisfies all the constraints is provided automatically. 

Figure 10 shows the input into DeSi for the generation of example scenarios and benchmarks. The values 

in Figure 10 represent the allowable ranges for each system parameter. The numbers of hosts, components, 

services, and users vary across the benchmark tests and are specified in the description of each test. Note that 

both DIF and its implementation in DeSi are independent of the unit of data used for each system parameter. 

For example, in the case of transmission delay, neither DIF nor DeSi depend on the unit of time (s, ms, etc.). 

It is up to the system architect to ensure that the right units and appropriate ranges for the data are supplied to 

DeSi. After the deployment scenario is generated, DeSi simulates users’ preferences by generating hypothet-

ical desired utilities (qUtil) for the QoS dimensions of each service. While users may only use and specify 

QoS preferences for a subset of services, we evaluate our algorithms in the most constrained (and challeng-

ing) case, where each user specifies a QoS preference for each service. Unless otherwise specified, the genet-

ic algorithm used in the evaluation was executed with a single population of one hundred individuals, which 

were evolved until a stable solution was found (i.e., as a result of three consecutive evolutionary cycles no 

better new solution was found). Our evaluation focused on five different aspects of our analysis support, as 

detailed next. 

B. IMPROVING CONFLICTING QOS DIMENSIONS 

In this section we provide an evaluation of the algorithms’ ability to simultaneously satisfy multiple us-

ers’ conflicting QoS preferences in a representative scenario. The results reported here are complemented by 
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Figure 10. Input for DeSi’s deployment 

scenario generation. 

 



 

 

the benchmarks of the algorithms in a large number of scenarios given in Section VI.D. Table 1 shows the 

result of running our algorithms on an example application scenario generated for the input of Figure 10 

(with 12 components, 5 hosts, 8 services, and 8 users). The values in the first eight rows correspond to the 

percentage of improvement over the initial deployment of each service. The ninth row shows the average 

improvement over the initial deployment for each QoS dimension of all the services. Finally, the last row 

shows the final value of our objective function (overallUtil). The results demonstrate that, given a highly 

constrained system with conflicting QoS dimensions, the algorithms are capable of significantly improving 

the QoS dimensions of each service. As discussed in Section IV, the MIP algorithm found the optimal dep-

loyment (with the objective value of 64 in this case).
9
 The other algorithms found solutions that are within 

20% of the optimal. We have observed similar trends across many other scenarios as discussed below.  

C. IMPACT OF USERS’ PREFERENCES 

Recall from Section III that the importance of a QoS dimension to a user is determined by the amount of 

utility specified for that dimension. QoS dimensions of services that have higher importance to the users typ-

ically show a greater degree of improvement. For example, in the scenario of Table 1, the users have placed a 

great degree of importance on service 4’s availability and security. This is reflected in the results: for exam-

ple, in MIP’s solution, the availability of service 4 is improved by 215% and security by 302%; the average 

respective improvement of these two dimensions for all services was 86% and 66%. Note that, for this same 

                                                      

9  An objective value (i.e., result of overallUtil) provides a scalar number indicating the quality of a deployment solution in com-

parison to other deployments within the same application scenario.  

 

Table 1. Results of an example scenario with 12C, 5H, 8S, and 8U. A positive number indicates improvement.  

 



 

 

reason, a few QoS dimensions of some services have degraded in quality, as reflected in the negative percen-

tage numbers. These were not as important to the users and had to be degraded in order to improve other, 

more important QoS dimensions. As another illustration, a benchmark of 20 application scenarios generated 

based on the input of Figure 10 showed an average QoS improvement of 89% for the top one half of system 

services in terms of importance as rated by the users, and an average improvement of 34% for the remaining 

services. 

D. PERFORMANCE AND ACCURACY 

Figure 11 shows a comparison of the four algorithms in terms of (a) performance, i.e., execution time, 

and (b) accuracy, i.e., value of the objective function overallUtil. For each data point (shown on the horizon-

tal axis with the number of components, hosts, services, and users) in Figure 11, we created 35 representative 

problems and ran the four algorithms on them. The two graphs correspond to the average values obtained in 

these benchmarks. We explain this data in detail next.  

The high complexity of MIP and MINLP solvers made it infeasible to solve the larger problems. Our 

greedy and genetic algorithms demonstrate much better performance than both MIP and MINLP solvers, and 

are scalable to larger problems. The MINLP solvers were unable to find solutions for approximately 20% of 

larger problems (beyond 20 components and 10 hosts). For a meaningful comparison of the benchmark re-

sults, Figure 11 does not include problems that could not be solved by the MINLP solvers.  

The data table at the bottom of Figure 11a shows the likely range for the algorithms’ performance in 

problems of different sizes. Specifically, the table shows the 95% confidence interval on the mean. The re-

sults indicate that even at confidence limits (i.e., most optimistic and pessimistic variations) different algo-

rithms present significant performance trade-offs. Note that the performance of greedy algorithm is more 

predictable than that of other algorithms. This is reasonable, since the greedy algorithm always executes a 

bounded number of iterations, while the other algorithms, such as genetic, may heavily depend on the charac-

teristics of the problem. For instance, the populations in the genetic algorithm evolve through an intrinsically 

semi-random process, which in the case of a highly constrained problem may result in the generation of 

many invalid individuals, and thus may take a long time for the algorithm to converge.  

