

An Extensible Framework for Improving a Distributed

Software System's Deployment Architecture

Sam Malek
1
, Nenad Medvidovic

2
, and Marija Mikic-Rakic

3

Abstract –A distributed system’s allocation of software components to hardware nodes (i.e., deployment architecture) can have a

significant impact on its quality of service (QoS). For a given system, there may be many deployment architectures that provide

the same functionality, but with different levels of QoS. The parameters that influence the quality of a system's deployment archi-

tecture are often not known before the system’s initial deployment and may change at runtime. This means that redeployment of

the software system may be necessary to improve the system’s QoS properties. This paper presents and evaluates a framework

aimed at finding the most appropriate deployment architecture for a distributed software system with respect to multiple, possibly

conflicting QoS dimensions. The framework supports formal modeling of the problem and provides a set of tailorable algorithms

for improving a system’s deployment. We have realized the framework on top of a visual deployment architecture modeling and

analysis environment. The framework has been evaluated for precision and execution-time complexity on a large number of si-

mulated distributed system scenarios, as well as in the context of two third-party families of distributed applications.

Index Terms—Software Architecture, Software Deployment, Quality of Service, Self-Adaptive Software

I. INTRODUCTION

onsider the following scenario, which addresses distributed deployment of personnel in cases of natural

disasters, search-and-rescue efforts, and military crises. A computer at “Headquarters” gathers informa-

tion from the field and displays the current status and locations of the personnel, vehicles, and obstacles. The

headquarters computer is networked to a set of PDAs used by “Team Leads” in the field. The team lead

PDAs are also connected to each other and to a large number of “Responder” PDAs. These devices commu-

nicate with one another, and potentially with a large number of wireless sensors deployed in the field, and

help to coordinate the actions of their distributed users. The distributed software system running on these

devices provides a number of services to the users: exchanging information, viewing the current field map,

managing the resources, etc.

An application such as the one just described is frequently challenged by the fluctuations in the system’s

parameters: network disconnections, bandwidth variations, unreliability of hosts, etc. Furthermore, the dif-

ferent users’ usage of the functionality (i.e., services) provided by the system and the users’ quality of service

(QoS) preferences for those services will differ, and may change over time. For example, in the case of a

natural disaster (e.g., wildfire) scenario, “Team Lead” users may require a secure and reliable messaging ser-

vice with the “Headquarters” when exchanging search-and-rescue plans. On the other hand, “Responder”

users are likely to be more interested in having a low latency messaging service when sending emergency

assistance requests.

1 Department of Computer Science, George Mason University, Fairfax, VA, 22030, USA. E-mail: smalek@gmu.edu

2 Computer Science Department, University of Southern California, Los Angeles, CA, 90089, USA. E-mail: neno@usc.edu

3 Google Inc., 604 Arizona Ave., Santa Monica, CA, 90401, USA. E-mail: marija@google.com

C

For any such large, distributed system, many deployment architectures (i.e., mappings of software com-

ponents onto hardware hosts) will be typically possible. While all of those deployment architectures may

provide the same functionality, some will be more effective in delivering the desired level of service quality

to the user. For example, a service’s latency can be improved if the system is deployed such that the most

frequent and voluminous interactions among the components involved in delivering the service occur either

locally or over reliable and capacious network links. The task of quantifying the quality of a system’s dep-

loyment and determining the most effective deployment architecture becomes quickly intractable for a hu-

man engineer if multiple QoS dimensions (e.g., latency, security, availability, power usage) must be consi-

dered simultaneously, while taking into account any additional constraints (e.g., component X may not be

deployed on host Y). Further exacerbating the problem is the fact that many of the parameters that influence

the optimal distribution of a system may not be known before the system’s initial deployment and are likely

to change during the system’s lifetime.

In this paper, we consider the problem of quantifying the quality of a system’s deployment and finding a

deployment architecture such that the QoS preferences stated by a collection of distributed end-users are met;

in other words, the overall utility of the system to all its users is maximized. Our objective is for the solution

to be applicable in a wide range of application scenarios (i.e., differing numbers of users, hardware hosts,

software components, application services, QoS dimensions, etc.). Providing a widely applicable solution to

this problem is difficult for several reasons:

• In the general case, the number of possible deployments for a given distributed software system is

exponential in the number of the system’s components. The amount of computation required for ex-

ploring a system’s deployment space may thus be prohibitive, even for moderately large systems.

• A very large number of parameters influence a software system’s QoS dimensions. In turn, many

services and their corresponding QoS dimensions influence the users’ satisfaction. Developing ge-

neric solutions that can then be customized for any application scenario is non-trivial.

• Different QoS dimensions may be conflicting, and users with different priorities may have conflict-

ing QoS preferences. Fine-grain trade-off analysis among the different dimensions and/or prefe-

rences is very challenging without relying on simplifying assumptions (e.g., particular definition of a

QoS objective or predetermined, fixed constraints).

• Different application scenarios are likely to require different algorithmic approaches. For example, a

system’s size, the users’ usage of the system, stability of system parameters, and system distribution

characteristics may influence the choice of algorithm.

• Traditional software engineering tools are not readily applicable to this problem. Instead, engineers

must adapt tools intended for different purposes (e.g., constraint satisfaction or multidimensional op-

timization) to the deployment improvement problem, which limits the potential for reuse and cross-

evaluation of the solutions.

To deal with the above challenges, we have developed a tailorable approach for quantifying, continuous-

ly monitoring, and improving a software-intensive system’s deployment architecture. The overall approach,

depicted in Figure 1, is a specialization of our architecture-based system adaptation framework [49, 50] to

the redeployment problem, presented in light of Kramer and Magee’s three-layer reference model of self-

management [27]. This paper describes in detail the goal management layer of our approach, called deploy-

ment improvement framework (DIF), which consists of two activities:

(1) Modeling – An extensible architectural model supports inclusion of arbitrary system parameters (soft-

ware and hardware), definition of arbitrary QoS dimensions using those parameters, and specification of

QoS preferences by system users. Using the model, utility of any deployment of the system can be quan-

tified.

(2) Analysis – Several tailored algorithms allow rapid exploration of the space of possible deployment archi-

tectures, and analysis of both the effects of changes in system parameters and of the system downtime

Figure 1. A three-layer view of our approach for improving a software system’s QoS through redeployment

of its components. This paper describes the deployment improvement framework (DIF), which corresponds to

the goal management layer in our approach.

incurred during runtime adaptation on a system’s QoS. No other approach known to us provides such ca-

pabilities in tandem.

As depicted in Figure 1, DIF relies on the presence of an underlying implementation platform and run-

time support (i.e., change management and component control layers) for improving the system’s QoS

through redeployment. The platform needs to provide four types of capabilities: Component Migration—the

ability to move a software component from one host to another [6]; (Re)Deployment Coordination—the abil-

ity to manage the component's state and the order in which changes should be applied, such that the system is

not placed in an inconsistent state; Runtime Probing—the ability to instrument a running system with probes

for collecting usage data and samples of system's resources; Monitoring Gauge—the ability to continuously

assess changes in the collected data, fuse information from various sources, and report significant variations

to the goal management layer (i.e., DIF) [15]. To thoroughly evaluate DIF in actual running software sys-

tems, we have integrated it with an implementation platform (i.e., middleware) developed in our previous

work [34][37] that provides sufficient support for the aforementioned capabilities.

For any given application, the system architect instantiates (configures) DIF by defining the appropriate

system parameters and the QoS of interest. DIF is then populated with the actual hardware and software pa-

rameters from a distributed application and by the users’ preferences for the QoS dimensions of each applica-

tion service. Using these values, the utility (i.e., the cumulative satisfaction with the system by all its users)

of a given deployment is calculated. Finally, one of the algorithms supplied by DIF is used to find a deploy-

ment architecture that improves the overall utility.

The key contributions of this paper are (1) the theoretical underpinnings for modeling, quantifying, as-

sessing, and improving a software system’s deployment; (2) support for quantitative exploration of a sys-

tem’s, typically very large, deployment space; and (3) the accompanying tool suite that enables software en-

gineers to use our framework.

 The model and algorithms underlying this work are empirically analyzed for execution-time complexity

and accuracy on a large number of distributed system scenarios. In particular, the algorithms are compared

with the current state-of-the-art approaches in this area. DIF has also been in use by a third-party organiza-

tion, in the context of their family of sensor network applications [37]. We report on this, as well as our own

experience with applying DIF to another software system developed in collaboration with an external organi-

zation.

The remainder of paper is organized as follows. Section II provides some background on the challenges

of assessing a system’s deployment architecture, and our approach to overcoming them. We then describe in

detail the two components of our framework: Section III details our system model, and Section IV describes

the QoS-driven architectural analysis, including the redeployment algorithms we have devised. In Section V

we provide an overview of the framework’s implementation, and its integration with an existing middleware

platform, which has been used extensively for evaluating the framework in real-world applications. Our ex-

perience and evaluation results are provided in Section VI. Finally, Section VII discusses the related work,

and the paper concludes with a recap of contributions and an outline of future work.

II. ASSESSING DEPLOYMENT ARCHITECTURES

For illustration, let us consider the very simple software system conceptually depicted in Figure 2, con-

sisting of one application-level service (ScheduleResources) provided to two users by two software compo-

nents (ModifyResourceMap and ResourceMonitor) that need to be deployed on two network hosts (a laptop

and a PDA). In the absence of any other constraints, the system has four possible deployments (i.e., number

of hosts
number of components

 = 2
2
) that provide the same functionality. Two of the deployments correspond to the

situations where the two components are collocated on the same host, while the other two deployments cor-

respond to the situations where each component is deployed on a separate host.

Let us assume that it is possible to measure (or estimate, provided that appropriate models and analytical

tools are available to the engineers) the four deployments’ QoS properties, as shown in Figure 3a.
4
 It is clear

that deployment Dep1 has the shortest latency, while deployment Dep3 has the longest battery life, defined

as the inverse of the system’s energy consumption rate. Dep1 is the optimal deployment with respect to la-

tency, while Dep3 is the optimal deployment with respect to battery life. If the objective is to minimize the

latency and at the same time maximize the battery life of the system, none of the four deployments can be

argued to be optimal. This phenomenon is known as Pareto Optimal in multidimensional optimization [65].

For any software system composed of many users and services, the users will likely have varying QoS

preferences for the system’s services. To deal with the QoS trade-offs, we can leverage the users’ QoS prefe-

rences (i.e., the utility that a given level of quality for a given service would have for a user). As an example,

Figure 3b shows the Team Lead’s utility for the rates of change in the latency and battery life of ScheduleRe-

sources. While the figure shows linear functions, users may express their QoS preferences in many ways,

4 This assumption is essential in order to be able to consider any objective strategy for assessing and improving a software sys-

tem’s deployment. We assume that, even if it is not feasible to quantify a QoS property as a whole, it is possible to quantify dif-

ferent aspects of it. For example, while it may not be possible to represent a system’s security as a single numerical quality, it is

possible to quantify different aspects of security for the system (e.g., security of communication, encryption, and authentication).

including by using much less precise

phrasing. Any deployment improvement

model must be able to capture effectively

such preferences. We will discuss this

issue further in Sections III and VI.

In this particular example, Figure 3c

shows the results of assessing the four

deployments based on Team Lead’s utili-

ty functions. As shown in Figure 3c, as-

suming Dep2 is the current deployment

of the system, the quality of the other

three deployments can be calculated as

follows: (1) from Figure 3a find the

change in each QoS dimension from the

current deployment to the new deploy-

ment, (2) look up the utility for the new

level of QoS in Figure 3b, and (3) aggre-

gate the utilities, as shown in Figure 3c. In this (hypothetical) case, Dep3 provides the highest total utility to

Team Lead and can be considered to be the optimal deployment for her. In a multi-user system, the other us-

ers also have to be considered in a similar manner, and all of the users’ utilities must be aggregated to deter-

mine a globally optimal deployment.
5

However, even this solution quickly runs into problems. Consider the following, slightly more complex

variation of the scenario depicted in Figure 2, where we introduce a single additional element to each layer of

the problem: we end up with three users who are interested in three QoS dimensions of two services provided

by three software components deployed on three hosts. In this case, the engineer will have to reason about 18

utility functions (3 users * 3 QoS dimensions * 2 services) across 27 different deployments (3 hosts and 3

components, or 3
3
 deployments). The problem quickly becomes intractable for a human engineer. This has

been the primary motivation for this research.

5 Note that, according to our definition of utility, a globally optimal deployment may result in suboptimal QoS levels for specific

services and specific users.

Figure 2. A hypothetical application scenario.

Responder

Battery Life

ResourceMonitor

ModifyResourceMap

Latency

Schedule Resources

Team Lead

Q
o
S
 P
re
fe
re
n
c
e

P
er
 S
e
rv
ic
e

In
te
rn
a
l
S
o
ft
w
a
re

A
rc
h
it
e
ct
u
re

D
e
p
lo
y
e
d
 o
n

H
a
rd
w
a
re

III. DEPLOYMENT MODEL

Modeling has been a key thrust of software

architecture research and practice, resulting in a

large number of specialized architecture de-

scription languages (ADLs) [29,32] as well as

the broadly scoped UML [48]. These languages

enable the specification of a software system’s

architectural structure, behavior, and interaction

characteristics. Languages such as AADL [1]

and UML [48] even allow capturing the hard-

ware hosts on which the software components

are deployed. However, none of the existing

languages provide the modeling constructs ne-

cessary for properly examining a system’s dep-

loyment architecture in terms of its, possibly

arbitrarily varying, QoS requirements. This mo-

tivated us to develop our deployment improve-

ment framework’s underlying model, which

provides the foundation for precisely quantify-

ing the quality of any system’s deployment and

for formally specifying the deployment im-

provement problem. This model is intended to

be used in conjunction with traditional software

architecture modeling approaches; as a proof-

of-concept we have demonstrated the model’s integration with two third-party ADLs, xADL and FSP

[12,13].

A primary objective in designing DIF was to make it practical, i.e., to enable it to capture realistic distri-

buted system scenarios and avoid making overly restrictive assumptions. To that extent, we want to avoid

prescribing a predefined number of system parameters or particular definitions of QoS dimensions; this ob-

jective forms one of the key contributions of our work and sets it apart from the previous research in this area

[1,5,20,22,25,35,41,42,47]. DIF provides: (1) a minimum skeleton structure for formally formulating the ba-

-75% -50% -25% 0% 25% 50% 75% 100%

Latency 3 2 1 0 -1 -2 -3 -4

Battery Life -6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2

4

6

8

10

U
ti
li
ty

QoS Change Rate

1, 1

2, 4

3, 6

4, 3

0

1

2

3

4

5

6

7

0 1 2 3 4 5

B
a
tt
e
ry
 L
if
e
 (
h
o
u
rs
)

Latency (ms)

Dep 1

Dep 2

Dep 3

Dep 4

Dep 1 Dep 2 Dep 3 Dep 4

Latency Utility 2 0 -2 -4

Battery Life Utility -6 0 4 -2

Total Utility -4 0 2 -6

-8
-6
-4
-2
0
2
4
6

U
ti
li
ty

Deployment Architecture

Figure 3. (a) Latency and battery life measurements for the

four candidate deployments of the system in Figure 2. (b)

Team Lead’s utility for latency and battery life of the Sche-

duleResources service. (c) Utility calculation for each dep-

loyment architecture.

sic concepts that are common across different instances of our problem, and (2) a technique for representing

the variations among the different instances of this problem by refining and extending this skeleton.

