
Can Microtask Programming Work in Industry?

Shinobu Saito
shinobu.saitou.cm@hco.ntt.co.jp

Software Innovation Center, NTT Corporation

Tokyo, Japan

Yukako Iimura
yukako.iimura.vr@hco.ntt.co.jp

Software Innovation Center, NTT Corporation

Tokyo, Japan

Emad Aghayi
eaghayi@gmu.edu

George Mason University

Fairfax, Virginia, USA

Thomas D. LaToza
tlatoza@gmu.edu

George Mason University

Fairfax, Virginia, USA

ABSTRACT

A critical issue in software development projects in IT service com-

panies is finding the right people at the right time. By enabling

assignments of tasks to people to be more fluid, the use of crowd-

sourcing approaches within a company offers a potential solution to

this challenge. Inside a company, as multiple system development

projects are ongoing separately, developers with slack time on one

project might use this time to contribute to other projects. In this

paper, we report on a case study of the application of crowdsourcing

within an industrial web application system development project

in a large telecommunications company. Developers worked with

system specifications which were organized into a set of micro-

tasks, offering a set of short and self-contained descriptions. When

crowd workers in other projects had slack time, they fetched and

completed microtasks. Our results offer initial evidence for the po-

tential value of microtask programming in increasing the fluidity

of team assignments within a company. Crowd contributors to the

project were able to onboard and contribute to a new project in less

than 2 hours. After onboarding, the crowd workers were together

able to successfully implement a small program which contained

only a small number of defects. Interview and survey data gathered

from project participants revealed that crowd workers reported

that they perceived onboarding costs to be reduced and did not

experience issues with the reduced face to face communication, but

experienced challenges with motivation.

CCS CONCEPTS

· Software and its engineering → Software development tech-

niques; Software development methods.

KEYWORDS

Crowdsourcing in software engineering, Microtask programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417046

ACM Reference Format:

Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza. 2020.

Can Microtask Programming Work in Industry?. In Proceedings of the 28th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’20), November 8–13, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3368089.3417046

1 INTRODUCTION

A critical issue in software development projects in IT service

companies is finding developers with the right knowledge. For

example, one report suggests there will be a shortage of 430,000

IT specialists in 2025 in Japan [22]. When projects require more

resources than available, it is often challenging to quickly meet

these needs. Recruiting new employees from outside a company

requires a substantial investment of time and cost. Developersmight

instead be brought in from other ongoing system development

projects or teams inside the company. However, even for developers

already working within a company, it can require a substantial

investment of time and effort to successfully onboard them onto a

project. For example, developers need to learn project background

knowledge such as the system architecture, project configuration,

and coding conventions. For these reasons, balancing resources

within a company often does not work effectively [3, 4, 8, 9].

One potential solution to these challenges is the use of crowd-

sourcing [2, 18ś20]. In crowdsourced software engineering, work

traditionally done inside a company is outsourced to an undefined

crowd in the form of an open call [21]. Successful commercial

platforms for crowdsourcing software engineering work include

TopCoder, AppStori, uTest, and TestFlight. Crowdsourcing offers

companies the potential for fluidity, enabling workers from out-

side to be recruited on demand at the moment in which work

must be completed. One form of crowdsourcing is microtask pro-

gramming, where programming tasks are decomposed into short,

self-contained tasks with a clear objective [20]. By decomposing the

specifications of a system into small, self-contained descriptions,

microtasking aims to further decontextualize work, enabling even

greater fluidity by reducing the needed context to onboard.

While crowdsourcing, by definition, involves recruiting contrib-

utors from outside a company or organization, it might also be

possible to apply crowdsourcing within a company. Rather than

offer work to external developers, developers working on other

projects within a company with available slack time might use this

time to complete microtasks and contribute to another project. For

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza

Six transient crowd workersTwo dedicated contributors

Issue Tracking System
Software Engineer

Requirement

engineer

Version Control
system

Figure 1: An overview of the project organization. Two ded-

icated full-time engineers assigned to the project managed

and organized the project, and six crowd workers assigned

to other projects within the company contributed in their

slack time.

companies with closed-source code and confidential information

and intellectual property to protect, this model offers many of the

potential crowdsourcing benefits of lower onboarding costs and

greater resource fluidity with fewer of the potential drawbacks.