In the smaller problems, comparing the accuracy (see Figure 11b) of MINLP, greedy, and genetic algo-

rithms against the optimal solution found by the MIP algorithm shows that all three optimization algorithms 

on average come within at least 20 percent of the optimal solution. We have not provided confidence inter-

vals for each set of deployment problems, since unlike the performance metric, different problems may result 



 

 

in starkly different utility values, and no particular meaningful observation can be made through a statistical 

analysis of the values obtained for problems of certain size. Instead, for each deployment problem in the first 

three sets of experiments (i.e., for a total of 105 deployment problems), we compared the difference between 

the utility of solutions found by greedy and genetic against the optimal found by MIP. The results showed an 

average difference of 10.8% ± 2.3 at 95% confidence for the greedy algorithm, and 9.6% ± 3.1 at 95% confi-

dence for the genetic algorithm. This empirical analysis shows that greedy and genetic algorithms often come 

very close to the optimal solution found by MIP. However, as expected, given that the deployment problem 

is NP-hard, no particular guarantees can be made.  

In the larger problems, since the MIP algorithm could not be executed and the optimal solution is un-

known, we compare the algorithms against the unbiased average. To compute the unbiased average, we im-

plemented an algorithm that generates different deployments by randomly assigning each component to a 

single host from a set of component’s allowable hosts. If the generated deployment satisfies all of the con-

straints, the utility of the produced deployment architecture is calculated. This process repeats a given num-

 

 
Figure 11. Comparison of the four algorithms’ performance and accuracy. 



 

 

1 QoS 2 QoS 3 QoS 4 QoS 5 QoS 6 QoS

MIP 123 187 239 351 578 1109

MINLP 19 44 60 73 134 362

Greedy 2 4 6 7 12 17

Genetic 15 17 19 20 23 25
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Figure 12. Impact of the number of QoS dimensions on performance. 

ber of times (in these experiments, 10,000 times) and the average utility of all valid deployments is calcu-

lated. Unbiased average denotes a representative (or likely) deployment of the system when the engineer 

does not employ sophisticated algorithms for automated analysis. The results show that all of the optimiza-

tion algorithms find solutions that are significantly better than the unbiased average. Moreover, the greedy 

and genetic algorithms are capable of finding solutions that are on par with those found by state-of-the-art 

MINLP solvers.  

E. IMPACT OF QOS DIMENSIONS 

Figure 12 shows the impact of the number of QoS dimensions on each algorithm’s performance. In this 

set of experiments, for each data point, we analyzed 35 different deployment problems of the same size (12 

components, 5 hosts, 5 services, and 5 users) with varying numbers of QoS dimensions. The graph shows the 

average impact of the number of QoS dimensions on each algorithm’s performance, while the bottom data 

table provides the 95% confidence interval on the mean. In addition to the four QoS dimensions from Section 

III.B, we added arbitrary “dummy” QoS dimensions.  Our framework’s modeling support was able to capture 

those additional QoS dimensions easily. 

As expected, the performance of all four algorithms is affected by the addition of new dimensions. How-

ever, the algorithms show different levels of impact. The genetic algorithm shows the least degradation in 

performance. This is corroborated by our theoretical analysis: the complexity of the genetic algorithm in-

creases linearly in the number of QoS dimensions, while, for instance, the complexity of the greedy algo-

rithm increases polynomially. We do not have access to the proprietary algorithms of MIP and MINLP solv-

ers, but it is evident that their performance also depends significantly on the number of QoS dimensions. 

F. IMPACT OF 

HEURISTICS 

In Figure 13 we illu-

strate our evaluation of 

the heuristics we have 

introduced in the devel-

opment of our algorithms 

(recall Section IV). Each 

data point shows the av-

erages obtained on the 



 

 

execution of algorithms on 35 dep-

loyments. The graph in Figure 13a 

shows the effect of variable order-

ing in the MIP algorithm, while the 

data table shows the 95% confi-

dence interval on the reported 

mean. As discussed in Section 

IV.A.2 and shown in the results of 

Figure 13a, specifying priorities for 

the order in which variables are 

branched can improve the perfor-

mance of MIP significantly (in 

some instances, by an order of 

magnitude).  

Figure 13b compares the gree-

dy algorithm against a version that 

does not swap components when 

the parameter constraints on the 

bestHost are violated. As was dis-

cussed in Section IV.A.3, by swap-

ping components we decrease the 

possibility of getting “stuck” in a 

bad local optimum. The results of 

Figure 13b corroborate the importance of this heuristic on the accuracy of the greedy algorithm.  

Since, as already discussed, the utility may change drastically from one problem to another, calculating 

confidence intervals for the 35 deployment problems used in each class (size) of problems is not useful. In-

stead, we compared the accuracy of each algorithm in each deployment problem used in this set of experi-

ments, for a total of 5×35=175 deployment problems. The results showed an average difference of 40.6% ± 

3.1 at 95% confidence for the two variations of the greedy algorithm. 