A. BASIC MODELING CONSTRUCTS

We model a software system’s deployment architecture as follows:

1. A set H of hardware nodes (hosts), a set HP of associated parameters (e.g., available memory or CPU on

a host), and a function �������: �� 	
 that maps each parameter to a value.
6

2. A set C of software component instances, a set CP of associated parameters (e.g., required memory for

execution or JVM version), and a function ������� :
� 	
 that maps each parameter to a value.

3. A set N of physical network links, a set NP of associated parameters (e.g., available bandwidth, reliabili-

ty of links), and a function �������: �� 	
 that maps each parameter to a value.

4. A set I of logical interaction links between software components in the distributed system, a set IP of

associated parameters (e.g., frequency of component interactions, average event size), and a function

�������: �� 	
 that maps each parameter to a value.

5. A set S of services, and a function �������,���������: ��� �
� � �� � ��� 	
 that provides values

for service-specific system parameters. An example such parameter is the number of component interac-

tions resulting from an invocation of an application service (e.g., “find best route”).

6. A set DepSpace of all possible deployments (i.e., mappings of software components C to hardware hosts

H), where |��������| � |�||�|.
7. A set Q of QoS dimensions, and associated functions !�"#�$: � % �������� 	
 that quantify a QoS

dimension for a given service in the current deployment mapping. For instance, the information pre-

sented in Figure 3a can be modeled using two qValue functions (for latency and battery life).

8. A set U of users, and a function &'�"(,$,�:
)*��&'�", *�+&'�", that denotes a user’s preferences

(in terms of the achieved utility) for a given level of QoS. A user may denote a utility between the range

of MinUtil and MaxUtil. Relative importance of different users is determined by MaxUtil. In general, a

larger value of MaxUtil indicates higher importance (or relative influence) of the user, allowing us to

specify a particular user priority scheme, including for example completely subordinating the priorities

of some users to those of others. As an example, the information presented in Figure 3b can be modeled

using two qUtil functions, one for the Team Lead’s latency preferences and another for her battery life

6 For simplicity, we show the functions as mappings to real numbers. This need not be the case for certain parameters relevant in

a given context. Our model will support such additional mappings in the same manner.

preferences. As detailed later in the paper, DIF does not place a constraint on the format of utility func-

tions. In fact, for exposition purposes the functions shown in Figure 3b are expressed in terms of rate of

change in QoS, but utility functions could be specified very similarly using concrete levels of QoS.

9. A set PC of parameter constraints, and a function ����'��-��./�: �������� 	 01 0 4 that given a con-

straint and a deployment architecture, returns 1 if the constraint is satisfied and 0 otherwise. For exam-

ple, if the constraint is “bandwidth satisfaction”, the corresponding function may ensure that the total vo-

lume of data exchanged across any network link does not exceed that link’s bandwidth in a given dep-

loyment architecture. The set PC and function pcSatisfied could also be used to specify QoS constraints.

10. Using the following two functions, the deployment of components can be restricted:

"5�:
 % � 	 6 1 �- � 7
 ��� 8� .��"59�. 5�'5 � 7 �0 �- � 7
 ����5' 8� .��"59�. 5�'5 � 7 �4
�5""5�:
 %
 	 : 1 �- �1 7
 ��� '5 8� 5� '�� ���� �5�' �� �2 7
<1 �- �1 7
 ����5' 8� 5� '�� ���� �5�' �� �2 7
0 �- '���� ��� �5 ���'���'�5�� 4

For example, loc can be used to restrict the deployment of a computationally expensive component to

hosts with sufficient CPU power, while colloc may prohibit two components providing the primary and

backup of the same service to be collocated on the same host.

Note that some elements of the framework model are intentionally left “loosely” defined (e.g., the sets of

system parameters or QoS dimensions). These elements correspond to the many and varying factors that are

found in different distributed applications. As we will show below, when the framework is instantiated, the

system architect specifies these loosely defined elements.

For brevity we use the following notations in the remainder of the paper: Hc is a host on which compo-

nent c is deployed; Ic1,c2 is an interaction between components c1 and c2; Nh1,h2 is a network link between

hosts h1 and h2; finally, Cs and Hs represent respectively a set of components and hosts that participate in

provisioning the service s.

Figure 4 shows the formal definition of the utility of a single system’s deployment, and the deployment

optimization problem based on our framework model. The function overallUtil represents the overall satis-

faction of the users with the QoS delivered by the system. The goal is to find a deployment architecture that

maximizes overallUtil and meets the constraints on location, collocation, and system parameters (recall items

9 and 10 above). Note that the scope of our work is limited to finding and effecting an improved software

deployment. Other types of adaptation decisions that may also impact a system’s QoS (e.g., changing the

amount of system resources at the software component’s disposal, or replacing one version of a component

with another) are complementary to our work, but we do not consider them here.

B. MODEL INSTANTIATION

As mentioned earlier, some aspects of our framework’s model have been intentionally left loosely de-

fined. To actually use the framework, one needs to precisely specify an application scenario. Framework in-

stantiation is the process of configuring the framework model for an application scenario. We illustrate the

instantiation using four QoS dimensions: availability, latency, communication security, and energy consump-

tion. Note that any QoS dimension that can be quantitatively estimated can be used in our framework..

The first step in instantiating the framework is to define the relevant system parameters. Item 1 of Figure

5 shows a list of parameters that we have identified to be of interest for estimating the four selected QoS di-

mensions in the mobile emergency response setting. If additional parameters are found to be relevant, they

can be similarly instantiated in our framework. Once the parameters of interest are specified, the parameter

realization functions (e.g., hParam, cParam) need to be defined. These functions can be defined in many

ways: by monitoring the system, by relying on system engineers’ knowledge, by extracting them from the

architectural description, etc. For example, hParamh1 (hostMem) designates the available memory on host h1.

A software system’s availability is commonly defined as the degree to which the system is operational

when required for use [21,52]. In the context of mobile software systems, where a common source of failure

is the network, we estimate availability in terms of successfully completed inter-component interactions in

the system. Item 2 of Figure 5 estimates the availability for a single service s in a given deployment d.

A software service’s latency is commonly defined as the time elapsed between making a request for ser-

vice and receiving the response [21,51]. The most common causes of communication delay in a distributed

mobile system are the network transmission delay, unreliability of network links, and low bandwidth. Item 3

of Figure 5 estimates latency for a service s.

Given the current deployment of the system DepSpaced ∈ , find an improved deployment 'd such

that the users’ overall utility defined as the function

 qqUtilddloverallUti

Uu Ss Qq

qsu∑ ∑ ∑
∈ ∈ ∈

∆=′)(),(,, , where
),(

),(),(

dsqValue

dsqValuedsqValue
q

q

qq −′
=∆

is maximized, and the following conditions are satisfied:

1. 1),(=∈∀ cHclocCc

2. CcCc ∈∀∈∀ 21)()1)2,1((21 cc HHcccollocif =⇒=

)()1)2,1((1 lcc HHcccollocif ≠⇒−=

3. 1)(=∈∀ ddpcSatisfiePCconstr constr

In the most general case, the number of possible deployment architectures is
|C|

|H||DepSpace| = .

However, some of these deployments may not satisfy one or more of the above three conditions.
Figure 4. Problem definition.

A major factor in the security of distributed mobile systems is the level of encryption supported in re-

mote communication (e.g., 128-bit vs. 40-bit encryption) [60]. This is reflected in item 4 of Figure 5.

Finally, energy consumption (or battery usage) of each service is determined by the energy required for

the transmission of data among hosts plus the energy required for the execution of application logic in each

software component participating in providing the service. Item 5 of Figure 5 estimates energy consumption

of service s. For ease of exposition, we have provided a simplified definition of energy consumption; a more

sophisticated model can be found in our prior work [55,56].

To illustrate parameter constraints we use the memory available on each host. The constraint in item 6 of

Figure 5 specifies that the cumulative size of the components deployed on a host may not be greater than the

total available memory on that host. Other constraints are included in an analogous manner.

As the reader may recall from the previous section, we also need to populate the set S with the system

services and the set U with the users of the system. Finally, each user’s preferences are determined by defin-

ing the function qUtil. The users define the values this function takes based on their preferences, with the

help of our tool support described in Section V.

1. System parameters

HPhostMem∈ available memory on a host

 HPshostEnrCon ∈ average energy consumption per opcode

CPcompMem∈ required memory for a component

CPopcodeSize∈ average amount of computation per event

IPfreq∈ frequency of interaction between two components

IPevtSize∈ average event size exchanged between two components

NPbw∈ available bandwidth on a network link

NPrel∈ reliability of a network link

NPtd ∈ transmission delay of a network link

NPenc∈ encryption capability of a network link

NPscommEnrCon ∈ energy consumption of transmitting data

Qenergyurity,secy,ty, latencavailabili ∈ four QoS dimensions

PCmemConst∈ constraint on host’s available memory parameter

2. Availability: ()∑ ∑
∈ ∈

×=
s s

cHcHcc
Cc Cc

NIstyavailabili (rel)nParam(freq)sParamd) (s,qValue

1 2

,
2,12,1

3. Latency:

∑ ∑
∈ ∈















×

×
+×=

s s cHcHcHcH

cc

cHcHcc
Cc Cc NN

ccIsIs

NIslatency
(rel)nParam(bw)nParam

(evtSize)sParams(freq)sParam
(td)nParam(freq)sParamd)(sqValue

1 2

2,1,,

,

2,12,1

2,1

2,12,1
,

4. Communication security: ()∑ ∑
∈ ∈

××=
s s

cHcHcccc
Cc Cc

NIsIsurity (enc)nParam(evtSize)sParam(freq)sParam(s,d)qValue

1 2

,,sec
2,12,12,1

5. Energy consumption: ∑ ∑
∈ ∈






 ×
=

s s cHcH

cccc

Cc Cc N

s,Is,I
energy

ns)(commEnrConParam

(evtSize)sParam(freq)sParam
(s,d)qValue

1 2 2,1

2,12,1

 



















+×+

ns)(hostEnrCohParam

e)(opcodeSizcParam

ns)(hostEnrCohParam

e)(opcodeSizcParam
(freq)cParam

cc
cc

H

c

H

c
s,I

21
2,1

21

6. Memory constraint:

 ddpcSatisfie then ,hostMemhParamcompMemcParamhHCcHh if memConsthcc 1)()()(=












≤=∈∀∈∀ ∑

 0)(=dSatisfiedcp else memConst

Figure 5. Framework instantiation example.

C. UNDERLYING ASSUMPTIONS

The definitions in Figure 5 are intended to serve as an illustration of how QoS dimensions are estimated

and used in DIF. We do not argue that these are the only, “correct”, or even most appropriate quantifications.

DIF does not place any restrictions a priori on the manner in which QoS dimensions are estimated. This al-

lows an engineer to tailor DIF to the application domain and to her specific needs. Our instantiation of the

framework model, shown in Figure 5, is based on our experience with mobile emergency response software

systems [34,36,37], such as those described in Section I.

Other researchers have acknowledged the impact of deployment on a system’s QoS in several other do-

mains, e.g., data-intensive systems [22], wireless sensor networks [47], and online multimedia systems [28].

We also believe that the emergence of new computing paradigms further underlines the importance of scala-

ble deployment analysis techniques, e.g., large-scale data centers that depend on clusters of hundreds or

thousands of general purpose servers (e.g., popular search engines), and cloud computing whereby distri-

buted and often virtualized computing resources are dynamically provisioned and shared among many users.

In other application domains, some of the simplifying assumptions we have made may not hold, and oth-

er estimations of QoS may be more appropriate. For instance, consider the following simplifying assump-

tions made in the analytical models presented in Figure 5:

• Availability: In other domains, such as data centers, other system parameters (e.g., unavailability of re-

sources due to high workload) may need to be considered.

• Latency: In our specification of latency we did not consider the computational delay associated with each

software component’s execution. This can be justified, e.g., in the context of emergency response mobile

systems, where the implementations of system services are often relatively simple and network commu-

nication is the predominant source of delay. As before, in other domains, such as data centers or scientif-

ic applications, a reasonable estimation of latency would certainly need to account for the execution time

of software components.

• Security: We assume that a single encryption algorithm is used, where the size of the key indicates the

difficulty of breaking ciphered data. In cases where this assumption is not true or multiple encryption al-

gorithms are available, the model would have to be extended to account for the unique behavior of each

algorithm.

The assumptions listed above are not intended to be comprehensive, but rather highlight the fact that (1)

by its nature, any analytical formulation of a QoS makes certain simplifying assumptions based on what is

considered negligible in a given domain, and (2) different domains are likely to have different QoS concerns.

Indeed, one of the key contributions of DIF is that, unlike existing approaches [1,5,20,25,35,41,42] that pre-

scribe a particular model, through the extensible modeling methodology described above the engineer tailors

the framework for a given domain.

Utility functions originated in economics [23], but have been extensively used in many areas of computer

science, including autonomic computing [64], performance analysis [5], and software engineering [53], to

denote the usefulness of a system or its properties to the users. While the ability to represent the users’ prefe-

rences is clearly a prerequisite for accurate analysis of a system’s deployment, it is a topic that has been in-

vestigated extensively in the existing literature, and we consider it to be outside the focus of this paper. For

instance, interested readers may refer to [57,58], where authors have demonstrated the feasibility of accurate-

ly inferring users’ QoS preferences in terms of utility via user-friendly graphical widgets. These techniques

have influenced DIF’s tool support as detailed in Section V.

DIF is also independent of the type of utility functions and the approach employed in extrapolating them.

Arguably, any user can specify hard constraints, which can be trivially represented as step functions. Alterna-

tively a utility function may take on more advanced forms to express more refined preferences. Most notably,

sigmoid curves have shown to provide an appropriate middle ground between expressiveness and usability,

and used in many existing approaches (e.g., [5,40,53]).

IV. DEPLOYMENT ANALYSIS

Once a system’s architectural model is completed, the model can be analyzed for properties of interest.