In this paper, we report on a project at NTT which applied mi-

crotask programming to an industrial web application development

project. Inspired by behavior-driven microtask programming [2], a

workflow was used where crowd workers could make two types of

microtask contributions: 1) implement a micro-specification or 2) re-

view an implemented micro-specification. Crowd workers followed

Test Driven Development (TDD) to implement micro-specifications.

Micro-specifications were defined and collected in a ticket pool,

and developers with slack time on their own project were able to

fetch and complete microtasks. Inspired by the role of the co-pilot

in TopCoder [26] responsible for managing and overseeing devel-

opment work, the work of decomposing and integrating microtasks

was done by two engineers dedicated to the project while six inter-

nal crowd workers completed microtasks (Fig. 1). The dedicated

software engineer served three roles in the project, working as a

software designer to create microtasks, as a developer to implement

several tasks, and as a tester.

Overall, the project achieved its objectives and a web application

for managing finance closing processes was successfully created.

Crowd workers together implemented approximately 2800 LOC. All

were able to initially onboard onto the project in less than 2 hours

and successfully communicated via an issue tracking system (ITS).

Crowd workers reported that they perceived onboarding costs to be

reduced and did not experience issues with the reduced face-to-face

communication, but did experience challenges with motivation.

The remainder of this paper is organized as follows. Section

2 describes related work in crowdsourced software development,

microtask programming, and inner sourcing. Section 3 describes

the microtask programming process and tools adopted in the case

study. Section 4 first presents results on the outcome of the project,

including onboarding activities, and the describes the perceptions of

the project participants about the use of a microtask programming

process inside a company. Section V discusses the implications of

our findings, and Section VI concludes.

2 RELATED WORK

A variety of work has explored crowdsourcing approaches for

software development activities such as design [16], implemen-

tation [2, 6, 15, 18], and testing [7]. Companies such as TopCoder,

uTest, and UserTesting.com offer a platform and community for

crowdsourcing software activities to an external crowd. A study

of TopCoder found a number of factors that impact project qual-

ity, including the number of contemporary projects, the length of

documents, and the number of registered developers [26].

When developers join a new project, they may face a num-

ber of onboarding barriers, including installing necessary tools,

identifying and downloading dependencies, and configuring their

build environment, understanding the codebase, and identifying a

task [14, 24, 27]. As a result, successfully onboarding onto a new

project may require weeks of time, creating a substantial barrier to

fluidly assigning developers to match project resource needs.

Crowdsourced programming environments have been designed

to reduce some of these barriers by offering a preconfigured pro-

gramming environment. In Apparition, developers create micro-

tasks for crowd workers to build small user interface elements and

their behaviors, which crowd workers can then complete in a dedi-

cated environment [15]. In CodeOn, developers speak requests for

small contributions which other developers can then supply [6].

In microtask programming, developers complete short microtasks

in a dedicated environment in which they are given a function

or test and are asked to make a small change to it [1, 2, 18]. By

decontextualizing work from the larger project context and offering

a dedicated environment with the necessary background informa-

tion and editors to make the contribution, developers are able to

make contributions in under 5 minutes with only a short onboard-

ing period. Studies of the use of crowdsourcing in industry have

found that companies have relatively low awareness of these new

approaches [23].

A key challenge in crowdsourced software development is in

designing effective coordination mechanisms, which may have a

variety of benefits and drawbacks [10, 11]. One approach is for

coordination between the requirements engineer and crowd work-

ers to occur entirely through the specifications themselves [2]. An

alternative approach is for the requirements engineer or developer

responsible for creating the microtasks to directly coordinate with

each worker [15]. Another key choice is the ways in which crowd

workers themselves may coordinate, such as through instant mes-

saging [2] or through more structured interactions such as around

issues [17]. Crowd workers themselves have expressed a desire for

direct worker-to-worker communication when handoffs or reviews

necessitate interactions between workers [17].

Noting the success of open source approaches, companies have

explored adopting open source software development practices

inside their organizations through a set of practices named inner

sourcing [5]. Developers working using inner sourcing do not be-

long to a single project, and anybody in the organization may

contribute to all projects in it [25]. For companies building closed-

source software with confidential information and intellectual prop-

erty, inner source offers new techniques and models for encourag-

ing internal collaboration by applying open-source best practices

within organizations [12, 13]. Studies examining the impact of inner

Can Microtask Programming Work in Industry? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

sourcing found potential benefits such as increased development

efficiency, higher code quality, and quicker development cycles [5].