Finally, Figure 13c compares the three variations of the genetic algorithm. The first two variations were 

discussed in Section IV.A.4, where one uses the Map sequence to group components based on services and 
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MIP with variable ordering 21 316 4806 21803
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Figure 13. Results of the heuristics used by the algorithms. 



 

 

the other does not. As expected, the results show a significant improvement in accuracy when components 

are grouped based on services. Comparing the difference between the two variations across 175 deployment 

problems showed an average improvement of 57.2% ± 4.0 at 95% confidence in the algorithm employing 

mapping. The last variation corresponds to the distributed and parallel execution of the genetic algorithm. In 

this variation we evolved three populations of one hundred individuals in parallel, where the populations 

shared their top ten individuals after every twenty evolutionary iterations. The results show a small im-

provement in accuracy over the simple scenario where only one population of individuals was used.  Com-

paring the difference between the parallel version of algorithm against the one using the mapping heuristic 

across the 175 deployment problems showed that the former achieves an average improvement of 4.8% ± 1.2 

at 95% confidence. 

G. ALGORITHM SELECTION 

Since each of our algorithms has different strengths and weaknesses, two important questions are (1) 

when to use a given algorithm and (2) which algorithm is most appropriate in a given situation.  We can pro-

vide some guidelines depending on the system’s context. Unlike the results presented above, these guidelines 

are qualitative, which is a reflection of the inexact nature of software architectural design. One aspect of a 

distributed system that influences the complexity of improving its deployment architecture is its design para-

digm, or architectural style. The two predominant design paradigms for distributed systems are client-server 

and peer-to-peer.  

Traditional client-server applications are typically composed of bulky and resource-expensive server 

components, which are accessed via comparatively light and more efficient client components. The resource 

requirements of client and server components dictate a particular deployment pattern, where the server com-

ponents are deployed on capacious back-end computers and the client components are deployed on users’ 

workstations. Furthermore, the stylistic rules of client-server applications disallow interdependency among 

the clients, while many of the client components that need to be deployed on the users’ workstations are de-

termined based on users’ requirements and are often fixed throughout the system’s execution (e.g., client 

components that are GUI components typically do not need to be redeployed). Therefore, the software engi-

neer is primarily concerned with the deployment of server components among the back-end hosts. Given that 

usually there are fewer server components than client components, and fewer server computers than user 

workstations, the actual problem space of many client-server applications is much smaller than it may appear 

at first blush. In such systems, one could leverage the locational constraint feature of our framework to limit 



 

 

the problem space significantly. Therefore, it may be feasible to run the MIP algorithm for a large class of 

client-server systems and find the optimal deployment architecture in a reasonable amount of time.  

In contrast, a growing class of peer-to-peer systems are not restricted by stylistic rules or resource re-

quirements that dictate a particular deployment architecture pattern.
10

 Therefore, locational constraints can-

not be leveraged in the above manner, and the problem space remains exponentially large. For even medium-

sized peer-to-peer systems, the MIP algorithm becomes infeasible and the software engineer has to leverage 

one of the three optimization algorithms to arrive at an improved deployment architecture. 

In larger application scenarios, the greedy and genetic approaches have an advantage over MINLP since 

they exhibit better performance and have a higher chance of finding a good solution. When the application 

scenario includes very restrictive constraints, greedy has an advantage over the genetic algorithm. This is 

because the greedy algorithm makes incremental improvements to the solution, while the genetic algorithm 

depends on random mutation of individuals and may result in many invalid individuals in the population. 

Even if the genetic algorithm was to check the locational constraints before the individuals are added to the 

population, many invalid individuals would have to be checked due to the random mutation, which would 

hamper the algorithm’s performance. 

Another class of systems that are significantly impacted by the quality of deployment architecture are 

mobile and resource constrained systems, which are highly dependent on unreliable wireless networks on 

which they are running. For these systems, the genetic algorithm is the best option: it is the only algorithm in 

its current form that allows for parallel execution on multiple decentralized hosts, thus distributing the 

processing burden of running the algorithm. We believe other types of parallel algorithms (e.g., variations of 

greedy) could be developed as well. We consider this to be an interesting avenue of future research.  

The above discussion demonstrates that there is no one-size-fits-all solution for the deployment problem. 

Our intent with the development of our algorithms has not been to be exhaustive, but rather to demonstrate 

the feasibility of developing effective heuristics and algorithms that are generally applicable across different 

application scenarios. We expect that our framework will need to be augmented with additional algorithms. 

In fact, we are in the process of generalizing our auction-based algorithm for improving system availability 

[35] and integrating it into the framework to support (re)deployment in decentralized settings. 

                                                      

10  ”peer-to-peer” here refers to the widely used software architectural style [58], where a peer is a software component, and not a 

hardware host. In this discussion, we are not considering situations where all hardware hosts have the same configuration of 

software components. 