Traditionally, architectural analysis has been the prevailing reason for using ADLs [29]. The objective of our

framework’s analysis activity is to ensure an effective deployment of the modeled system, both prior to and

during the system’s execution. This analysis is based on a set of algorithms specifically developed for this

purpose. Determining an effective deployment for a system is challenging for reasons discussed in Section I:

the problem space is exponential, while a very large set of system parameters must be taken into account and

must satisfy arbitrary constraints. Because of this, most of our algorithms are heuristic-based and provide

approximate solutions. We have developed multiple algorithms in order to best leverage the characteristics of

different scenarios involving varying QoS requirements, user preferences, and hardware and/or software per-

formance characteristics. These algorithms provide the foundation for an automated deployment analyzer

facility that is a centerpiece of our framework. In this section, we first present our deployment improvement

algorithms and then discuss other factors that impact a system’s preferred deployment architecture.

A. DEPLOYMENT IMPROVEMENT ALGORITHMS

The deployment optimization problem as we have stated it is an instance of multi-dimensional optimiza-

tion problems, characterized by many QoS dimensions, system users and user preferences, and constraints

that influence the objective function. Our goal has been to devise reusable algorithms that provide accurate

results (assuming accurate model parameter estimates are available and appropriate QoS dimension quantifi-

cations are provided) regardless of the application scenario. A study of strategies applicable to this problem

has resulted in four algorithms to date, where each algorithm has different strengths and is suited to a particu-

lar class of systems. Unlike previous works, which depend on the knowledge of specific system parameters

[4,5,20,25] or assume specific architectures [22,47], we have introduced several heuristics for improving the

performance and accuracy of our algorithms independently of the system parameters or architectures. There-

fore, regardless of the application scenario, the architect simply executes the algorithm most suitable for the

system (e.g., based on the size of the system or stability of parameters, further discussed in Section VI.G)

without any modification.

Of the four approaches that we have used as the basis of our algorithms, two (Mixed-Integer Nonlinear

Programming, or MINLP, and Mixed Integer Linear Programming, or MIP [65]) are best characterized as

techniques developed in operations research to deal with optimization problems. They are accompanied by

widely used algorithms and solvers. We tailor these techniques to our problem, and thereby improve their

results. The remaining two approaches (greedy and genetic) can be characterized as generally applicable

strategies, which we have employed in developing specific algorithms tailored to our problem.

1. Mixed-Integer Nonlinear Programming (MINLP) Algorithm

The first step in representing our problem as a MINLP problem is defining the decision variables. We de-

fine decision variable xc,h to correspond to the decision of whether component c is to be deployed on host h.

Therefore, we need |
| % |�| binary decision variables, where xc,h=1 if component c is deployed on host h,

and xc,h=0 otherwise.

The next step is defining the objective function, which in our case is to maximize the overallUtil func-

tion, as shown in Eq. 1 of Figure 6. The definition of overallUtil is the same as in Figure 4. However, note

that the qValue functions of our instantiated model (recall Figure 5) are now rewritten to include the decision

variables xc,h. This is illustrated for the availability dimension in Eq. 2 of Figure 6.

Finally, we need to specify the constraints. We have depicted two common constraints: Eq. 3 enforces

the constraint that a single software component can only be deployed on a single host and Eq. 4 enforces the

memory constraint that was defined previously in our instantiated model (item 6 of Figure 5).

The product of variables in Eq. 2 of Figure 6 demonstrates why the deployment problem is inherently

non-linear. There is no known algorithm for solving a MINLP problem optimally other than trying every

possible deployment. Furthermore, for problems with non-convex functions (such as ours), MINLP solvers

are not guaranteed to find and converge on a solution [65]. Finally, given the non-standard techniques for

solving MINLP problems, it is hard to determine a complexity bound for the available MINLP solvers.
7
 For

all of these reasons, we needed to investigate other options.

2. Mixed-Integer Linear Programming (MIP) Algorithm

An important characteristic of MIP problems is that they can be solved to find the optimal solution. We

have leveraged a technique for transforming the above MINLP problem into MIP by adding new “auxiliary”

variables. We introduce |
|= % |�|= new binary decision variables tc1,h1,c2,h2 to the specification formula of

each QoS, such that tc1,h1,c2,h2=1 if component c1 is deployed on host h1 and component c2 is deployed on

host h2, and tc1,h1,c2,h2=0 otherwise.

To ensure that the variable t satisfies the above relationship, we add the following three constraints:

2,21,12,2,1,12,22,2,1,11,12,2,1,1 1 , , and hchchchchchchchchchc xxtxtxt +≥+≤≤

7
 All state-of-the-art MINLP solvers are based on proprietary algorithms, which are claimed to run in polynomial time [10].

Maximize
dsqValue

dsqValuedsqValue
qUtilddloverallUti

Uu Ss Qq q

qq
qsu∑ ∑ ∑

∈ ∈ ∈























 −
×=′

),(

),()',(
),(,, Eq. 1

()∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

×××=
s s s s

cHcHcc
Hh Hh Cc Cc

chchNIstyavailabili xx(rel)nParam(freq)sParamd)(sqValue

1 2 1 2

2,21,1,
2,12,1

,

Eq. 2

 … other qValue functions …

Subject to ∑
∈

=∈∀
Hh

hcxCc 1 , ,

Eq. 3

 ())()(, , hostMemhParamcompMemcParamxHh h

Cc

chc ≤×∈∀ ∑
∈

Eq. 4

 … other locational and system constraints …

Figure 6. MINLP representation of the deployment problem.

This allows us to remove the multiplication of decision variables from the qValue functions (e.g., Eq. 2 of

Figure 6). However, this transformation significantly increases the complexity of the original problem. Since

MIP solvers use branch-and-bound to solve a problem efficiently, our problem has the upper bound of:

)2()22()22() (
2||2||||||2||2||sx variable ofnumber es t variablofnumber treeofheight CHCHCH OOObranchofsizeO =+=+=

One heuristic that we have developed is to assign a higher priority to x variables and lower priority to t

variables. Thus, we are able to reduce the complexity of the algorithm to O(2
|H||C|

): after solving the problem

for the x variables, the values of t variables trivially follow from the three constraints introduced above. Fi-

nally, the constraint that each component can be deployed on only one host (Eq. 3 of Figure 6) allows for

significant pruning of the branch-and-bound tree, thus reducing the complexity of our problem to O(|H|
|C|

).

By fixing some components to selected hosts, the complexity of the exact algorithm reduces to

> ?@ A "5�B�, �CD7�E7� F

Similarly, specifying that a pair of components ci and cj have to be collocated on the same host could further

reduce the algorithm’s complexity.

Our heuristics significantly reduce the complexity of the MIP problem. However, as we will see in Sec-

tion VI, even after this reduction, the MIP algorithm remains computationally very expensive. It may still be

used in calculating optimal deployments for smaller systems, or those whose characteristics are stable for a

very long time. However, even in such cases running the algorithm may become infeasible very quickly, un-

less the number of allowed deployments is substantially reduced through location and collocation constraints.

3. Greedy Algorithm

The high complexity of MIP and MINLP solvers, and the fact that the MINLP solvers do not always find

an improved solution, motivated us to devise additional algorithms. Our greedy algorithm is an iterative algo-

rithm that incrementally finds better solutions. Unlike the previous algorithms that need to finish executing

before returning a solution, the greedy algorithm generates a valid and improved solution in each iteration.

This is a desirable characteristic for systems where the parameters change frequently and the available time

for calculating an improved deployment varies significantly.

In each step of the algorithm, we take a single component aComp and estimate the new deployment loca-

tion (i.e., a host) for it such that the objective function overallUtil is maximized. Our heuristic is to improve

the QoS dimensions of the “most important” services first. The most important service is the service that has

the greatest total utility gain as a result of the smallest improvement in its QoS dimensions. The importance

of service s is calculated via the following formula:

�G����B�C � A A &'�"H,I,JJ7$H7(KLJM

Where LJ is a configurable threshold in the algorithm and denotes a small rate of improvement in the QoS

dimension q. Going in the decreasing order of service importance, the algorithm iteratively selects compo-

nent aComp that participates in provisioning that service, and searches for the host bestHost for deployment.

bestHost is a host � 7 � that maximizes 5G���""&'�"B., .N�OPQ	DC, where d is the current deployment, and

.N�OPQ	D is the new deployment if aComp were to be deployed on h.

If the bestHost for aComp satisfies all the constraints, the solution is modified by mapping aComp to

bestHost. Otherwise, the algorithm leverages a heuristic that finds all “swappable” components sComp on

bestHost, such that after swapping a given sComp with aComp (1) the constraints associated with HaComp and

bestHost are satisfied, and (2) the overall utility is increased. If more than one swappable component satisfies

the two conditions, we choose the component whose swapping results in the maximum utility gain. Finally,

if no swappable components exist, the next best host (i.e., the host with the next highest value of overallUtil

if aComp were to be deployed on it) is selected and the above process repeats.

The algorithm continues improving the overall utility by finding the best host for each component of

each service, until it determines that a stable solution has been found. A solution becomes stable when during

a single iteration of the algorithm all components remain on their respective hosts.

The complexity of this algorithm in the worst case with k iterations to converge is
8

ΟB#�'���'�5� % #���G���� % #�5��� % #�5�'� % 5G���""&'�" % #�T����8"� �5��� % 5G���""&'�"C �

ΟBU % |�| % |
| % |�| % B|�||&||V|C % |
| % B|�||&||V|C � ΟB|S|XB|C||U||Q|C=C

Since often only a small subset of components participate in providing a service and swappable compo-

nents are only a small subset of components deployed on bestHost, the average complexity of this algorithm

is typically much lower. Finally, just like the MIP algorithm, further complexity reduction is possible

through specification of locational constraints, which reduces the number of times overallUtil is calculated.

The component swapping heuristic is important in that it significantly decreases the possibility of getting

“stuck” in a bad local optimum. Further enhancements to the algorithm are possible at the cost of higher

8
 Our analysis is based on the assumption that the numbers of system parameters (e.g., sets HP and CP) are significantly smaller

than the numbers of modeling elements (i.e., sets H, C, N, and I) with which they are associated.

complexity. For example, simulated annealing [54] could be leveraged to explore several solutions and return

the best one by conducting a series of additional iterations over our algorithm.

4. Genetic Algorithm

Another approximative solution we have developed is based on a class of stochastic approaches called

genetic algorithms [54]. An aspect of a genetic algorithm that sets it apart from the previous three algorithms

is that it can be extended to execute in parallel on multiple processors with negligible overhead. Furthermore,

in contrast with the two approximative algorithms that eventually stop at “good” local optima (MINLP and

greedy), a genetic algorithm continues to improve the solution until it is explicitly terminated by a triggering

condition or the global optimal solution has been found. However, the performance and accuracy of a genetic

algorithm significantly depend on its design (i.e., the representation of the problem and the heuristics used in

promoting the good properties of individuals). In fact, the genetic algorithm we developed initially without

deployment-specific heuristics significantly under-performed in comparison to the other algorithms. As a

result, we had to devise a novel mechanism specifically tailored at our problem, discussed below.

In a genetic algorithm an individual represents a solution to the problem and consists of a sequence of

genes that represent the structure of that solution. A population contains a pool of individuals. An individual

for the next generation is evolved in three steps: (1) two or more parent individuals are heuristically selected

from the population; (2) a new individual is created via a cross-over between the parent individuals; and (3)

the new individual is mutated via slight random modification of its genes.

In our problem, an individual is a string of size |C| that corresponds to the deployment mapping of all

software components to hosts. Figure 7a shows a representation of an individual for a problem of 10 compo-

nents and 4 hosts. Each block of an indi-

vidual represents a gene and the number

in each block corresponds to the host on

which the component is deployed. For

example, component 1 of Individual 1 is

deployed on host 4 (denoted by h4), as

are components 4, 5, and 8. The problem

with this representation is that the genet-

ic properties of parents are not passed on

as a result of cross-overs. This is because

Figure 7. Application of the genetic algorithm to a

problem comprising 10 components and 4 hosts: a) simple repre-

sentation, b) representation based on services.

the components that constitute a service are dispersed in the gene sequence of an individual and a cross-over

may result in a completely new deployment for the components of that service. For instance, assume that in

Figure 7a service 1 of Individual 1 and services 2 and 3 of Individual 2 have very good deployments (with

respect to user utility); then, as a result of a cross-over, we may create an individual that has an inferior dep-

loyment for all three services. For example, the components collaborating to provide service 2 are now dis-

tributed across hosts 1, 3, and 4, which is different from the deployment of service 2 in both Individuals 1

and 2.

Figure 7b shows a heuristic we have developed for representing an individual in response to this prob-

lem. The components of each service are grouped together via a mapping function, represented by the Map

sequence. Each block in the Map sequence tells us the location in the gene sequence of an individual to

which a component is mapped. For example, component 2 is mapped to block 5 in the gene sequence (de-

noted by i5). Thus, block 5 of Individual 1 in Figure 7b corresponds to block 2 of Individual 1 in Figure 7a,

and both denote that component 2 is deployed on host 1. If the component participates in more than one ser-

vice, the component is grouped with the components providing the service that is deemed most important.

Similar to the heuristic used in our greedy algorithm, the most important service results in the highest utility

gain for the smallest improvement in its QoS dimensions. We only allow cross-overs to occur on the borders

of services. For example, in Figure 7b, we allow cross-overs at two locations: the line dividing blocks 4 and

5 and the line dividing blocks 7 and 8 of Individuals 1 and 2. As a result of the cross-over in Figure 7b, we

have created an individual that has inherited the deployment of service 1 from Individual 1 and the deploy-

ment of services 2 and 3 from Individual 2.

After the cross-over, the new individual is mutated. In our problem, this corresponds to changing the

deployment of a few components. To evolve populations of individuals, we need to define a fitness function

that evaluates the quality of each new individual. The fitness function returns zero if the individual does not

satisfy all the parameter and locational constraints, otherwise it returns the value of overallUtil for the dep-

loyment that corresponds to the individual. The algorithm improves the quality of a population in each evolu-

tionary iteration by selecting parent individuals with a probability that is directly proportional to their fitness

values. Thus, individuals with a high fitness value have a greater chance of getting selected, and increase the

chance of passing on their genetic properties to the future generations of the population. Furthermore, anoth-

er simple heuristic we employ is to directly copy the individual with the highest fitness value (i.e., perform-

ing no cross-over or mutation) from each population to the next generation, thus keeping the best individual

found in the entire evolutionary search.