Our work builds on these existing techniques and studies, fo-

cusing on the potential fluidity offered by adopting microtasked

development in an industrial context.

Frontend Backend

React / Redux Express.js

M
y
S

Q
L

P
e
rs

is
te

n
c
e
 A

P
I

F
u
n
c
ti
o

n
s
 A

P
I

U
I
C

o
m

p
o

n
e
n
ts

Stores

C
o

n
tr

o
lle

rs

Figure 2: The project consisted of a frontend and backend

with 6 major components. In both the frontend and back-

end, components which required more project knowledge

were implemented by the dedicated software engineer (gray

background) while those which required less project knowl-

edge were implemented by the crowd workers (white back-

ground).

3 MICROTASK PROGRAMMING IN A
COMPANY

3.1 Project Overview

In the project, an in-house web application system for managing

information on finance closing processes was built. The existing

system had been used by an organization within NTT, had about

50 users, and had operated for five years. Due to business reasons

including the expiration of a license, it was decided to reimple-

ment the system. In order to more fluidly assign resources to the

project, the project was organized using a crowdsourced software

development approach.

3.2 Organization Structure

All participants in the project were employees of NTT. As shown in

Figure 1, two dedicated engineers were assigned to work full time

on the project, a requirements engineer and a software engineer. In

addition, 6 crowd workers, who were primarily assigned to other

projects inside the company, were asked to make use of their avail-

able slack time to contribute to the project. For example, if they

was not busy at the end of the day or in the morning, they might

use this time to contribute. The dedicated engineers and crowd

workers were located in geographically distributed areas, with the

dedicated engineers located in a single site and the crowd workers

located at a different site.

3.3 System Architecture

Parts that required more project knowledge were assigned to the

dedicated software engineer, while those which required less were

implemented by the crowd workers (Figure 2). The crowd workers

implemented two parts of the web application (UI Components and

Functions API), and the dedicated software engineer implemented

three (Controllers, Stores, and Persistence API). Implementing these

three required more knowledge of the data model and its complexi-

ties. The web application was implemented using React and Redux

in the frontend and Express.js and MySQL in the backend.

In the frontend, the dedicated software engineer implemented

the Controllers and Stores, and crowd workers implemented the

UI Components. The UI Components were first decomposed into

micro-specifications by the dedicated software engineer, and the

crowd workers then implemented them. The micro-specifications

in the frontend did not have mutual dependencies, and there was

not a specific order in which they needed to be completed.

In the backend, the dedicated software engineer implemented

the Persistence API, and the crowd workers implemented the Func-

tions API. The Persistence and Functions API did not have de-

pendencies. The dedicated software engineer generated several

micro-specifications for the Functions API, which had mutual de-

pendencies. This required managing the order in which they were

implemented.

3.4 Software Development Process

Figure 3 depicts the overall development process used and the

artifacts generated at each step. The development process consisted

of four steps: basic design, detailed design, implementation and

unit testing, and system testing. Basic design was completed by the

requirements engineer in the traditional way. The requirements

engineer created four artifacts: a conceptual data model, use cases,

screen transitions, and a basic UI design.

Next, in the detailed design step, the Functions API and UI com-

ponents specifications were decomposed by the dedicated software

engineer into a set of micro-specifications. For example, in Figure 4,

the Function API specification was decomposed into three micro-

specifications. The dedicated software engineer generated three

types of artifacts: abstract data types, Functions API (backend), and

UI components micro-specifications(frontend).

In the implementation and unit testing step, each of the micro-

specifications were then implemented by the crowdworkers. Crowd

workers followed Test Driven Development (TDD) to implement

micro-specifications. For example, Figure 5 depicts an example of

a micro-specification being fetched, implemented, and pushed by

one crowd worker and reviewed by a second crowd worker.

In the testing step, the dedicated software engineer created a

test suite. They then tried to build all of the components together.

There were several defects that were found. In some cases, defects

were fixed by the dedicated software engineer, while in others they

were fixed by the crowd workers.