 

 

 
Figure 14. An abridged view of MIDAS’s architecture that is monitored, analyzed, and adapted at runtime: a) por-

tions of MIDAS’s software architecture, including its three sub-architectures; b) DeSi and its Prism-MW Adapter. 

H. PRACTICAL APPLICATIONS OF THE FRAMEWORK 

We have applied the described DIF framework on two application families developed with external col-

laborators. The first application family, Emergency Deployment System (EDS) [31], is from the domain of 

mobile pervasive systems intended to deal with situations such as natural disasters, search-and-rescue efforts, 

and military crises. Our work on EDS initially motivated this research. The second application family is MI-

DAS [37], a security monitoring distributed application composed of a large number of wirelessly connected 

sensors, gateways, hubs, and PDAs. In both cases, the applications involved varying numbers of hosts, com-

ponents, system parameters, and QoS, allowing our collaborators to apply the framework. Below we describe 

our experience with applying our framework in the context of these two application families. We provide an 

overview of their functionalities and architectures to the extent necessary for explaining the role of the DIF 

framework. An interested reader can find more details about these systems in [31,36,37].  

1. MIDAS 

Figure 14 shows a subset of MIDAS’s software architecture. MIDAS is composed of a large number of 

wirelessly connected sensors, gateways, hubs, and PDAs. The sensors are used to monitor the environment 

around them. They communicate their status to one another and to the gateways. The gateway nodes are re-

sponsible for managing and coordinating the sensors. Furthermore, the gateways translate, aggregate, and 

fuse the data received from the sensors, and propagate the appropriate data (e.g., events) to the hubs. Hubs, in 

turn, are used to evaluate and visualize the sensor data for human users, as well as to provide an interface 

through which a user can send control commands to the various sensors and gateways in the system. Hubs 



 

 

may also be configured to propagate the appropriate sensor data to PDAs, which are used by the mobile users 

of the system. As denoted on the left side of the figure, three architectural styles were used in MIDAS: ser-

vice-oriented, publish-subscribe, and peer-to-peer. The peer-to-peer portion of this architecture corresponds 

to the meta-level functionality of system monitoring, analysis, and adaptation via DeSi and Prism-MW.  

MIDAS has several QoS requirements that need to be satisfied in tandem. The two most stringent re-

quirements are latency and energy consumption: MIDAS is required to transmit a high-priority event from a 

sensor to a hub and to receive an acknowledgement back in less than two seconds; given that some of the 

MIDAS platforms (e.g., sensors and some gateways) are battery-powered, minimizing the energy consump-

tion is also of utmost concern. MIDAS also has several deployment constraints that need to be satisfied. 

Some examples of these constraints are as follows: exactly one instance of the SDEngine component, which 

is responsible for the discovery of currently available services in MIDAS, should be deployed on each host; 

every SessionOperator component should be collocated with the corresponding SessionAdministrator com-

ponent; a HubOperator component can only be deployed on a hub; and so on. On top of the locational con-

straints, MIDAS has several resource (system) constraints. Most notably, the sensors, PDAs, and some of the 

gateway platforms are memory-constrained devices that could only host a small number of components.  

Our objective was to find and maintain an effective deployment for different instantiations of MIDAS. 

Prior to this, MIDAS’s deployments were determined manually, at times guided by unclear rationales, and 

their effectiveness was never evaluated quantitatively. This is of particular concern in a mobile embedded 

system, which is affected by unpredictable movement of target hosts and fluctuations in the quality of wire-

less network links. Moreover, since engineers did not know a priori the properties of the target environment 

and the system’s execution context, they would often make deployment decisions that were inappropriate. In 

turn, given that the majority of platforms in MIDAS lack a convenient interface (e.g., monitor, disk drive, or 

keyboard) that could be used for the download and installation of software, redeploying the software was a 

cumbersome task that required bringing MIDAS down each time.  

One set of application scenarios in which our framework was applied was similar to that shown in Figure 

15 but with two additional gateways and a total of 30 software components. We could not execute the MIP 

algorithm due to size of the problem (i.e., 5
30 

combinations). Instead, we executed the genetic, greedy, and 

MINLP algorithms, and selected the best solutions. For these particular scenarios, the genetic algorithm out-

performed greedy and MINLP. It took the genetic algorithm slightly over 40 seconds on a mid-range PC to 

find the solutions every time, in comparison to the average of 4.5 hours required for an engineer to manually 

find a deployment for the same system that satisfied only the system’s constraints (i.e., without even attempt-



 

 

ing to optimize the latency and energy consumption QoS dimensions). It is then not surprising that the ge-

netic algorithm’s solutions were on the average 23% better than the manual deployments in terms of QoS 

provisioned by the system’s services.   

After a design-time analysis of the model, our framework was leveraged to deploy and execute each in-

stance of the system. To this end, the Effector component in the DeSi Adapter Architecture converted the 

deployment model exported by DeSi into a total of 165 commands, which were sent to the Deployer and 

Admin components running on MIDAS’s hosts. Each command corresponds to a runtime adaptation (e.g., 

add component, attach communication port) that is performed by Prism-MW. The total time for automati-

cally deploying the software, which included shipping the component’s logic via DLL files, instantiating and 

initializing the component, and configuring the architecture, was measured to be just under 11 seconds on the 

average. In comparison, it took the MIDAS engineers 6 hours on the average to deploy and configure the 

same software system using common build scripts (e.g., Apache Ant).  