The complexity of this algorithm in the worst case is:

ΟB#�5�#"�'�5�� % #�G5"#'�5�� % #��.�G�.#�"� % �5��"�+�'9 5- -�'���� -#��'�5�C �
ΟB#�5�#"�'�5�� % #�G5"#'�5�� % #��.�G�.#�"� % |�||&||V|C

We can further improve the results of the algorithm by instantiating several populations and evolving

each of them independently. These populations are allowed to keep a history of their best individuals and

share them with other populations at pre-specified time intervals.

B. ADDITIONAL FACTORS IN (RE)DEPLOYMENT ANALYSIS

If the characteristics of an execution scenario change while the system is running, i.e., after the initial

deployment is calculated and effected, the system is analyzed again by applying the most appropriate redep-

loyment algorithm(s). Then, the improved deployment architecture is effected by redeploying the system’s

components as recommended by the algorithm(s). This process was depicted in Figure 1.

For illustration, Figure 8 shows the overall utility of a hypothetical distributed system to its users over a

given time interval. Let us assume that the system’s initial overall utility, U1, is deemed unsatisfactory. This

can happen either because the system’s runtime characteristics change (e.g., a network link fails, a new host

enters the system) or because QoS dimensions and/or user preferences change. In either case, the system’s

operation is monitored and its model updated as appropriate during the interval TM. The new model is then

analyzed and an improved configuration may be determined during the period TA. At that point, the system’s

redeployment is triggered if necessary. The triggering agent may be a human architect; alternatively, an au-

tomated deployment analyzer may initiate the task if pre-specified utility thresholds are reached. We provide

such an automated deployment analyzer, further discussed in the remainder of this section.

Redeployment involves suspending some subset of the system’s running components, relocating those

components among the hosts, as well

as possibly removing existing and/or

introducing new components. During

this time period, TR, the system’s

overall utility will likely decrease as

services become temporarily un-

available. The utility “dip” depends

on the characteristics of the system

(e.g., frequencies of interactions,

Figure 8. System’s overall utility over time.

number of dependencies) as well as the support provided by the implementation platform (e.g., rerouting of

events, replicating components). Once the redeployment is completed, however, the overall utility increases

to U2 for the remainder of the time period T. If the system parameters change again, the system’s utility may

decrease, and this process may be repeated (illustrated in Figure 8 with period T’).

The above process makes a critical assumption: The times required to monitor a system, update its mod-

el, analyze, and redeploy the system are small relative to the system’s normal operation interval TO (i.e.,

TM+TA+TR<<TO). If this is not the case, the system’s parameters will be changing too frequently, triggering

constant redeployments. This will result in the opposite of the intended effect since the system users would

repeatedly experience the utility “dip”. Therefore, in order to properly determine whether and how often to

redeploy a system, our framework’s deployment analyzer needs to know (1) the rate of change in system pa-

rameters, (2) the time required to apply the algorithms, (3) the time needed to actually redeploy the system,

and (4) the overall utility gain of the calculated redeployment. We elaborate on these factors below.

For some systems, it may be possible to predict the frequency with which system parameters are likely to

change (e.g., based on domain characteristics or similar past systems). In other cases, the deployment analyz-

er leverages the system’s execution history to estimate the change rate in parameters; collecting this history

is further discussed in Section VI. It is, of course, impossible to guarantee that the predicted behavior will be

borne out in practice or that past behavior is representative of future behavior. In particular, our approach

will not be effective in the extreme case where changes occur so rapidly and randomly that no particular ge-

neralization of the monitored data can be made, and no particular patterns of behavior can be identified, mak-

ing it impractical to optimize the system. At the same time, an argument can be made that other remedies

need to be considered for such systems before determining an effective deployment becomes a priority.

While in theory one should always strive for the (re)deployment that maximizes the system’s overall util-

ity, in practice the time needed to apply the different redeployment solutions and the overall utility gain must

be taken into account. Even though, with the exception of MIP, the algorithms we have devised run in poly-

nomial time, they have very different characteristics that significantly affect their runtime performance as

well as accuracy. Those characteristics are extensively evaluated in Section VI, allowing us to automatically

select the most appropriate algorithm in a given situation.

Finally, deployment analysis must also take into account the amount of time required to actually redep-

loy the system and the intervening loss of system services. The time required to migrate a single component

depends on the component’s size as well as the reliability and bandwidth of the network link between the

source and destination hosts. For example, if two hosts are connected by a 100 Kbps connection with 50%

reliability, a 100 KB component would get migrated in 16s on average. The upper bound on the total time to

effect a system’s redeployment, TR, for the scenario instantiated in Section III can be estimated as follows:

\] � A ^ ������_B�5��*��C������IOH_E`a,b`IcaB8TC % ������IOH_E`a,b`IcaB��"Cd_7]

where R is the set of components to be redeployed; source and dest are the source and destination hosts, re-

spectively; and bw and rel are the bandwidth and reliability of the network link, respectively. The above equ-

ation does not include network latency introduced by the underlying network protocol. Existing network la-

tency estimation techniques (e.g., [16]) can be applied to estimate TR more accurately. Additionally, the mi-

grations on different hosts usually happen in parallel, thus significantly reducing the value of TR. Finally, the

above discussion assumes that either no additional mechanisms (e.g., rerouting of events, component replica-

tion) are provided to reduce service disruption during redeployment or, if they are provided, that they are

captured by updating our system model.

The unavailability of system services during the TR interval (depicted by the utility “dip” in Figure 8)

may be a critical factor in deciding on the best deployment for a system in a given scenario. In some cases,

users may be willing to accept temporary losses of service, so the algorithm suggesting a deployment with

the highest utility will be preferable. In other cases, however, losing certain critical services beyond a specif-

ic amount of time will be unacceptable to users, so redeployments that guarantee short downtimes for the

components providing those services will be preferable (this may also result in simply retaining the current

deployment). In such cases, the objective of applying a deployment improvement algorithm is to trade-off the

utility gain achieved by a suggested new deployment (interval TO in Figure 8) against the utility loss caused

by the redeployment process (interval TR). In order for our framework’s deployment analyzer to be able to

make this trade-off autonomously, it must know the system users’ preferred utility thresholds. The thresholds

can be obtained in a manner analogous to capturing the users’ QoS preferences (recall Section II). If such

thresholds do not exist, the output of a deployment improvement algorithm becomes a set of suggested dep-

loyments, with their resulting utility gains during TO and losses during TR. In those cases, a human is tasked

with determining the best option. Finally, note that if any loss of a given service is unacceptable, this be-

comes a redeployment constraint in the system model (recall Section III).

V. TOOL SUPPORT

We have realized DIF as a visual Eclipse-based environment. The environment can be readily employed

for improving the deployment of any existing Eclipse software project, assuming the availability of an under-

lying implementation platform with the capabilities discussed in Section I and depicted in the bottom two

layers of Figure 1. In this section, we provide an overview of DIF’s tool support, as well as its integration

with an implementation platform, which has been used extensively in our evaluation.

A. FRAMEWORK’S IMPLEMENTATION

We have implemented DIF by extending and tailoring DeSi, a preliminary version of which was de-

scribed in [44]. DeSi is a visual deployment exploration environment that supports specification, manipula-

tion, and visualization of deployment architectures for large-scale, highly distributed systems.

DeSi uses an enhanced variation of xADL [11], an XML-based third-party architecture description lan-

guage (ADL) [29], to model the deployment concerns. We have extended the conventional constructs found

in commonly used ADLs [29], such as xADL, in three ways. First, xADL was extended to enable modeling

of hardware as well as software properties of interest, the containment relationships between software and

hardware elements, and the details of both logical and physical connectors. Second, we introduced the notion

of a service, which as described earlier represents a user-level functionality and has a mapping to a subset of

a system’s architecture involved in provisioning it. Finally, we extended xADL to provide the constructs ne-

cessary for capturing the user types, user preferences, and analytical models for representing QoS in the sys-

tem.

By leveraging DeSi, an architect is able to enter desired system parameters into the model, and also to

manipulate those parameters and study their effects. For example, as depicted in Figure 9b, the architect is

able to use a graphical environment to specify new architectural constructs (e.g., components, hosts), param-

eters (e.g., network bandwidth, host memory), and values for the parameters (e.g., available memory on a

host is 1MB). The architect may also specify constraints. Example constraints are the maximum and mini-

mum available resources, the location constraint that denotes the hosts on which a component may not be

deployed, and the collocation constraint that denotes a subset of components that should not be deployed on

the same host. DeSi also provides a tabular view that provides a comprehensive summary of the system’s

monitored data, deployment architecture, and the results of analysis (shown in Figure 9a). In the same view,

DeSi provides a control panel through which any of the algorithms can be executed and the impact of a new

solution on the system’s QoS visually assessed.

Figure 9. User interface of the DeSi environment: (a) the editable tabular view of a system’s deployment archi-

tecture and the control panel for executing the algorithms, and (b) the graphical view of the architecture.

(a)

(b)

Figure 16 shows DeSi’s graphical depiction of a system users’ preference view, where the system’s users

(left) have expressed their QoS preferences (middle) for user-level services (right). This figure corresponds

to one of the applications we have used for evaluating DIF and will be revisited in more detail in Section VI.

Some possible methods of eliciting user preferences include: (1) discrete—select from a finite number of

options (e.g., a certain level of QoS for a given service is excellent, good, poor, or very poor), (2) relative—a

simple relationship or ratio (e.g., 10% improvement in a given QoS has 20% utility), and (3) constant feed-

back—input preferences based on the delivered QoS at run-time (e.g., given a certain QoS delivered at run-

time ask for better, same, or ignore).

DeSi can be used in two modes: (1) Simulated mode—Used to automatically generate and manipulate

large numbers of hypothetical deployment architectures (shown in the parameter ranges in Figure 9a). As

detailed in Section VI, we used this feature of DeSi to comprehensively evaluate the trade-offs between al-

ternative algorithms on a large number of deployment problems. (2) Online mode—Used in conjunction with

an execution platform, most likely in the form of a middleware, that provides DeSi with the information from

a running system. A middleware adapter is employed to integrate DeSi with a running system. The middle-

ware adapter would need to provide implementations for two Java interfaces: IMonitor and IEffector. An im-

plementation of IMonitor captures the run-time data from the running system and uses DeSi’s exported API

to update the system’s deployment model. An implementation of IEffector, on the other hand, is used by De-

Si for effecting the calculated (improved) deployment architecture. The implementation would use the mid-

dleware’s runtime adaptation facilities to modify the running system’s deployment architecture. The details

of this process are further elaborated below, in the context of an example middleware used in our evaluation.

B. INTEGRATION WITH A RUNTIME PLATFORM

As described in Section I, to achieve DIF’s goal of improving the system’s QoS through redeployment of

its components, we rely on the availability of an underlying implementation platform with the necessary run-

time facilities. These facilities roughly correspond to those depicted in the two bottom layers of Figure 1.

While DIF is independent of the underlying platform, for evaluating it in actual software systems we inte-

grated DeSi with Prism-MW [34], which is a middleware platform developed in our previous work, with ex-

tensive support for monitoring and component redeployment. We briefly provide an overview of Prism-MW

and elaborate on its integration with the DIF’s implementation in DeSi. Interested reader can find a detailed

description of Prism-MW in [34].

Prism-MW is an architectural middleware, meaning that it provides implementation-level constructs for

architectural concepts such as components, connectors, ports, events, architectural styles, and so on. This

characteristic sets Prism-MW apart from general purpose middleware platforms that often lack support for

certain facets of software architectures (e.g., architectural styles, explicit connectors [30]).

A software system in Prism-MW is implemented as an Architecture object containing the configuration

of the system’s Component and Connectors. Figure 14a provides an overview of an application developed on

top of Prism-MW and described in detail as part of our evaluation. A distributed system is implemented as a

set of interacting Architecture objects, communicating via distribution-enabled Prism-MW Ports. The one-

to-one mapping between the architectural model and its implementation in turn simplifies (re)deploying the

system as suggested by its architectural analysis, which is one of the key motivations behind the selection of

this middleware for the evaluation of DIF.

To support system (re)deployment and monitoring, Prism-MW provides meta-level components, which

contain a reference to the Architecture, as depicted in Figure 14a. This allows a meta-level component to

achieve architectural awareness, i.e., to be able to access all architectural elements in its local configuration.

In essence, a meta-level component acts as an agent that coexists with the application-level components, ef-

fects changes to their local configuration, and monitors changes in their execution conditions. Prism-MW

provides two implementations of meta-level components, Admin and Deployer, which respectively provide

the component control and change management capabilities depicted in Figure 1, as follows.

Each host has an Admin, which acts as an agent in charge of collecting system measurements, and mak-

ing the runtime changes in the corresponding host. In Prism-MW, the developer can associate arbitrary mon-

itoring probes with architectural constructs. For instance, Figure 15b shows an application used in our evalu-

ation, where a NetworkReliabilityMonitor is attached to a distribution-enabled port to assess the status of the

associated network link, while EvtFrequencyMonitor is attached to a component to observe event traffic

going through its port. Each monitoring probe compares the collected data with a “base” value and reports

any discrepancies to the local host’s Admin, which periodically sends the updated information to the Deploy-

er. Admin provides the component migration (recall Figure 1) facility by (un)welding components from the

architecture, and shipping them to other Admin components across the network. Prism-MW provides various

component serialization mechanisms that we have leveraged in our work. For instance, the Java version of

the middleware simply relies on JVM’s serialization capability, while the C++ version ships Dynamic Link

Libraries and requires the component logic to implement an API that can read/write the state of a component

from/to a byte array [37].

The Deployer component used in our evaluation implements DeSi’s IEffector and IMonitor interfaces.

Recall from Section V.A that a middleware adapter needs to provide implementations of these two interfaces

to allow for the collection of data and adaptation of the running system. Through these two interfaces the

Deployer component continuously engages DeSi and provides the change management capabilities as fol-

lows. In the role of an effector, given a new deployment architecture, it coordinates the migration of compo-

nents among the Admins. For instance, it determines the order in which components should be redeployed to

minimize the application down-time, avoid functional inconsistency, etc. In the role of a monitor, the Dep-

loyer provides a monitoring gauge facility, which aggregates the monitoring data received from the Admins,

looks for changes that are considered significant, and makes requests of DeSi to update the system’s model

and analyze its utility. This reinitiates the entire process depicted in Figure 1 and described above.

The details of each of the steps performed by Deployer and Admins (e.g., ensuring that a component is

quiescent [26] before it is removed from the local configuration or that messages are properly routed to the

redeployed components) are enabled by Prism-MW following the techniques described in [49,50]. We elide

these details here as they are not necessary to understand the subsequent discussion.