3.5 Workflow and Tools for Crowd Workers

Figure 6 describes microtask workflow used by the transient crowd

workers in contributing to the project. Figure. 5 depicts an exam-

ple of how micro-specifications were fetched, implemented, and

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza

Basic UI design

Use cases

Data model

Micro-specifications

Abstract data types

Basic Design (1 week) Detailed Design (1 week) Implementation and Unit Testing (4 weeks) System Testing (1 week)

S
te

p
s

A
rt

if
a
c
ts

 G
e
n

e
ra

te
d

Screen transitions

A
c
to

rs

One dedicated requirements

engineer
One dedicated

software engineer
One dedicated

software engineer

Six transient crowd workers and

one dedicated software engineer

Create and Run

Test suites
UI Components

HTML, CSS, JS code

Functions API

source and test code

Persistence API, Controllers,

Stores
source and test code

Functions API and UI

Components
specifications

Persistence API,

Controllers, and Stores
specifications

Figure 3: Microtask programming was applied using a four step workflow. A requirements engineer first designed a data

model, use cases, and user interface. A dedicated software engineer then created specifications and microtasks. Six transient

crowd workers then completed the microtasks in their available slack time. At the same time, the dedicated software engineer

implemented components that required more project knowledge. Finally, the dedicated engineer created and executed a test

suite. After seven weeks, the project was designed, implemented, and tested.

Function

name
update self-checksheet

Function type API

ADTName updateFinChecksheet

Description Update the checksheet with input data.

1. convert from checksheetData parameters to array of

DBChecksheetUpdateInfo, call 3rd party API

updateObjectImplementation, and return "0".

　- create "DBChecksheetUpdateInfo" from each

"checksheetData/checksheetItems", and push to array.

　- set parameter checksheetData/checksheetId tochecksheetId of

DBChecksheetUpdateInfo

2. valid parameters as follow, if there is invalid parameter then Set "the

parameter is invalid"to error message and throw the error.

　- parameter checksheetData is null

　- parameter checksheetData/checksheetId is null

　- paramter checksheetData/checksheetItems is null or empty

　- paramter checksheetData/checksheetItems/checksheetItemId is null

　- paramter checksheetData/checksheetItems/status is null or not any

of "0", "1", "2".

3. If 1st step result is null, then set error message is "faild update"and

throw Error

Parameters

ADT
ChecksheetUpdateInfo

Rerturn

ADT
String

Micro-

specifications

Figure 4: The function updateFinChecksheet API was de-

scribed through three micro-specifications created by the

dedicated software engineer. Each micro-specifications was

then mapped to a microtask. A crowd worker completed

each microtask, and a second crowd worker reviewed the

work.

Implement Micro-
specification N

Implement Micro-
specification 2

Implement Micro-
specification 1

Issue Tracking System

1- Implement Ticket:
Fetch micro

specification 1

2- Implement then push

Crowd
worker 1

.

.

. 3- Generate a review ticket for
micro-specification 1

Review Micro-
specification 1

Crowd
worker 2

4- Review Ticket:
pull micro

specification 1

V
e

rs
io

n
 C

o
n

tro
l

s
y

s
te

m

5- Review then merge micro-
specification 1

Figure 5: An example of work being completed by two crowd

workers within the microtask programming workflow. The

dedicated software engineer first decomposed each specifi-

cation into multiple micro-specifications, creating a ticket

describing each micro-specification to implement. Crowd

worker one may then fetch a ticket from the issue tracking

system (ITS), complete the work, push the source code, and

create a pull request in the version control system. Crowd

worker two may continue the work, fetching the pull re-

quest and reviewing the source code implemented by crowd

worker one. If crowd worker two approves the work, they

may then merge the pull request into the version control

system (VCS).

committed. Two key tools were used: an Issue Tracking System

(ITS) and Version Control System (VCS). Participants used the ITS

Can Microtask Programming Work in Industry? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Start
1. Set up

environment

Implementation

task?

3.2 Implement

Backend?

3.3 Debug

2. Fetch task

3
.1

 W
ri
te

 t
e

s
t
c
a

s
e

Finish

4. Commit

3.1 Review pull

request

Accept?

3.2 Reject pull

request

3.2 Merge pull

request

Yes
Yes

Yes

No

No

No

Figure 6: In the microtask programming workflow, each

crowd worker worked through a series of steps. Workers

first fetched a ticket, which included backend and frontend

tickets as well as review tasks. For implementation tasks,

workers then completed several programming steps before

committing their work and finishing the microtask.

to manage the status of the work and the version control system to

manage changes to code.

In the microtask programming workflow, the software engineer

first decomposed the specifications generated by the requirements

engineer into micro-specifications and issued a ticket for each

micro-specification in the ITS (an example of a micro-specification

is shown in Figure.4). Next, a crowd worker fetched a ticket from

the ITS. Crowd workers selected the work that they chose to do.