The system was then monitored, and the framework’s ability to react to changes in the environment was 

tested repeatedly during the system’s execution. The framework proved useful in improving the system’s 

QoS in several instances. In particular, our collaborators found the framework effective in mitigating two 

types of situations. When the movement of a PDA caused the available wireless network bandwidth to drop 

off significantly, the framework would selectively redeploy some of the services in the service-oriented layer 

of the gateways (e.g., NodeInfoSvc) to the PDA, which resulted in close to a 30% improvement in the appli-

cation’s response time on the average. Similarly, in situations where unexpected load on the system depleted 

some gateways’ or PDAs’ batteries, the framework redeployed the computationally intensive components 

(e.g., TopologyCalculator) to the back-end hubs, and prolonged the life of the depleted hosts. Our measure-

ments showed that these particular redeployments reduced the energy consumption of the depleted hardware 

hosts by 40% or more, although they also resulted in increased latencies.  While it is conceivable that an en-

gineer may have been able to effect the same redeployments manually, our framework allowed her to rapidly 

explore a number of options, set the appropriate parameter priorities, and obtain accurate quantitative results. 

The analysis of the MIDAS architecture in approximately 100 different scenarios resulted in the rede-

ployment of three software components on average. That is, only a small fraction of the system’s 30 compo-

nents were redeployed at any point in time. This is attributed to the fact that the changes were localized to a 

small portion of the system at any point in time (e.g., heavy load on a host, weak network signal due to the 

movement of a particular PDA). Moreover, since the framework typically redeployed only small portions of 

the system at a given time, the system’s users were often unaware that the changes were occurring.  



 

 

The average size of the MIDAS components redeployed in our experiments was 113KB. Given that on 

average three components were redeployed per scenario, we estimate the network traffic associated with re-

deployment to be 340KB. The DIF framework’s network usage was negligible in MIDAS, as the devices 

were connected using a dedicated IEEE 802.11b wireless network, which provides up to 11Mbps of band-

width. However, the DIF’s network impact would have to be considered more carefully in systems with a 

slower network. 

Finally, an unexpected outcome of our experience was that the engineers found DIF to be helpful not 

only for improving QoS, but also for rapidly testing a fix to a problem during the development. This is a 

highly time-consuming task that is traditionally performed manually in this setting, which our framework’s 

redeployment and monitoring facilities were able to streamline. 

2. Emergency Deployment System 

We now describe our experience with DIF in the context of the Emergency Deployment System (EDS) 

application family, which was foreshadowed in the scenario used in the Introduction.  An instance of EDS 

with single Headquarters, four Team Leads, and 36 Responders is shown in Figure 15a. A computer at 

Headquarters gathers information from the field and displays the current field status: the locations of friend-

ly and, if applicable, enemy troops, vehicles, and obstacles such as fires or mine fields. The headquarters 

computer is networked via secure links to a set of PDAs used by Team Leads in the field. The team lead 

Figure 15. (a) An instance of EDS. (b) A subset of the EDS deployment architecture that is monitored and re-

deployed using our framework. 
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PDAs are connected directly to each other and to a large number of Responder PDAs. Each team lead is ca-

pable of controlling his own part of the field: deploying responders, analyzing the deployment strategy, trans-

ferring responders between team leads, and so on. In case the Headquarters device fails, a designated Team 

Lead assumes the role of Headquarters. Responders can only view the segment of the field in which they are 

located, receive direct orders from the Team Leads, and report their status. 

Figure 15b shows the initial deployment architecture of an instance of EDS that we use to describe our 

experiences in this case study. The corresponding models were first constructed in DeSi, populated with the 

information available prior to system’s execution (e.g., upper-bound estimates on the sizes of components, 

locational constraints, available memory on the hosts), and the initial deployment was then selected through 

the application of DIF at design-time. As depicted in Figure 15b, DIF was then applied during the system’s 

execution by monitoring the system (e.g., frequency of invocations, network reliabilities), reassessing its 

deployment, and migrating the components.  

Figure 16 shows a portion of the models constructed in DeSi to represent the system’s users (left), their 

QoS preferences (middle), and user-level services (right) provisioned by the system’s components for the 

deployment architecture from Figure 15b. In Figure 16, Latency is selected as the QoS dimension of interest. 

 
Figure 16. Some of the EDS users, their QoS preferences, and user-level services as modeled in DeSi. 



 

 

As a result, DeSi is showing the Headquarters’ latency preferences for the Analyze Strategy service in the 

property sheet (bottom). This figure shows one way of specifying preferences in DeSi: a 10% (0.1) im-

provement in latency results in a 20% (0.2) increase in utility for the Headquarters user.  