VI. EVALUATION

We have used DIF in a number of distributed system scenarios. While a majority of those were devel-

oped internally to observe and refine the framework, one was motivated by an external collaborator’s real-

world needs and another has resulted in the adoption of DIF and its accompanying tools by an industrial or-

ganization. This demonstrates that DIF is effective in some situations, but it does not indicate the extent of its

effectiveness. To do that, we have also evaluated different facets of DIF in numerous simulated settings. We

have focused our analysis on the critical aspects of DIF, and refer the interested reader to [34] for a thorough

assessment of the runtime monitoring and redeployment facilities in Prism-MW. We first assess DIF’s mod-

eling and analysis capabilities along several dimensions. We then describe our collaborative experience in

applying our technique to two third-party families of distributed applications.

A. EXPERIMENTAL SETUP

We have leveraged DIF’s implementation in DeSi for our evaluation. DeSi’s extensible modeling and vi-

sualization capabilities allowed us to configure it arbitrarily. The starting point of our evaluations was the

instantiation of the framework with the system parameters and QoS dimensions discussed in Section III.B

and shown in Figure 5. We then varied the parameters and extended the model with additional QoS dimen-

sions. The largest scenarios we have worked with to date have involved on the order of dozens of users, QoS

dimensions, and hardware hosts, and hundreds of software com-

ponents and system services. The model from Section III has

proven highly expressive in capturing the details of distributed

system scenarios, as will be demonstrated in the remainder of

this section.

We instrumented DeSi to transform its internal model to

GAMS [8], an algebraic optimization language. This allowed us

to integrate DeSi with state-of-the-art MIP and MINLP solvers

[10]. DeSi also exports an API for accessing its internal model, which we leveraged to implement the greedy

and genetic algorithms. Finally, we leveraged DeSi’s hypothetical deployment generation capability [44] to

evaluate the algorithms on a large number of deployment scenarios. In the generation of deployment scena-

rios, some system parameters are populated with randomly generated data within a specified range, and an

initial deployment of the system that satisfies all the constraints is provided automatically.

Figure 10 shows the input into DeSi for the generation of example scenarios and benchmarks. The values

in Figure 10 represent the allowable ranges for each system parameter. The numbers of hosts, components,

services, and users vary across the benchmark tests and are specified in the description of each test. Note that

both DIF and its implementation in DeSi are independent of the unit of data used for each system parameter.

For example, in the case of transmission delay, neither DIF nor DeSi depend on the unit of time (s, ms, etc.).

It is up to the system architect to ensure that the right units and appropriate ranges for the data are supplied to

DeSi. After the deployment scenario is generated, DeSi simulates users’ preferences by generating hypothet-

ical desired utilities (qUtil) for the QoS dimensions of each service. While users may only use and specify

QoS preferences for a subset of services, we evaluate our algorithms in the most constrained (and challeng-

ing) case, where each user specifies a QoS preference for each service. Unless otherwise specified, the genet-

ic algorithm used in the evaluation was executed with a single population of one hundred individuals, which

were evolved until a stable solution was found (i.e., as a result of three consecutive evolutionary cycles no

better new solution was found). Our evaluation focused on five different aspects of our analysis support, as

detailed next.

B. IMPROVING CONFLICTING QOS DIMENSIONS

In this section we provide an evaluation of the algorithms’ ability to simultaneously satisfy multiple us-

ers’ conflicting QoS preferences in a representative scenario. The results reported here are complemented by

1 and010

1 :service afor pref. QoS hasuser a prob.

1:user aby used is service a prob.

0.5 :service aby used is comp. a prob.

]200,50[],100,5[

],1,0[[1,512],],400,30[

],100,10[,]10,1[

[5,500],],8,2[

[1,20],],30,10[

==

∈∈

∈∈∈

∈∈

∈∈

∈∈

 MaxUtil .MinUtil

scommEnrContd

relencbw

evtSizefreq

opcodeSizecompMem

shostEnrConhostMem

Figure 10. Input for DeSi’s deployment

scenario generation.

the benchmarks of the algorithms in a large number of scenarios given in Section VI.D. Table 1 shows the

result of running our algorithms on an example application scenario generated for the input of Figure 10

(with 12 components, 5 hosts, 8 services, and 8 users). The values in the first eight rows correspond to the

percentage of improvement over the initial deployment of each service. The ninth row shows the average

improvement over the initial deployment for each QoS dimension of all the services. Finally, the last row

shows the final value of our objective function (overallUtil). The results demonstrate that, given a highly

constrained system with conflicting QoS dimensions, the algorithms are capable of significantly improving

the QoS dimensions of each service. As discussed in Section IV, the MIP algorithm found the optimal dep-

loyment (with the objective value of 64 in this case).
9
 The other algorithms found solutions that are within

20% of the optimal. We have observed similar trends across many other scenarios as discussed below.

C. IMPACT OF USERS’ PREFERENCES

Recall from Section III that the importance of a QoS dimension to a user is determined by the amount of

utility specified for that dimension. QoS dimensions of services that have higher importance to the users typ-

ically show a greater degree of improvement. For example, in the scenario of Table 1, the users have placed a

great degree of importance on service 4’s availability and security. This is reflected in the results: for exam-

ple, in MIP’s solution, the availability of service 4 is improved by 215% and security by 302%; the average

respective improvement of these two dimensions for all services was 86% and 66%. Note that, for this same

9 An objective value (i.e., result of overallUtil) provides a scalar number indicating the quality of a deployment solution in com-

parison to other deployments within the same application scenario.

Table 1. Results of an example scenario with 12C, 5H, 8S, and 8U. A positive number indicates improvement.

reason, a few QoS dimensions of some services have degraded in quality, as reflected in the negative percen-

tage numbers. These were not as important to the users and had to be degraded in order to improve other,

more important QoS dimensions. As another illustration, a benchmark of 20 application scenarios generated

based on the input of Figure 10 showed an average QoS improvement of 89% for the top one half of system

services in terms of importance as rated by the users, and an average improvement of 34% for the remaining

services.

D. PERFORMANCE AND ACCURACY

Figure 11 shows a comparison of the four algorithms in terms of (a) performance, i.e., execution time,

and (b) accuracy, i.e., value of the objective function overallUtil. For each data point (shown on the horizon-

tal axis with the number of components, hosts, services, and users) in Figure 11, we created 35 representative

problems and ran the four algorithms on them. The two graphs correspond to the average values obtained in

these benchmarks. We explain this data in detail next.

The high complexity of MIP and MINLP solvers made it infeasible to solve the larger problems. Our

greedy and genetic algorithms demonstrate much better performance than both MIP and MINLP solvers, and

are scalable to larger problems. The MINLP solvers were unable to find solutions for approximately 20% of

larger problems (beyond 20 components and 10 hosts). For a meaningful comparison of the benchmark re-

sults, Figure 11 does not include problems that could not be solved by the MINLP solvers.

The data table at the bottom of Figure 11a shows the likely range for the algorithms’ performance in

problems of different sizes. Specifically, the table shows the 95% confidence interval on the mean. The re-

sults indicate that even at confidence limits (i.e., most optimistic and pessimistic variations) different algo-

rithms present significant performance trade-offs. Note that the performance of greedy algorithm is more

predictable than that of other algorithms. This is reasonable, since the greedy algorithm always executes a

bounded number of iterations, while the other algorithms, such as genetic, may heavily depend on the charac-

teristics of the problem. For instance, the populations in the genetic algorithm evolve through an intrinsically

semi-random process, which in the case of a highly constrained problem may result in the generation of

many invalid individuals, and thus may take a long time for the algorithm to converge.

In the smaller problems, comparing the accuracy (see Figure 11b) of MINLP, greedy, and genetic algo-

rithms against the optimal solution found by the MIP algorithm shows that all three optimization algorithms

on average come within at least 20 percent of the optimal solution. We have not provided confidence inter-

vals for each set of deployment problems, since unlike the performance metric, different problems may result

in starkly different utility values, and no particular meaningful observation can be made through a statistical

analysis of the values obtained for problems of certain size. Instead, for each deployment problem in the first

three sets of experiments (i.e., for a total of 105 deployment problems), we compared the difference between

the utility of solutions found by greedy and genetic against the optimal found by MIP. The results showed an

average difference of 10.8% ± 2.3 at 95% confidence for the greedy algorithm, and 9.6% ± 3.1 at 95% confi-

dence for the genetic algorithm. This empirical analysis shows that greedy and genetic algorithms often come

very close to the optimal solution found by MIP. However, as expected, given that the deployment problem

is NP-hard, no particular guarantees can be made.

In the larger problems, since the MIP algorithm could not be executed and the optimal solution is un-

known, we compare the algorithms against the unbiased average. To compute the unbiased average, we im-

plemented an algorithm that generates different deployments by randomly assigning each component to a

single host from a set of component’s allowable hosts. If the generated deployment satisfies all of the con-

straints, the utility of the produced deployment architecture is calculated. This process repeats a given num-

Figure 11. Comparison of the four algorithms’ performance and accuracy.

1 QoS 2 QoS 3 QoS 4 QoS 5 QoS 6 QoS

MIP 123 187 239 351 578 1109

MINLP 19 44 60 73 134 362

Greedy 2 4 6 7 12 17

Genetic 15 17 19 20 23 25

1

10

100

1000

10000

E
x
e
c
u
ti
o
n
 T
im
e
 in
 S
e
c
o
n
d
s

(L
o
g
a
ri
th
m
ic
 S
c
a
le
)

Number of QoS dimensions

Sensitivity of Algorithms to QoS Dimensions

Figure 12. Impact of the number of QoS dimensions on performance.

ber of times (in these experiments, 10,000 times) and the average utility of all valid deployments is calcu-

lated. Unbiased average denotes a representative (or likely) deployment of the system when the engineer

does not employ sophisticated algorithms for automated analysis. The results show that all of the optimiza-

tion algorithms find solutions that are significantly better than the unbiased average. Moreover, the greedy

and genetic algorithms are capable of finding solutions that are on par with those found by state-of-the-art

MINLP solvers.

E. IMPACT OF QOS DIMENSIONS

Figure 12 shows the impact of the number of QoS dimensions on each algorithm’s performance. In this

set of experiments, for each data point, we analyzed 35 different deployment problems of the same size (12

components, 5 hosts, 5 services, and 5 users) with varying numbers of QoS dimensions. The graph shows the

average impact of the number of QoS dimensions on each algorithm’s performance, while the bottom data

table provides the 95% confidence interval on the mean. In addition to the four QoS dimensions from Section

III.B, we added arbitrary “dummy” QoS dimensions. Our framework’s modeling support was able to capture

those additional QoS dimensions easily.

As expected, the performance of all four algorithms is affected by the addition of new dimensions. How-

ever, the algorithms show different levels of impact. The genetic algorithm shows the least degradation in

performance. This is corroborated by our theoretical analysis: the complexity of the genetic algorithm in-

creases linearly in the number of QoS dimensions, while, for instance, the complexity of the greedy algo-

rithm increases polynomially. We do not have access to the proprietary algorithms of MIP and MINLP solv-

ers, but it is evident that their performance also depends significantly on the number of QoS dimensions.

F. IMPACT OF

HEURISTICS

In Figure 13 we illu-

strate our evaluation of

the heuristics we have

introduced in the devel-

opment of our algorithms

(recall Section IV). Each

data point shows the av-

erages obtained on the

execution of algorithms on 35 dep-

loyments. The graph in Figure 13a

shows the effect of variable order-

ing in the MIP algorithm, while the

data table shows the 95% confi-

dence interval on the reported

mean. As discussed in Section

IV.A.2 and shown in the results of

Figure 13a, specifying priorities for

the order in which variables are

branched can improve the perfor-

mance of MIP significantly (in

some instances, by an order of

magnitude).

Figure 13b compares the gree-

dy algorithm against a version that

does not swap components when

the parameter constraints on the

bestHost are violated. As was dis-

cussed in Section IV.A.3, by swap-

ping components we decrease the

possibility of getting “stuck” in a

bad local optimum. The results of

Figure 13b corroborate the importance of this heuristic on the accuracy of the greedy algorithm.

Since, as already discussed, the utility may change drastically from one problem to another, calculating

confidence intervals for the 35 deployment problems used in each class (size) of problems is not useful. In-

stead, we compared the accuracy of each algorithm in each deployment problem used in this set of experi-

ments, for a total of 5×35=175 deployment problems. The results showed an average difference of 40.6% ±

3.1 at 95% confidence for the two variations of the greedy algorithm.

Finally, Figure 13c compares the three variations of the genetic algorithm. The first two variations were

discussed in Section IV.A.4, where one uses the Map sequence to group components based on services and

10C,4H,4S,4U,4Q 12C,4H,4S,4U,4Q 14C,5H,5S,5U,4Q 16C,5H,5S,5U, 4Q

MIP with no variable ordering 37 611 11902 73007

MIP with variable ordering 21 316 4806 21803

1

10

100

1000

10000

100000

E
x
e
c
u
ti
o
n
 T
im
e
 in
 S
e
c
o
n
d
s

(L
o
g
a
ri
th
m
ic
 S
c
a
le
)

Problem Size

Performance for the variations of MIP

10C,4H,4S,4U,4Q 20C,6H,6S,6U,4Q 30C,8H,8S,8U,4Q 40C,12H,12S,12U,4Q 50C,15H,15S,15U,4Q

Greedy without swap 21 92 131 192 257

Greedy with swap 52 149 232 292 363

0

50

100

150

200

250

300

350

400

450

500

O
b
je
c
ti
v
e
 F
u
n
c
ti
o
n
 V
a
lu
e

Problem Size

Accuracy for the variations of greedy algorithm

10C,4H,4S,4U,4Q 20C,8H,6S,6U,4Q 30C,8H,8S,8U,4Q 40C,12H,12S,12U,4Q 50C,15H,15S,15U,4Q

Genetic without mapping 15 71 92 103 139

Genetic with mapping 57 168 192 204 301

Genetic with mapping and parallel
execution

62 174 210 207 311

0

50

100

150

200

250

300

350

400

450

500

O
b
je
c
ti
v
e
 F
u
n
c
ti
o
n
 V
a
lu
e

Problem Size

Accuracy for the variations of genetic algorithm

b)

c)

37 ± 3 611 ± 39 11902 ± 410 73007 ± 4532

21 ± 2 316 ± 19 4806 ± 211 21803 ± 1127

a)

Figure 13. Results of the heuristics used by the algorithms.

the other does not. As expected, the results show a significant improvement in accuracy when components

are grouped based on services. Comparing the difference between the two variations across 175 deployment

problems showed an average improvement of 57.2% ± 4.0 at 95% confidence in the algorithm employing

mapping. The last variation corresponds to the distributed and parallel execution of the genetic algorithm. In

this variation we evolved three populations of one hundred individuals in parallel, where the populations

shared their top ten individuals after every twenty evolutionary iterations. The results show a small im-

provement in accuracy over the simple scenario where only one population of individuals was used. Com-

paring the difference between the parallel version of algorithm against the one using the mapping heuristic

across the 175 deployment problems showed that the former achieves an average improvement of 4.8% ± 1.2

at 95% confidence.