They then implemented the micro-specification described in it by

using the template imported from the VCS. After completing the

implementation, the crowdworker then pushed the source code and

created a pull request. A second crowd worker then reviewed the

contribution. After fetching the ticket in the form of a pull request,

the second worker reviewed the source code. If they approved the

work, they then merged the pull request.

Crowd workers also made use of the ITS to communicate project

knowledge. Crowd workers asked the dedicated software engineer

questions about the micro-specifications posted on the ITS. If the

designer found the question to be broadly applicable, they shared

it with all of the crowd workers by posting it to an internal wiki.

When crowd workers began contributing to the project, they were

then asked to first read the internal wiki.

4 RESULTS

In the following section, we first report on the outcome of the

project, describing the activities that occurred and the results of the

project. We then report data on the productivity of crowd workers

within the project. Finally, we examine the project participant’s per-

ceptions of the suitability and effectiveness of applying microtask

programming in a company setting through collected interview

and survey data.

4.1 Project Activities

Work in the project occurred in five phases over a seven week

period: basic design (one week), detailed design (one week), sprint 1

(three weeks implementation and unit testing, and three-day system

testing), and sprint 2 (one week implementation and unit testing,

and two days system testing). Transient crowd workers contributed

to the project in both sprints. The dedicated software engineer was

the same in the two sprints. In each sprint, crowd workers were

assigned to either frontend or backend work.

To onboard onto the project, crowd workers attended a kickoff

meeting, read content on a dedicated wiki, and set up their com-

puter environment. Before beginning implementation work, all of

the crowd workers attended a 30-minute kickoff meeting in which

the requirements engineer and the dedicated software engineer of-

fered an overview of the microtask programming workflow. Rather

than impart knowledge about the project itself, the briefing focused

exclusively on the use microtask programming. After the kickoff

meeting, when the crowd workers were ready to begin working on

the tasks, they setup their environment. To do so, they read the in-

formation in the wiki which we had prepared beforehand. The wiki

instructed them about how to set up the environment and how to

use it for work. Rather than use a pre-defined environment within

a virtual machine, crowd workers instead set up their own laptop

or desktop computers from scratch. Crowd workers reported that it

took approximately two hours to set up their environment on aver-

age, including reading and understanding the contents of the wiki

and configuring their computer’s environment. The environment

consisted of the Visual Studio IDE, web browser, Git VCS, node.js

and some JavaScript libraries. Crowd workers spent approximately

30 to 60 minutes configuring their computer environment.

After the crowd workers completed their work in the implemen-

tation step in sprints 1 and 2, the dedicated engineer tested the

project. The contributions from each microtask were composed

into an assembled program and tested through a test suite to eval-

uate if the system satisfied its requirements. System testing was

conducted using standard company practices, where test cases were

implemented based on the requirements described in the use case

and screen transition artifacts. Two types of defects were found.

Some defects were related to the micro-specifications created by

the dedicated software engineer. Other defects were related to the

implementation of the micro-specifications by the crowd. The dedi-

cated software engineer fixed all of the defects.

All of the defects uncovered were minor issues. The dedicated

software engineer confirmed that the specifications were com-

pletely implemented. Based on the successful test results, the project

entered the next phase of user acceptance testing.

4.2 Crowd Worker Productivity

Across the two sprints, the crowdworkers implemented 9 Functions

API and 5 UI Components through 50 microtasks. The work com-

pleted is listed in Table. 1. In sprint 1, five crowd workers worked

on the backend to develop five functions. On average, each crowd

worker implemented 4 microtasks in the first sprint. Three crowd

workers worked on the frontend to develop three UI Components

based on seven microtasks created. Two crowd workers worked

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza

Table 1: The number of components, micro-specifications,

active crowd workers, and dedicated software engineers for

each sprint. Some crowd workers contributed to both the

backend and frontend.

#micro-

specification

#Crowd

Workers

#Dedicated

SE

Sprint 1
Backend 5 Functions API 20 5

1
Frontend 3 UI Components 7 3

Sprint 2
Backend 4 Functions API 18 3

1
Frontend 2 UI Components 5 2

Total of both sprints 9 Functions API, 5 UI Components 50 6 1

Table 2: The lines of code written by the crowd workers and

the dedicated software engineer by sprint.