The EDS scenario reported on here and depicted in Figure 15b consisted of 5 users: Headquarters, Left 

Team Lead, Right Team Lead, Left Responder, and Right Responder. Altogether, the users specified 10 dif-

ferent QoS preferences for a total of 8 services. The services were Analyze Strategy, Move Resources, Get 

Weather, Get Map, Update Resources, Remove Resources, Simulate Drill, and Advise Deployment.  

Table 2 shows the preferences of the five users, captured in this case as linear functions. The table shows 

that Headquarters has specified a utility that increases twice as fast as the changes in latency of the Analyze 

Strategy service.  In EDS, we found simple linear representation of the users’ preference to be sufficiently 

expressive. Other forms of representing the users’ preferences, such as sigmoid functions proposed in [58], 

are also possible. Note that users are not required to express their preferences in terms of functions. For ex-

ample, they may express their preferences in terms of simple scalar values, which are then passed through 

commonly available regression tools to derive equivalent utility equations.  

Unlike the “synthesized” problems presented in Section VI.A, where we evaluated the algorithms under 

the most stringent conditions (i.e., all users specify preferences for all of the QoS dimensions of all services), 

in this scenario the users did not specify preferences for some of the QoS dimensions of certain services.  

The greedy algorithm was the best approach for solving this problem for two reasons (recall Section 

VI.G): (1) the architecture was large enough (i.e., 5
17

 ≈ 760 billion possible deployments) that executing the 

MIP algorithm required approximately 3 hours and MINLP approximately 8 minutes; and (2) there were 

many locational constraints, which tend to hamper the accuracy of the genetic algorithm. The greedy algo-

Table 2. Users’ preferences in EDS, where a, e, l, and s represent the level of availability, energy consump-

tion, latency, and security, respectively. 

 Headquarters Left 

Team Lead 

Right  

Team Lead 

Left 

Responder 

Right 

Responder 

Analyze Strategy qUtil(l) = 2l  qUtil(e) = 2e   

Move Resources qUtil(a) = 4a qUtil(a) = 4a qUtil(l) = (4/3)l   

Get Weather    qUtil(s) = (1/9)s 

qUtil(e) = 4e 

qUtil(e) = 4e 

Get Map qUtil(l) = (4/3)l qUtil(s) = (1/9)s qUtil(l) = (4/3)l qUtil(e) = 4e qUtil(e) = 4e 

Update Resources   qUtil(l) = 2l  qUtil(l) = 2l 

Remove Resources    qUtil(e) = 4e qUtil(e) = 4e 

Simulate Drill      

Advise Deployment  qUtil(l) = 2l qUtil(l) = 2l  qUtil(e) = 2e 



 

 

rithm executed in 7.6 seconds and was 

able to produce a solution that was 

within 4% of the optimal solution 

eventually found by MIP.  

Table 3 shows the results of ex-

ecuting the greedy algorithm on the 

instance of the EDS application de-

picted in Figure 15b. Careful analysis 

of this table allows us to relate the cha-

racteristics of the deployment sug-

gested by the algorithm to the prefe-

rences specified by the users, and 

hence develop some insights into the 

quality of the solution produced by the 

algorithm:  

• On the average, the four QoS dimensions of the eight services improved by 42%. This indicates the ex-

tent to which a good deployment can impact a system’s overall QoS. 

• The QoS dimension of services for which the users have specified a preference improved on the average 

by 78%, while the remaining QoS dimensions improved on the average by 17%. This corroborates that 

the greedy algorithm indeed zeroes in on the QoS dimensions that are important to the users.   

• The average improvement in the QoS dimensions of the Simulate Drill service is 4%, which is signifi-

cantly lower than the average improvement of other services. This is attributed to the fact that no QoS 

preferences were specified for Simulate Drill (recall Table 2). In contrast, the average improvement in 

the delivered quality of the services for which multiple users specified preferences (e.g., Move Re-

sources, Get Map, and Advise Deployment) is significantly higher than for the other services.  

• The average improvements for Energy Consumption and Latency are significantly higher than for the 

other two QoS dimensions. This is attributed to the fact that users specified more preferences for these 

two dimensions. 

• Notice that in a few cases the QoS dimensions have degraded slightly, reflecting the fact that the users 

have not specified any preferences for them.  

Table 3. Results of running the greedy algorithm on the EDS scena-

rio. The highlighted cells correspond to the QoS dimensions for 

which the users have specified preferences in Table 2. 
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Analyze Strategy 63% 12% 5% 79% 39.7% 

Move Resources 78% 68% 2% 63% 52.7% 

Get Weather -3% 11% 81% 59% 37% 

Get Map 29% 59% 82% 73% 60.7% 

Update Resources 9% 92% 19% -6% 28.5% 

Remove Resources -1% 25% 23% 103% 37.5% 

Simulate Drill 17% -8% 1% -6% 4% 

Advise Deployment 61% 134% 22% 92% 77.2% 

Avg. Improvement 

in Each QoS 

31.6% 48.1% 29.3% 57.1%  



 

 

The results obtained in this instance are consistent with those obtained from other examples (e.g., recall 

Table 1) as well as in other instances of EDS. The largest instance of EDS on which we applied the frame-

work consisted of 105 software components and 41 hardware hosts. While in that instance it was not possible 

to execute the MIP and MINLP solvers, the genetic and greedy algorithms were able to find solutions in ap-

proximately 4 and 5 minutes, respectively. A detailed analysis of the solutions found by these algorithms in-

dicated the same level of fine-grained trade-off analysis based on the users’ preferences. The details of apply-

ing the greedy and genetic algorithm on the larger instances of EDS are elided because the problem’s size 

prevents us from being able to depict the relevant data (e.g., user preferences for different system services) in 

a meaningful way. 