G. ALGORITHM SELECTION

Since each of our algorithms has different strengths and weaknesses, two important questions are (1)

when to use a given algorithm and (2) which algorithm is most appropriate in a given situation. We can pro-

vide some guidelines depending on the system’s context. Unlike the results presented above, these guidelines

are qualitative, which is a reflection of the inexact nature of software architectural design. One aspect of a

distributed system that influences the complexity of improving its deployment architecture is its design para-

digm, or architectural style. The two predominant design paradigms for distributed systems are client-server

and peer-to-peer.

Traditional client-server applications are typically composed of bulky and resource-expensive server

components, which are accessed via comparatively light and more efficient client components. The resource

requirements of client and server components dictate a particular deployment pattern, where the server com-

ponents are deployed on capacious back-end computers and the client components are deployed on users’

workstations. Furthermore, the stylistic rules of client-server applications disallow interdependency among

the clients, while many of the client components that need to be deployed on the users’ workstations are de-

termined based on users’ requirements and are often fixed throughout the system’s execution (e.g., client

components that are GUI components typically do not need to be redeployed). Therefore, the software engi-

neer is primarily concerned with the deployment of server components among the back-end hosts. Given that

usually there are fewer server components than client components, and fewer server computers than user

workstations, the actual problem space of many client-server applications is much smaller than it may appear

at first blush. In such systems, one could leverage the locational constraint feature of our framework to limit

the problem space significantly. Therefore, it may be feasible to run the MIP algorithm for a large class of

client-server systems and find the optimal deployment architecture in a reasonable amount of time.

In contrast, a growing class of peer-to-peer systems are not restricted by stylistic rules or resource re-

quirements that dictate a particular deployment architecture pattern.
10

 Therefore, locational constraints can-

not be leveraged in the above manner, and the problem space remains exponentially large. For even medium-

sized peer-to-peer systems, the MIP algorithm becomes infeasible and the software engineer has to leverage

one of the three optimization algorithms to arrive at an improved deployment architecture.

In larger application scenarios, the greedy and genetic approaches have an advantage over MINLP since

they exhibit better performance and have a higher chance of finding a good solution. When the application

scenario includes very restrictive constraints, greedy has an advantage over the genetic algorithm. This is

because the greedy algorithm makes incremental improvements to the solution, while the genetic algorithm

depends on random mutation of individuals and may result in many invalid individuals in the population.

Even if the genetic algorithm was to check the locational constraints before the individuals are added to the

population, many invalid individuals would have to be checked due to the random mutation, which would

hamper the algorithm’s performance.

Another class of systems that are significantly impacted by the quality of deployment architecture are

mobile and resource constrained systems, which are highly dependent on unreliable wireless networks on

which they are running. For these systems, the genetic algorithm is the best option: it is the only algorithm in

its current form that allows for parallel execution on multiple decentralized hosts, thus distributing the

processing burden of running the algorithm. We believe other types of parallel algorithms (e.g., variations of

greedy) could be developed as well. We consider this to be an interesting avenue of future research.

The above discussion demonstrates that there is no one-size-fits-all solution for the deployment problem.

Our intent with the development of our algorithms has not been to be exhaustive, but rather to demonstrate

the feasibility of developing effective heuristics and algorithms that are generally applicable across different

application scenarios. We expect that our framework will need to be augmented with additional algorithms.

In fact, we are in the process of generalizing our auction-based algorithm for improving system availability

[35] and integrating it into the framework to support (re)deployment in decentralized settings.

10 ”peer-to-peer” here refers to the widely used software architectural style [58], where a peer is a software component, and not a

hardware host. In this discussion, we are not considering situations where all hardware hosts have the same configuration of

software components.

Figure 14. An abridged view of MIDAS’s architecture that is monitored, analyzed, and adapted at runtime: a) por-

tions of MIDAS’s software architecture, including its three sub-architectures; b) DeSi and its Prism-MW Adapter.

H. PRACTICAL APPLICATIONS OF THE FRAMEWORK

We have applied the described DIF framework on two application families developed with external col-

laborators. The first application family, Emergency Deployment System (EDS) [31], is from the domain of

mobile pervasive systems intended to deal with situations such as natural disasters, search-and-rescue efforts,

and military crises. Our work on EDS initially motivated this research. The second application family is MI-

DAS [37], a security monitoring distributed application composed of a large number of wirelessly connected

sensors, gateways, hubs, and PDAs. In both cases, the applications involved varying numbers of hosts, com-

ponents, system parameters, and QoS, allowing our collaborators to apply the framework. Below we describe

our experience with applying our framework in the context of these two application families. We provide an

overview of their functionalities and architectures to the extent necessary for explaining the role of the DIF

framework. An interested reader can find more details about these systems in [31,36,37].

1. MIDAS

Figure 14 shows a subset of MIDAS’s software architecture. MIDAS is composed of a large number of

wirelessly connected sensors, gateways, hubs, and PDAs. The sensors are used to monitor the environment

around them. They communicate their status to one another and to the gateways. The gateway nodes are re-

sponsible for managing and coordinating the sensors. Furthermore, the gateways translate, aggregate, and

fuse the data received from the sensors, and propagate the appropriate data (e.g., events) to the hubs. Hubs, in

turn, are used to evaluate and visualize the sensor data for human users, as well as to provide an interface

through which a user can send control commands to the various sensors and gateways in the system. Hubs

may also be configured to propagate the appropriate sensor data to PDAs, which are used by the mobile users

of the system. As denoted on the left side of the figure, three architectural styles were used in MIDAS: ser-

vice-oriented, publish-subscribe, and peer-to-peer. The peer-to-peer portion of this architecture corresponds

to the meta-level functionality of system monitoring, analysis, and adaptation via DeSi and Prism-MW.

MIDAS has several QoS requirements that need to be satisfied in tandem. The two most stringent re-

quirements are latency and energy consumption: MIDAS is required to transmit a high-priority event from a

sensor to a hub and to receive an acknowledgement back in less than two seconds; given that some of the

MIDAS platforms (e.g., sensors and some gateways) are battery-powered, minimizing the energy consump-

tion is also of utmost concern. MIDAS also has several deployment constraints that need to be satisfied.

Some examples of these constraints are as follows: exactly one instance of the SDEngine component, which

is responsible for the discovery of currently available services in MIDAS, should be deployed on each host;

every SessionOperator component should be collocated with the corresponding SessionAdministrator com-

ponent; a HubOperator component can only be deployed on a hub; and so on. On top of the locational con-

straints, MIDAS has several resource (system) constraints. Most notably, the sensors, PDAs, and some of the

gateway platforms are memory-constrained devices that could only host a small number of components.

Our objective was to find and maintain an effective deployment for different instantiations of MIDAS.

Prior to this, MIDAS’s deployments were determined manually, at times guided by unclear rationales, and

their effectiveness was never evaluated quantitatively. This is of particular concern in a mobile embedded

system, which is affected by unpredictable movement of target hosts and fluctuations in the quality of wire-

less network links. Moreover, since engineers did not know a priori the properties of the target environment

and the system’s execution context, they would often make deployment decisions that were inappropriate. In

turn, given that the majority of platforms in MIDAS lack a convenient interface (e.g., monitor, disk drive, or

keyboard) that could be used for the download and installation of software, redeploying the software was a

cumbersome task that required bringing MIDAS down each time.

One set of application scenarios in which our framework was applied was similar to that shown in Figure

15 but with two additional gateways and a total of 30 software components. We could not execute the MIP

algorithm due to size of the problem (i.e., 5
30

combinations). Instead, we executed the genetic, greedy, and

MINLP algorithms, and selected the best solutions. For these particular scenarios, the genetic algorithm out-

performed greedy and MINLP. It took the genetic algorithm slightly over 40 seconds on a mid-range PC to

find the solutions every time, in comparison to the average of 4.5 hours required for an engineer to manually

find a deployment for the same system that satisfied only the system’s constraints (i.e., without even attempt-

ing to optimize the latency and energy consumption QoS dimensions). It is then not surprising that the ge-

netic algorithm’s solutions were on the average 23% better than the manual deployments in terms of QoS

provisioned by the system’s services.

After a design-time analysis of the model, our framework was leveraged to deploy and execute each in-

stance of the system. To this end, the Effector component in the DeSi Adapter Architecture converted the

deployment model exported by DeSi into a total of 165 commands, which were sent to the Deployer and

Admin components running on MIDAS’s hosts. Each command corresponds to a runtime adaptation (e.g.,

add component, attach communication port) that is performed by Prism-MW. The total time for automati-

cally deploying the software, which included shipping the component’s logic via DLL files, instantiating and

initializing the component, and configuring the architecture, was measured to be just under 11 seconds on the

average. In comparison, it took the MIDAS engineers 6 hours on the average to deploy and configure the

same software system using common build scripts (e.g., Apache Ant).

The system was then monitored, and the framework’s ability to react to changes in the environment was

tested repeatedly during the system’s execution. The framework proved useful in improving the system’s

QoS in several instances. In particular, our collaborators found the framework effective in mitigating two

types of situations. When the movement of a PDA caused the available wireless network bandwidth to drop

off significantly, the framework would selectively redeploy some of the services in the service-oriented layer

of the gateways (e.g., NodeInfoSvc) to the PDA, which resulted in close to a 30% improvement in the appli-

cation’s response time on the average. Similarly, in situations where unexpected load on the system depleted

some gateways’ or PDAs’ batteries, the framework redeployed the computationally intensive components

(e.g., TopologyCalculator) to the back-end hubs, and prolonged the life of the depleted hosts. Our measure-

ments showed that these particular redeployments reduced the energy consumption of the depleted hardware

hosts by 40% or more, although they also resulted in increased latencies. While it is conceivable that an en-

gineer may have been able to effect the same redeployments manually, our framework allowed her to rapidly

explore a number of options, set the appropriate parameter priorities, and obtain accurate quantitative results.

The analysis of the MIDAS architecture in approximately 100 different scenarios resulted in the rede-

ployment of three software components on average. That is, only a small fraction of the system’s 30 compo-

nents were redeployed at any point in time. This is attributed to the fact that the changes were localized to a

small portion of the system at any point in time (e.g., heavy load on a host, weak network signal due to the

movement of a particular PDA). Moreover, since the framework typically redeployed only small portions of

the system at a given time, the system’s users were often unaware that the changes were occurring.

The average size of the MIDAS components redeployed in our experiments was 113KB. Given that on

average three components were redeployed per scenario, we estimate the network traffic associated with re-

deployment to be 340KB. The DIF framework’s network usage was negligible in MIDAS, as the devices

were connected using a dedicated IEEE 802.11b wireless network, which provides up to 11Mbps of band-

width. However, the DIF’s network impact would have to be considered more carefully in systems with a

slower network.

Finally, an unexpected outcome of our experience was that the engineers found DIF to be helpful not

only for improving QoS, but also for rapidly testing a fix to a problem during the development. This is a

highly time-consuming task that is traditionally performed manually in this setting, which our framework’s

redeployment and monitoring facilities were able to streamline.

2. Emergency Deployment System

We now describe our experience with DIF in the context of the Emergency Deployment System (EDS)

application family, which was foreshadowed in the scenario used in the Introduction. An instance of EDS

with single Headquarters, four Team Leads, and 36 Responders is shown in Figure 15a. A computer at

Headquarters gathers information from the field and displays the current field status: the locations of friend-

ly and, if applicable, enemy troops, vehicles, and obstacles such as fires or mine fields. The headquarters

computer is networked via secure links to a set of PDAs used by Team Leads in the field. The team lead

Figure 15. (a) An instance of EDS. (b) A subset of the EDS deployment architecture that is monitored and re-

deployed using our framework.

Left Team Lead

Strategy

AnalysisKB

Headquarters

Left Responder Right Responder Right Team Lead

Clock

Weather

Repository

MapWeather

Analyzer
Resource

Manager

Simulation

Agent

Resource

Monitor

SAKBUI

HQUI

StrategyAn

alyzerAgent Deployment

Advisor

Comman

der UI
Soldier

UI

Comman

derUI

Soldier

UI

Admin Admin Admin

DeployerAdmin

Legend:

Deployer/

Admin

EvtFrequencyMonitor

NetworkReliabilityMonitor

Skeleton

Configuration

Architecture

Pointer to

architecture

Network

links

Interaction

links

(b) (a)

PDAs are connected directly to each other and to a large number of Responder PDAs. Each team lead is ca-

pable of controlling his own part of the field: deploying responders, analyzing the deployment strategy, trans-

ferring responders between team leads, and so on. In case the Headquarters device fails, a designated Team

Lead assumes the role of Headquarters. Responders can only view the segment of the field in which they are

located, receive direct orders from the Team Leads, and report their status.

Figure 15b shows the initial deployment architecture of an instance of EDS that we use to describe our

experiences in this case study. The corresponding models were first constructed in DeSi, populated with the

information available prior to system’s execution (e.g., upper-bound estimates on the sizes of components,

locational constraints, available memory on the hosts), and the initial deployment was then selected through

the application of DIF at design-time. As depicted in Figure 15b, DIF was then applied during the system’s

execution by monitoring the system (e.g., frequency of invocations, network reliabilities), reassessing its

deployment, and migrating the components.

Figure 16 shows a portion of the models constructed in DeSi to represent the system’s users (left), their

QoS preferences (middle), and user-level services (right) provisioned by the system’s components for the

deployment architecture from Figure 15b. In Figure 16, Latency is selected as the QoS dimension of interest.

Figure 16. Some of the EDS users, their QoS preferences, and user-level services as modeled in DeSi.

As a result, DeSi is showing the Headquarters’ latency preferences for the Analyze Strategy service in the

property sheet (bottom). This figure shows one way of specifying preferences in DeSi: a 10% (0.1) im-

provement in latency results in a 20% (0.2) increase in utility for the Headquarters user.

The EDS scenario reported on here and depicted in Figure 15b consisted of 5 users: Headquarters, Left

Team Lead, Right Team Lead, Left Responder, and Right Responder. Altogether, the users specified 10 dif-

ferent QoS preferences for a total of 8 services. The services were Analyze Strategy, Move Resources, Get

Weather, Get Map, Update Resources, Remove Resources, Simulate Drill, and Advise Deployment.

Table 2 shows the preferences of the five users, captured in this case as linear functions. The table shows

that Headquarters has specified a utility that increases twice as fast as the changes in latency of the Analyze

Strategy service. In EDS, we found simple linear representation of the users’ preference to be sufficiently

expressive. Other forms of representing the users’ preferences, such as sigmoid functions proposed in [58],

are also possible. Note that users are not required to express their preferences in terms of functions. For ex-

ample, they may express their preferences in terms of simple scalar values, which are then passed through

commonly available regression tools to derive equivalent utility equations.