#LOC by

Crowd Workers

#LOC by

Dedicated SE

#Total

of LOC

S
p
ri
n
t
1

Backend

Implementation and Testing
905 245 1150

Frontend

Implementation and Testing
686 1569 2255

System Testing - 468 468

Total 1591 2282 3873

S
p
ri
n
t
2

Backend

Implementation and Testing
800 245 1045

Frontend

Implementation and Testing
500 1859 2359

System Testing - 671 671

Total 1300 2775 4075

Total of both sprints 2891 5057 7948

on both the frontend and backend. In sprint 2, three crowd work-

ers worked on the backend to develop four functions. Each crowd

worker implemented an average of 6 microtasks. Two crowd work-

ers worked on the frontend to develop two UI Components based on

five microtasks. In contrast to sprint 1, each crowd worker worked

exclusively on either the frontend or the backend. While seven

crowd workers were initially invited, one crowd worker was not

able to contribute to the project as they did not have any slack time.

To assess the output of the crowd and dedicated software engi-

neer, we measured the lines of code (LOC) produced in each sprint.

Table 2 summarizes the results. In sprint 1, the crowd workers and

the dedicated software engineer developed 1,591 LOC and 2,282

LOC, respectively. In sprint 2, the crowd workers developed 1,300

LOC and the dedicated software engineer developed 2,775 LOC.

The dedicated software engineer implemented more LOC in this

sprint as they implemented templates and packages in the frontend.

The final project consisted of approximately 8,000 LOC, of which

about 2,900 LOC (36%) were implemented by the crowd workers.

The average implementation microtask involved 58 lines of code .

We also used the timestamp data recorded in the tickets of the

issue tracking system to examine the productivity of the crowd

workers. Table. 3 lists the average working time and the number

of fetched tickets, and micro-specification for each crowd worker.

Frontend tasks took more time than backend tasks. In total, 50 mi-

crotasks were generated and 66 were submitted by crowd workers.

Microtasks may be submitted more than once when a pull request

Table 3: The number and average completion time of micro-

tasks by each crowd worker (CW)

Implementation Microtasks Review Microtasks

W
o
rk

e
r

Average Time

(hh:mm)
#Implemented #Accepted

Average Time

(hh:mm)
#Reviewed

B
a
ck

e
n
d

CW 1 00:45 11 8 00:13 3

CW 2 11:35 12 11 00:43 7

CW 3 00:36 2 2 00:06 8

CW 4 00:18 8 6 00:08 13

CW 5 03:23 7 4 ś ś

CW 6 02:17 7 7 00:21 13

F
ro
n
te
n
d

CW 1 01:46 6 2 00:13 1

CW 2 05:29 6 4 00:46 3

CW 3 00:38 2 2 00:08 7

CW 5 08:52 2 2 00:06 1

CW 6 09:03 3 2 00:48 7

Total ś ś 66 50 ś 63

was rejected. In total, 50 microtasks were generated, and crowd

workers submitted 66 microtasks. On average, 75% of implementa-

tion microtasks were accepted.

There are two reasons why average times were in some cases

more than one hour. First, some tasks were too big or too complex

to do in an hour. The second is that crowd workers sometimes

fetched a ticket and switched to another task. Ticket timestamps

sometimes indicated that the crowd worker fetched tasks in the

evening and did not start working on it until the following day.

On several occasions, one crowd worker fetched a task and only

began it later. As a result, Crowd Worker Two in the backend had

an average work time of 11hr, 35 min. While workers had the ability

to pause the time in the ITS, some forgot to do so.

Figure 7 depicts the work done by each crowd worker, from the

time they fetched a microtask until they submitted it. For example,

on Backend artifact 3, Crowd Worker 6 first completed a Review

microtask in about one hour, Crowd Worker 2 completed an imple-

mentation microtask in about one hour, Crowd Worker six then

completed Review and Implementation microtasks in succession,

and finally Crowd Worker 2 completed a a Review microtask.

Crowd workers were prohibited from fetching multiple micro-

task at the same time, although they sometimes forgot to close the

ticket and started a new task. Work on an individual artifact often

switched between different crowd workers. Work often clustered

around points of time with more intense activity. Most crowd work-

ers contributed during the daytime or working for 2 or 3 hours in

the evening.

We did not precisely record the hours worked on the project by

the dedicated requirements engineer and software engineer (Fig. 3).