VII. RELATED WORK 

Numerous researchers have looked at the problem of improving a system’s QoS through resource sche-

duling [24] and resource allocation [28,46]. However, only a few have considered the users’ preferences in 

improving QoS. The most notable of these approaches are Q-RAM [28] and the work by Poladian et al. [53]. 

Q-RAM is a resource reservation and admission control system that maximizes the utility of a multimedia 

server based on the preferences of simultaneously connected clients. Poladian et al. have extended Q-RAM 

by considering the problem of selecting applications among alternatives such that the cost of change to the 

user is minimized. Neither of these works considers the impact of the software system’s deployment archi-

tecture on the provided QoS. Furthermore, these approaches are only applicable to resource-aware applica-

tions, i.e., applications that can be directly customized based on the available resources.  

Several previous approaches [2,3,9,14] have used techniques grounded in stochastic process algebra to 

assess a software system’s QoS properties at runtime. These techniques leverage annotated architectural 

models to derive the corresponding process algebra (e.g., Markov Model), which are then assessed to obtain 

estimates of the system’s performance (e.g., [3,4]) and reliability (e.g., [9,14]). These techniques are com-

plementary to our work, as they could be used to estimate the QoS provisioned by a given deployment archi-

tecture. In other words, such techniques could be used to instantiate the qValue functions in Figure 5.   

Carzaniga et al. [7] provide an extensive comparison of existing software deployment approaches. They 

identify several issues lacking in the existing deployment tools, including integrated support for the entire 

deployment life cycle. An exception is Software Dock [6], which provides software agents that travel among 

hosts to perform software deployment tasks. Unlike our approach, however, Software Dock does not focus 



 

 

on extracting system parameters, visualizing, or evaluating a system’s deployment architecture, but rather on 

the practical concerns of effecting a deployment.  

The problem of improving a system’s deployment has been studied by several researchers. I5 [1], pro-

poses the use of the integer programming model for generating an optimal deployment of a software applica-

tion over a given network, such that the overall remote communication is minimized. Solving their model is 

exponentially complex, rendering I5 applicable only to systems with very small numbers of software compo-

nents and hosts. Coign [20] provides a framework for distributed partitioning of a COM application across 

only a pair of hosts on a network. Coign monitors inter-component communication and then selects a distri-

bution of the application that will minimize communication time, using the lift-to-front minimum-cut graph 

cutting algorithm. J-Orchestra [63] transforms a centralized Java program executing on a single JVM into a 

distributed one running across multiple JVMs. It provides a semi-automatic transformation supported by a 

GUI, which is used by the user to select the system’s classes and assign them to network locations. Kichkay-

lo et al. [25] provide a model, called component placement problem (CPP), for describing a distributed sys-

tem in terms of network and application properties and constraints, and a planning algorithm for solving the 

CPP model. The focus of this work is to capture the constraints that restrict the solution space of valid dep-

loyment architectures and search for any valid deployment that satisfies those constraints, without consider-

ing the deployment’s quality. Manolios et al. [39] propose a language for expressing the requirements of 

component assembly, including a set of properties and constraints that need to be satisfied. Requirements are 

compiled into a Boolean Satisfiability Problem (SAT) and solved using commonly available solvers. This 

approach checks only whether a given component assembly is legal, and does not take into consideration 

users, user preferences, or optimization of multiple objectives. Bennani and Menasce [5,41] have developed 

a technique for finding the optimal allocation of application environments to servers in data centers. Similar 

to our approach, their objective is to optimize a utility function, which is used to perform trade-off analysis 

on the different facets of performance. Unlike our approach, however, their utility functions are not driven by 

the users’ preferences. Moreover, the models and algorithms presented are limited to predefined system and 

QoS properties that are deemed important in the data center domain. Two recent approaches try to optimize 

specific system characteristics, but are restricted to dataflow architectures. One of them, Dryad [22], ad-

dresses the problem of making it easier for developers to write efficient parallel and distributed applications.  

A Dryad application combines computational “vertices” with communication “channels” to form a dataflow 

graph. Dryad runs the application by executing the vertices of this graph on a set of available computers, 

while optimizing the system’s efficiency. The other dataflow-based system, Wishbone [47], provides a solu-



 

 

tion for optimal partitioning of sensor network application code across sensors and backend servers. Wish-

bone’s objective is to achieve optimal trade-off between the CPU load and network utilization. Finally, in our 

prior work [35,42], we devised a set of algorithms for improving a software system’s availability by finding 

an improved deployment. The novelty of our approach was a set of algorithms that scaled well to larger sys-

tems. However, our approach was limited to a predetermined set of system parameters and a predetermined 

definition of availability.  