Unlike the “synthesized” problems presented in Section VI.A, where we evaluated the algorithms under

the most stringent conditions (i.e., all users specify preferences for all of the QoS dimensions of all services),

in this scenario the users did not specify preferences for some of the QoS dimensions of certain services.

The greedy algorithm was the best approach for solving this problem for two reasons (recall Section

VI.G): (1) the architecture was large enough (i.e., 5
17

 ≈ 760 billion possible deployments) that executing the

MIP algorithm required approximately 3 hours and MINLP approximately 8 minutes; and (2) there were

many locational constraints, which tend to hamper the accuracy of the genetic algorithm. The greedy algo-

Table 2. Users’ preferences in EDS, where a, e, l, and s represent the level of availability, energy consump-

tion, latency, and security, respectively.

 Headquarters Left

Team Lead

Right

Team Lead

Left

Responder

Right

Responder

Analyze Strategy qUtil(l) = 2l qUtil(e) = 2e

Move Resources qUtil(a) = 4a qUtil(a) = 4a qUtil(l) = (4/3)l

Get Weather qUtil(s) = (1/9)s

qUtil(e) = 4e

qUtil(e) = 4e

Get Map qUtil(l) = (4/3)l qUtil(s) = (1/9)s qUtil(l) = (4/3)l qUtil(e) = 4e qUtil(e) = 4e

Update Resources qUtil(l) = 2l qUtil(l) = 2l

Remove Resources qUtil(e) = 4e qUtil(e) = 4e

Simulate Drill

Advise Deployment qUtil(l) = 2l qUtil(l) = 2l qUtil(e) = 2e

rithm executed in 7.6 seconds and was

able to produce a solution that was

within 4% of the optimal solution

eventually found by MIP.

Table 3 shows the results of ex-

ecuting the greedy algorithm on the

instance of the EDS application de-

picted in Figure 15b. Careful analysis

of this table allows us to relate the cha-

racteristics of the deployment sug-

gested by the algorithm to the prefe-

rences specified by the users, and

hence develop some insights into the

quality of the solution produced by the

algorithm:

• On the average, the four QoS dimensions of the eight services improved by 42%. This indicates the ex-

tent to which a good deployment can impact a system’s overall QoS.

• The QoS dimension of services for which the users have specified a preference improved on the average

by 78%, while the remaining QoS dimensions improved on the average by 17%. This corroborates that

the greedy algorithm indeed zeroes in on the QoS dimensions that are important to the users.

• The average improvement in the QoS dimensions of the Simulate Drill service is 4%, which is signifi-

cantly lower than the average improvement of other services. This is attributed to the fact that no QoS

preferences were specified for Simulate Drill (recall Table 2). In contrast, the average improvement in

the delivered quality of the services for which multiple users specified preferences (e.g., Move Re-

sources, Get Map, and Advise Deployment) is significantly higher than for the other services.

• The average improvements for Energy Consumption and Latency are significantly higher than for the

other two QoS dimensions. This is attributed to the fact that users specified more preferences for these

two dimensions.

• Notice that in a few cases the QoS dimensions have degraded slightly, reflecting the fact that the users

have not specified any preferences for them.

Table 3. Results of running the greedy algorithm on the EDS scena-

rio. The highlighted cells correspond to the QoS dimensions for

which the users have specified preferences in Table 2.

A
v

ai
la

b
il

it
y

L
at

en
cy

C
o

m
m

u
n

ic
at

io
n

 S
ec

u
ri

ty

E
n

er
g

y

C
o

n
su

m
p

ti
o

n

A
v

g
.

Im
p

ro
v
em

en
t

in

E
ac

h
 S

er
v

ic
e

Analyze Strategy 63% 12% 5% 79% 39.7%

Move Resources 78% 68% 2% 63% 52.7%

Get Weather -3% 11% 81% 59% 37%

Get Map 29% 59% 82% 73% 60.7%

Update Resources 9% 92% 19% -6% 28.5%

Remove Resources -1% 25% 23% 103% 37.5%

Simulate Drill 17% -8% 1% -6% 4%

Advise Deployment 61% 134% 22% 92% 77.2%

Avg. Improvement

in Each QoS

31.6% 48.1% 29.3% 57.1%

The results obtained in this instance are consistent with those obtained from other examples (e.g., recall

Table 1) as well as in other instances of EDS. The largest instance of EDS on which we applied the frame-

work consisted of 105 software components and 41 hardware hosts. While in that instance it was not possible

to execute the MIP and MINLP solvers, the genetic and greedy algorithms were able to find solutions in ap-

proximately 4 and 5 minutes, respectively. A detailed analysis of the solutions found by these algorithms in-

dicated the same level of fine-grained trade-off analysis based on the users’ preferences. The details of apply-

ing the greedy and genetic algorithm on the larger instances of EDS are elided because the problem’s size

prevents us from being able to depict the relevant data (e.g., user preferences for different system services) in

a meaningful way.

VII. RELATED WORK

Numerous researchers have looked at the problem of improving a system’s QoS through resource sche-

duling [24] and resource allocation [28,46]. However, only a few have considered the users’ preferences in

improving QoS. The most notable of these approaches are Q-RAM [28] and the work by Poladian et al. [53].

Q-RAM is a resource reservation and admission control system that maximizes the utility of a multimedia

server based on the preferences of simultaneously connected clients. Poladian et al. have extended Q-RAM

by considering the problem of selecting applications among alternatives such that the cost of change to the

user is minimized. Neither of these works considers the impact of the software system’s deployment archi-

tecture on the provided QoS. Furthermore, these approaches are only applicable to resource-aware applica-

tions, i.e., applications that can be directly customized based on the available resources.

Several previous approaches [2,3,9,14] have used techniques grounded in stochastic process algebra to

assess a software system’s QoS properties at runtime. These techniques leverage annotated architectural

models to derive the corresponding process algebra (e.g., Markov Model), which are then assessed to obtain

estimates of the system’s performance (e.g., [3,4]) and reliability (e.g., [9,14]). These techniques are com-

plementary to our work, as they could be used to estimate the QoS provisioned by a given deployment archi-

tecture. In other words, such techniques could be used to instantiate the qValue functions in Figure 5.

Carzaniga et al. [7] provide an extensive comparison of existing software deployment approaches. They

identify several issues lacking in the existing deployment tools, including integrated support for the entire

deployment life cycle. An exception is Software Dock [6], which provides software agents that travel among

hosts to perform software deployment tasks. Unlike our approach, however, Software Dock does not focus

on extracting system parameters, visualizing, or evaluating a system’s deployment architecture, but rather on

the practical concerns of effecting a deployment.

The problem of improving a system’s deployment has been studied by several researchers. I5 [1], pro-

poses the use of the integer programming model for generating an optimal deployment of a software applica-

tion over a given network, such that the overall remote communication is minimized. Solving their model is

exponentially complex, rendering I5 applicable only to systems with very small numbers of software compo-

nents and hosts. Coign [20] provides a framework for distributed partitioning of a COM application across

only a pair of hosts on a network. Coign monitors inter-component communication and then selects a distri-

bution of the application that will minimize communication time, using the lift-to-front minimum-cut graph

cutting algorithm. J-Orchestra [63] transforms a centralized Java program executing on a single JVM into a

distributed one running across multiple JVMs. It provides a semi-automatic transformation supported by a

GUI, which is used by the user to select the system’s classes and assign them to network locations. Kichkay-

lo et al. [25] provide a model, called component placement problem (CPP), for describing a distributed sys-

tem in terms of network and application properties and constraints, and a planning algorithm for solving the

CPP model. The focus of this work is to capture the constraints that restrict the solution space of valid dep-

loyment architectures and search for any valid deployment that satisfies those constraints, without consider-

ing the deployment’s quality. Manolios et al. [39] propose a language for expressing the requirements of

component assembly, including a set of properties and constraints that need to be satisfied. Requirements are

compiled into a Boolean Satisfiability Problem (SAT) and solved using commonly available solvers. This

approach checks only whether a given component assembly is legal, and does not take into consideration

users, user preferences, or optimization of multiple objectives. Bennani and Menasce [5,41] have developed

a technique for finding the optimal allocation of application environments to servers in data centers. Similar

to our approach, their objective is to optimize a utility function, which is used to perform trade-off analysis

on the different facets of performance. Unlike our approach, however, their utility functions are not driven by

the users’ preferences. Moreover, the models and algorithms presented are limited to predefined system and

QoS properties that are deemed important in the data center domain. Two recent approaches try to optimize

specific system characteristics, but are restricted to dataflow architectures. One of them, Dryad [22], ad-

dresses the problem of making it easier for developers to write efficient parallel and distributed applications.

A Dryad application combines computational “vertices” with communication “channels” to form a dataflow

graph. Dryad runs the application by executing the vertices of this graph on a set of available computers,

while optimizing the system’s efficiency. The other dataflow-based system, Wishbone [47], provides a solu-

tion for optimal partitioning of sensor network application code across sensors and backend servers. Wish-

bone’s objective is to achieve optimal trade-off between the CPU load and network utilization. Finally, in our

prior work [35,42], we devised a set of algorithms for improving a software system’s availability by finding

an improved deployment. The novelty of our approach was a set of algorithms that scaled well to larger sys-

tems. However, our approach was limited to a predetermined set of system parameters and a predetermined

definition of availability.

None of the above approaches (including our own previous work) considers the system users and their

QoS preferences, or attempts to improve more than one QoS dimension of interest. The only exception is our

earlier work [45], in which we highlighted the need for user-driven multi-dimensional optimization of soft-

ware deployment and briefly outlined a subset of DIF. Furthermore, no previous work has considered users’

QoS preferences at the granularity of application-level services. Instead, the entire distributed software sys-

tem is treated as one service with one user, and a particular QoS dimension serves as the only QoS objective.

Finally, DIF is unique in that it provides a mathematical framework for quantifying the utility of an arbitrary

system’s deployment, taking into account a set of system parameters of interest. The framework thereby pro-

vides an objective scale for assessing and comparing different deployments of a given system.

The implementation and evaluation of the existing redeployment techniques mentioned above is done in

an ad-hoc way, making it hard to adopt and reuse their results. One of the motivations for developing our

framework and its accompanying tool support has been to address this shortcoming. Related to our work is

the research on architecture-based adaptation frameworks, examples of which are the frameworks by Garlan

et al. [15] and Oreizy et al. [49]. Similar to them, in [38], we present the application of a subset of our

framework’s components in enabling architecture-based adaptation of a mobile robotic system; we do not

summarize those results in this paper's evaluation because the primary focus there is on addressing chal-

lenges posed by mobility rather than deployment. As opposed to general purpose architecture-based adapta-

tion frameworks, we are only considering a specific kind of adaptation (i.e., redeployment of components).

Therefore, we are able to create a more detailed and practical framework that guides the developers in the

design of redeployment solutions. Related also is previous research on adaptation assurance and verification

techniques [61,66], which we view as complementary to our approach for ensuring safe and sound reconfigu-

ration of software components.

Optimizing allocation of software (logical) elements to hardware (physical) resources is an area of re-

search that has been studied in a variety of contexts before, such as distributed process scheduling [17], task

scheduling in grid computing [59], and process allocation to clustered computers [19]. These works have

guided the development of our framework. However, unlike any of these works, our framework is targeting

the allocation of software components, which are not only conceptually very different from OS-level

processes or grid-level tasks, but are also realized and treated differently in practice. Moreover, almost none

of these approaches are driven by complex and conflicting user QoS requirements, but rather focus on im-

proving a particular system-level metric (e.g., maximizing CPU utilization/throughput) in isolation.

VIII. CONCLUSION

As the distribution and mobility of computing environments grow, so does the impact of a system’s dep-

loyment architecture on its QoS properties. While several previous works have studied the problem of assess-

ing and improving the quality of deployment in a particular scenario or class of scenarios, none have ad-

dressed it in its most general form, which may include multiple, possibly conflicting QoS dimensions, many

users with possibly conflicting QoS preferences, many services, and so forth. Furthermore, no previous work

has developed a comprehensive solution to the problem of effectively managing the quality of a system’s

deployment. In this paper, we have presented an extensible framework, called Deployment Improvement

Framework (DIF), for improving a software-intensive system’s QoS by finding the best deployment of the

system’s software components onto its hardware hosts. DIF allows rapid, quantitative exploration of a sys-

tem’s, typically very large, deployment space.

From a theoretical perspective, the contribution of our approach is a QoS trade-off model and accompa-

nying algorithms, which, given the users’ preferences for the desired levels of QoS, find the most suitable

deployment architecture. We have demonstrated the tailorability of our solution and its ability to handle

trade-offs among QoS dimensions by instantiating it with four representative, conflicting dimensions. We

also discussed four approaches to solving the resulting multi-dimensional optimization problem, and pre-

sented several novel heuristics for improving the performance of each approach. The design of the frame-

work model and algorithms allows for arbitrary specification of new QoS dimensions and their improvement.

From a practical perspective, the contribution of our work is an integrated solution, in which the data

about system parameters are either acquired at design-time (via an ADL or from a system architect) or at run-

time (via an execution platform such as Prism-MW), and an improved deployment architecture is calculated

(via DeSi), and effected (via an interplay between the execution platform and DeSi). Our framework pro-

vides the foundation for comparing these and other solutions and for conducting future research into new

distribution scenarios and new algorithms.

While our results have been very positive, a number of pertinent questions remain unexplored. We intend

to extend the model to allow for the expression of negative utility due to the inconvenience of changing a

system’s deployment at runtime. This will make the approach more practical for use in highly unstable sys-

tems, where continuous fluctuations may force constant redeployments. We are also developing the capabili-

ty to automatically select the best algorithm(s) based on system characteristics and execution profile. Since

redeployment is only one approach for improving QoS of distributed software systems, we plan to extend the

framework to other types of adaptation choices that may impact a system’s QoS, and perform the analysis

not only among the alternative deployments, but across a larger suite of adaptation choices [49,50,62].

IX. REFERENCES

1. Architecture Analysis and Design Language (AADL). http://www.aadl.info/

2. S. Balsamo, M. Bernardo, and M. Simeoni. “Combining Stochastic Process Algebras and Queueing Networks for Soft-

ware Architecture Analysis,” Int’l Workshop on Software and Performance (WOSP 2002), Rome, Italy, July 2002.

3. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. “Model-Based Performance Prediction in Software Develop-

ment: A Survey,” IEEE Transaction on Software Engineering, vol. 30, no. 5, pages 295-310, May 2004.

4. M. C. Bastarrica, A. A. Shvartsman, and S. A. Demurjian, “A Binary Integer Programming Model for Optimal Object

Distribution,” Int’l Conf. on Principles of Distributed Systems, Amiens, France, Dec. 1998.

5. M. Bennani, and D. Menasce, “Resource Allocation for Autonomic Data Centers Using Analytic Performance Models,"

Proc. IEEE International Conference on Autonomic Computing, Seattle, WA, June 13-16, 2005.

6. A. Carzaniga, G. P. Picco, and G. Vigna. “Designing Distributed Applications with Mobile Code Paradigms.” Interna-

tional Conference on Software Engineering, Boston, Massachusetts, May 1997.

7. A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf, “A Characterization Framework

for Software Deployment Technologies,” Technical Report, Department of Computer Science, University of Colorado,

1998.

8. E. Castillo, et al. “Building and Solving Mathematical Programming Models in Engineering and Science,” John Wiley &

Sons, New York, NY, 2001.

9. D. Cooray, S. Malek, R. Roshandel, and D. Kilgore, “RESISTing Reliability Degradation through Proactive Reconfigura-

tion,” IEEE/ACM International Conference on Automated Software Engineering (ASE 2010), Antwerp, Belgium, Sep-

tember 2010.

10. J. Czyzyk, M. P. Mesnier, and J. J. More, “The NEOS Server,” IEEE Journal of Computational Science and Engineering,

pages 68-75, 1998.

11. E. M. Dashofy, A. Van der Hoek, and R. N. Taylor, “A Comprehensive Approach for the Development of Modular Soft-

ware Architecture Description Languages,” ACM Transactions on Software Engineering and Methodology, 14(2), April

2005, pp. 199-245.

12. G. Edwards, S. Malek, and N. Medvidovic. “Scenario-Driven Dynamic Analysis of Distributed Architecture,” Int’l.

Conf.on Fundamental Approaches to Software Engineering (FASE 2007), Braga, Portugal, March 2007.

13. G. Edwards and N. Medvidovic, “A Methodology and Framework for Creating Domain-Specific Development Infrastruc-

tures,” Int’l Conf. on Automated Software Engineering (ASE), L’Aquila, Italy, September 2008.

14. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model evolution by run-time parameter adaptation,” Interna-

tional Conference on Software Engineering (ICSE 2009), Vancouver, Canada, May 2009,

15. D. Garlan, S. Cheng, and B. Schmerl, “Increasing System Dependability through Architecture-based Self-repair,” In R. de

Lemos, C. Gacek, A. Romanovsky, eds., Architecting Dependable Systems, 2003.

16. K. Gummadi, et al. “King: Estimating Latency between Arbitrary Internet End Hosts,” SIGCOMM Computer Communi-

cation Review, July 2002.

17. T. Gyires, “A Distributed Process Scheduling Algorithm Based on Statistical Heuristic Search,” IEEE Int’l Conf. on Sys-

tems, Man and Cybernetics: intelligent systems for the 21
st
 century, New Jersey, USA, 1995.

18. R. S. Hall, D. Heimbigner, and A. L. Wolf, “A Cooperative Approach to Support Software Deployment Using the Soft-

ware Dock,” Int’l Conf. in Software Engineering (ICSE 1999), Los Angeles, CA, May 1999.

19. K. E. Hoganson, “Workload Execution Strategies and Parallel Speedup on Clustered Computers,” IEEE Transactions on

Computers, vol. 48, no. 11, pages 1173-1182, Nov. 1999.

20. G. Hunt, and M. L. Scott, “The Coign Automatic Distributed Partitioning System,” Symp. on Operating System Design

and Implementation (OSDI 1999), New Orleans, Feb. 1999

21. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY: 1990.

22. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: Distributed Data-Parallel Programs from Sequential

Building Blocks.” 2
nd
 ACM SIGOPS/EuroSys European Conference on Computer Systems, Lisbon, Portugal, March

2007.

23. J. E. Ingersoll. Theory of Financial Decision Making. Rowman and Littlefield, 1987.

24. M. Jones, D. Rosu, and M. Rosu, “CPU Reservations and Time Constraints: Efficient, Predictable Scheduling of Inde-

pendent Activities,” Symp. on Operating Systems Principles (SOSP 1997), 1997.

25. T. Kichkaylo A. Ivan, and V. Karamcheti. “Constrained Component Deployment in Wide-Area Networks Using AI Plan-

ning Techniques,” Int’l Parallel and Distributed Processing Symposium, Nice, France, April 2003.

26. J. Kramer and J. Magee. “The Evolving Philosophers Problem: Dynamic Change Management,” IEEE Transactions on

Software Engineering, vol 16, 1990.

27. J. Kramer, and J. Magee. “Self-Managed Systems: an Architectural Challenge.” International Conference on Software

Engineering, Future of Software Engineering Track, Minneapolis, MN, May 2007.

28. C. Lee, et al. “A Scalable Solution to the Multi-Resource QoS Problem,” IEEE Real-Time Systems Symposium, 1999.

29. N. Medvidovic, R. Taylor, “A Classification and Comparison Framework for Software Architecture Description Lan-

guages,” IEEE Transactions on Software Engineering, vol. 26, no. 1, pages 70-93, January 2000.

30. N. Medvidovic. “On the role of middleware in architecture-based software development.” International Conference on

Software Engineering and Knowledge Engineering (SEKE 2002), Ischia, Italy, July 2002.

31. N. Medvidovic, M. Mikic-Rakic, N. Mehta, and S. Malek. “Software Architectural Support for Handheld Computing,”

IEEE Computer, vol. 36, no. 9, pages 66-73, September 2003.

32. N. Medvidovic, E. Dashofy, R. Taylor, “Moving Architectural Description from Under the Technology Lamppost,”

Journal of Information and Software Technology, vol. 49, no. 1, pages 12-31, January 2007.

33. S. Malek, “A User-Centric Approach for Improving a Distributed Software System’s Deployment Architecture,” PhD

Dissertation, University of Southern California, August 2007.

34. S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Style-Aware Architectural Middleware for Resource-Constrained,

Distributed Systems,” IEEE Trans. on Software Engineering, Vol. 31, No. 4, March 2005.

35. S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Decentralized Redeployment Algorithm for Improving the Availabili-

ty of Distributed Systems,” Int’l Working Conf. on Component Deployment (CD 2005), Grenoble, France, Nov. 2005.

36. S. Malek, C. Seo, S. Ravula, B. Petrus, and N. Medvidovic. “Providing Middleware-Level Facilities to Support Architec-

ture-Based Development of Software Systems in Pervasive Environments,” Int’l Workshop on Middleware for Pervasive

and Ad-Hoc Computing (MPAC 2006), Melbourne, Australia, November 2006.

37. S. Malek, C. Seo, S. Ravula, B. Petrus, and N. Medvidovic, “Reconceptualizing a Family of Heterogeneous Embedded

Systems via Explicit Architectural Support,” Int’l Conf. on Software Engineering (ICSE 2007), Minneapolis, Minnesota,

May 2007.

38. S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N. Medvidovic, M. Mikic-Rakic, and G. Sukhatme. “An

Architecture-Driven Software Mobility Framework.” Journal of Systems and Software, Special Issue on Architecture and

Mobility, vol. 83, no. 6, pages 972-989, June 2010.

39. P. Manolios, G. Subramanian, and D. Vroon. “Automating Component-Based System Assembly,” International Sympo-

sium on Software Testing and Analysis, July 2007.

40. D. A. Menasce, J. M. Ewing, H. Gomaa, S. Malek, and J. P. Sousa. “A Framework for Utility-Based Service Oriented

Design in SASSY.” Joint WOSP/SIPEW Int’l Conf. on Performance Engineering, San Jose, CA, January 2010.

41. D. Menasce, “Allocating Applications in Distributed Computing,” IEEE Internet Computing, Vol. 9, No. 2, March 2005.

42. M. Mikic-Rakic, S. Malek, and N. Medvidovic, “Improving Availability in Large, Distributed, Component-Based Sys-

tems via Redeployment,” Int’l Working Conf. on Component Deployment, Grenoble, France, 2005

43. M. Mikic-Rakic, and N. Medvidovic, “Support for Disconnected Operation via Architectural Self-Reconfiguration,” Int’l.

Conf. on Autonomic Computing, New York, May 2004.

44. M. Mikic-Rakic, S. Malek, N. Beckman, and N. Medvidovic, “A Tailorable Environment for Assessing the Quality of

Deployment Architectures in Highly Distributed Settings,” Int’l Conf. on Component Deployment, Edinburgh, UK, May

2004.

45. M. Mikic-Rakic, S. Malek, and N. Medvidovic, “Architecture-Driven Software Mobility in Support of QoS Require-

ments,” Int’l Workshop on Software Architectures and Mobility (SAM), Leipzig, Germany, May 2008.

46. R. Neugebauer, et al. “Congestion Prices as Feedback Signals: An Approach to QoS Management,” ACM SIGOPS Euro-

pean Workshop, 2000.

47. R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden. “Wishbone: Profile-based Partitioning for Sensornet

Applications” Networked Systems Design and Implementation, Boston, MA, April 2009.

48. Object Management Group UML. http://www.omg.org/uml

49. P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-Based run-time Software Evolution,” Int’l. Conf. on Software

Engineering (ICSE 1998), Kyoto, Japan, April 1998.

50. P. Oreizy, N. Medvidovic, and R. N. Taylor. “Runtime Software Adaptation: Framework, Approaches, and Styles,” Int’l

Conf. on Software Engineering (ICSE 2008), Leipzig, Germany, May 2008.

51. H. Pham. “Software Reliability and Testing,” Wiley-IEEE Computer Society, 1
st
 edition, 1995.

52. F. Piedad. “High Availability: Design, Techniques, and Processes,” Prentice Hall, January 2001.

53. V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw. “Dynamic Configuration of Resource-Aware Services,” Int’l. Conf. on

Software Engineering, Edinburgh, Scotland, May 2004.

54. S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,” Prentice Hall, Englewood Cliffs, NJ, 1995.

55. C. Seo, S. Malek, and N. Medvidovic, “An Energy Consumption Framework for Distributed Java-Based Software Sys-

tems,” Int’l. Conf. on Automated Software Engineering (ASE 2007), Atlanta, Georgia, November 2007.

56. C. Seo, S. Malek, and N. Medvidovic, “Component-Level Energy Consumption Estimation for Distributed Java-Based

Software Systems,” Int’l Symp. on Component Based Software Engineering (CBSE 2008), Karlsruhe, Germany, October

2008.

57. J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. “Task-based adaptation for ubiquitous computing.” IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 36, no. 3, 328-340, May 2006.

58. J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan. “User Guidance of Resource-Adaptive Sys-

tems,” International Conference on Software and Data Technologies, Porto, Portugal, July 2008.

59. V. Subramani, et al. “Distributed Job Scheduling on Computational Grids Using Multiple Simultaneous Requests,” Int’l

Symposium On High Performance Distributed computing (HPDC 2002), Edinburgh, Scotland, July 2002.

60. W. Stallings, “Cryptography and Network Security,” Prentice Hall, Englewood Cliffs, NJ, 2003.

61. E. A. Strunk, and J. C. Knight, “Dependability Through Assured Reconfiguration in Embedded System Software,” IEEE

Transactions on Dependable and Secure Computing, Vol. 3, No. 3, pp 172-187, July 2006.

62. R. N. Taylor, N. Medvidovic, and E. Dashofy. “Software Architecture: Foundations, Theory, and Practice,” John Wiley &

Sons, 2008.

63. E. Tilevich, Y. Smaragdakis. “J-Orchestra: Enhancing Java Programs with Distribution Capabilities,” ACM Transactions

on Software Engineering and Methodology (TOSEM), Vol 19, No. 1, August 2009.

64. W. E. Walsh, G. Tesauro, J. O. Kephart, R. Das. “Utility Functions in Autonomic Systems.” Int’l Conf. on Autonomic

Computing, New York, NY, May 2004.

65. L. A. Wolsey, “Integer Programming,” John Wiley & Sons, New York, NY, 1998.

66. J. Zhang, and B. H. C. Cheng, “Model-Based Development of Dynamically Adaptive Software,” Int’l Conf. on Software

Engineering (ICSE 2006), Shanghai, China, May, 2006.

Sam Malek is an Assistant Professor in the Department of Computer

Science at George Mason University (GMU). He is also a faculty member of

the C4I Center at GMU. Malek’s general research interests are in the field of

software engineering, and to date his focus has spanned the areas of soft-

ware architecture, distributed and embedded software systems, middleware,

autonomic computing, service-oriented architectures, and quality of service

analysis. His research has been funded by NSF, US Army, and SAIC. Malek

received his Ph.D. in 2007 from the Computer Science Department at the University of Southern California

(USC). His dissertation research was nominated by USC for the final round of the ACM Doctoral Disserta-

tion Competition in 2007. He also received an M.S. degree in Computer Science in 2004 from USC, and a

B.S. degree in Information and Computer Science cum laude in 2000 from the University of California, Ir-

vine. Malek is the recipient of numerous awards, including USC Viterbi School of Engineering Fellow

Award in 2004, and the USC Computer Science Outstanding Student Research Award in 2005. He is a mem-

ber of ACM, ACM SIGSOFT, and IEEE.

Nenad Medvidović is an Associate Professor in the Computer Science De-

partment at the University of Southern California in Los Angeles. He is the

director of the USC Center for Systems and Software Engineering (CSSE).

Medvidović is the Program Co-Chair of the 2011 International Conference on

Software Engineering (ICSE 2011), to be held in Honolulu, Hawaii in May

2011. Medvidović received his Ph.D. in 1999 from the Department of Infor-

mation and Computer Science at the University of California, Irvine.

Medvidović is a recipient of the U.S. National Science Foundation CAREER

(2000) and ITR (2003) awards, the Okawa Foundation Research Grant (2005), the IBM Real-Time Innova-

tion Award (2007), and the ICSE Most Influential Paper Award (2008). Medvidović's research interests are

in the area of architecture-based software development. His work focuses on software architecture modeling

and analysis; middleware facilities for architectural implementation; domain-specific architectures; architec-

tural adaptation; and architecture-level support for software development in highly distributed, mobile, and

embedded computing environments. He is a co-author of a new textbook on software architectures. He is a

member of ACM, ACM SIGSOFT, and IEEE Computer Society.

Marija Mikic-Rakic is a Staff-Level Software Engineering Manager at

Google, Santa Monica, where she has been employed since 2004. She pre-

sently manages several teams working on different projects in the Search and

Content Ads area. She holds a Ph.D. in Computer Science from the Universi-

ty of Southern California. Her research interests are in the area of large-scale

distributed systems, software architectures and self-adaptation. She is a

member of ACM, ACM SIGSOFT, and IEEE.