None of the above approaches (including our own previous work) considers the system users and their 

QoS preferences, or attempts to improve more than one QoS dimension of interest. The only exception is our 

earlier work [45], in which we highlighted the need for user-driven multi-dimensional optimization of soft-

ware deployment and briefly outlined a subset of DIF. Furthermore, no previous work has considered users’ 

QoS preferences at the granularity of application-level services. Instead, the entire distributed software sys-

tem is treated as one service with one user, and a particular QoS dimension serves as the only QoS objective. 

Finally, DIF is unique in that it provides a mathematical framework for quantifying the utility of an arbitrary 

system’s deployment, taking into account a set of system parameters of interest. The framework thereby pro-

vides an objective scale for assessing and comparing different deployments of a given system. 

The implementation and evaluation of the existing redeployment techniques mentioned above is done in 

an ad-hoc way, making it hard to adopt and reuse their results. One of the motivations for developing our 

framework and its accompanying tool support has been to address this shortcoming. Related to our work is 

the research on architecture-based adaptation frameworks, examples of which are the frameworks by Garlan 

et al. [15] and Oreizy et al. [49]. Similar to them, in [38], we present the application of a subset of our 

framework’s components in enabling architecture-based adaptation of a mobile robotic system; we do not 

summarize those results in this paper's evaluation because the primary focus there is on addressing chal-

lenges posed by mobility rather than deployment. As opposed to general purpose architecture-based adapta-

tion frameworks, we are only considering a specific kind of adaptation (i.e., redeployment of components). 

Therefore, we are able to create a more detailed and practical framework that guides the developers in the 

design of redeployment solutions. Related also is previous research on adaptation assurance and verification 

techniques [61,66], which we view as complementary to our approach for ensuring safe and sound reconfigu-

ration of software components.  

Optimizing allocation of software (logical) elements to hardware (physical) resources is an area of re-

search that has been studied in a variety of contexts before, such as distributed process scheduling [17], task 

scheduling in grid computing [59], and process allocation to clustered computers [19]. These works have 



 

 

guided the development of our framework. However, unlike any of these works, our framework is targeting 

the allocation of software components, which are not only conceptually very different from OS-level 

processes or grid-level tasks, but are also realized and treated differently in practice. Moreover, almost none 

of these approaches are driven by complex and conflicting user QoS requirements, but rather focus on im-

proving a particular system-level metric (e.g., maximizing CPU utilization/throughput) in isolation.  

VIII. CONCLUSION 

As the distribution and mobility of computing environments grow, so does the impact of a system’s dep-

loyment architecture on its QoS properties. While several previous works have studied the problem of assess-

ing and improving the quality of deployment in a particular scenario or class of scenarios, none have ad-

dressed it in its most general form, which may include multiple, possibly conflicting QoS dimensions, many 

users with possibly conflicting QoS preferences, many services, and so forth. Furthermore, no previous work 

has developed a comprehensive solution to the problem of effectively managing the quality of a system’s 

deployment. In this paper, we have presented an extensible framework, called Deployment Improvement 

Framework (DIF), for improving a software-intensive system’s QoS by finding the best deployment of the 

system’s software components onto its hardware hosts. DIF allows rapid, quantitative exploration of a sys-

tem’s, typically very large, deployment space. 

From a theoretical perspective, the contribution of our approach is a QoS trade-off model and accompa-

nying algorithms, which, given the users’ preferences for the desired levels of QoS, find the most suitable 

deployment architecture. We have demonstrated the tailorability of our solution and its ability to handle 

trade-offs among QoS dimensions by instantiating it with four representative, conflicting dimensions. We 

also discussed four approaches to solving the resulting multi-dimensional optimization problem, and pre-

sented several novel heuristics for improving the performance of each approach. The design of the frame-

work model and algorithms allows for arbitrary specification of new QoS dimensions and their improvement.  

From a practical perspective, the contribution of our work is an integrated solution, in which the data 

about system parameters are either acquired at design-time (via an ADL or from a system architect) or at run-

time (via an execution platform such as Prism-MW), and an improved deployment architecture is calculated 

(via DeSi), and effected (via an interplay between the execution platform and DeSi). Our framework pro-

vides the foundation for comparing these and other solutions and for conducting future research into new 

distribution scenarios and new algorithms.  



 

 

While our results have been very positive, a number of pertinent questions remain unexplored. We intend 

to extend the model to allow for the expression of negative utility due to the inconvenience of changing a 

system’s deployment at runtime.  This will make the approach more practical for use in highly unstable sys-

tems, where continuous fluctuations may force constant redeployments. We are also developing the capabili-

ty to automatically select the best algorithm(s) based on system characteristics and execution profile. Since 

redeployment is only one approach for improving QoS of distributed software systems, we plan to extend the 

framework to other types of adaptation choices that may impact a system’s QoS, and perform the analysis 

not only among the alternative deployments, but across a larger suite of adaptation choices [49,50,62]. 
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