However, we were able to estimate the time. On average, the ded-

icated engineers worked for 8 hours per day. The requirements

engineer spent one week on the project (40 hours). The software

engineer spent 40 hours in the detailed design phase. In those 40

hours, the software engineer exclusively worked on converting

basic design diagrams to function specifications and preparing mi-

crotasks. In the last phase, the software engineer spent an additional

40 hours conducting system testing.

Can Microtask Programming Work in Industry? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

ReviewImplementation

Figure 7: A visualization of crowd workers’ switching between artifacts during the project. The vertical axis is the artifact

workers were contributing to and the horizontal axis time. Each bar in the plot corresponds to a single microtask (either

implementation or review microtask). Crowd workers are indicated through colors. The bars’ pattern indicates the task type,

with striped bars indicating implementation tasks and filled bars indicating review tasks.

4.3 Perceptions of Use by Crowd Workers

To understand the perceptions of the crowd workers about the suit-

ability and value of microtask programming in a company setting,

we gathered data through two methods. One week after the com-

pletion of the project, we asked the 6 crowd workers to complete

a short questionnaire about their experiences with microtask pro-

gramming inside a company. The questions focused on onboarding

challenges, the granularity of microtasks, the freedom to choose

a task, the motivation of working in the microtask programming

approach, and communication among workers. We then later con-

ducted 15-30 minute semi-structured interviews with each of the six

crowd workers. The open-ended questions focused on onboarding

challenges, the granularity of microtasks, the freedom to choose

a task, the motivation of working in the microtask programming

approach, and communication among workers.

4.3.1 Questionnaire Results. The results from the questionnaire are

listed in Figure 8. The crowd workers mostly agreed that microtask

programming reduced the time required to onboard onto a project.

Each crowd worker took on average only 150 minutes (30 minutes

for the kickoffmeeting and 120 configuring the environment) to join

the project. As much of this time was dedicated to understanding

the microtask workflow and configuring the related tools, this time

would likely be less were crowd workers to participate in another

microtask programming project.

Workers reported varied opinions on working with microtasks.

Most agreed with ability to select or skip each microtask. However,

crowd workers reported that staying motivated was often hard.

Crowd workers did not find the lack of face to face communication

to be challenging.

4.3.2 Interview Results. Most of the crowd workers felt that micro-

task programming decreased onboarding costs. One reported that

the wiki which had been prepared beforehand effectively reduced

the onboarding cost by including detailed information on how to

set up the environments and how to use it for work. Other workers

reported difficulties onboarding. One reported that it takes time

to learn rules and appropriate methods of work. Another worker

reported that a pre-defined environment such as a virtual machine

would have considerably reduced onboarding costs.

Most workers had neutral opinions about the clarity of the mi-

crotasks. For three workers, some micro-specifications were not

clear. For example, one reported that: "Text-based specification is

hard to understand. If the specification had included figures and/or

models, it would have been better." Workers reported following two

approaches for resolving unclear micro-specifications. The first one

was skipping the ticket in the ITS and beginning work on another

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

percentage_start, percentage_end

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Q
u

e
s
ti
o

n

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Response

Figure 8: Perceptions of microtask programming by crowd

workers.

Question 1: I think the microtask programming style reduces my

onboarding cost in comparison to the generic model (e.g., agile

model).

Question 2: I think that completing a single task on an individual

small artifact is easily performed.

Question 3: I find that it is comfortable to select (or skip) my task

by myself.

Question 4: I think that it is easy for me to stay motivated in the

microtask programming style.

Question 5: I think it is inconvenient not to have face to face com-

munication with the software designers.

Question 6: I think it is inconvenient not to have face to face com-

munication with other crowd workers.

ticket. The second approach was to create a ticket in the ITS to ask

the dedicated software engineer a question.

Crowd workers were comfortable selecting microtasks them-

selves. Two workers reported that micro-specifications had many

details about the logic that were helpful. Two workers reported

that implementation microtasks were a good fit for the backend,

as they were neither too small nor too big. Workers also reported

concerns about implementation microtasks.

One worker reported concern that the sequence of microtasks

was not specified, as how a micro-specification was implemented

might impact the implementation of another micro-specification.

Another worker reported being concerned that a behavior imple-

mented earlier might no longer work correctly after another micro-

specificationwas implemented.When a crowdworker implemented

a micro-specification and wrote a test for it, they focused only on

the micro-specification they were assigned. When they wrote the

test, it might pass. But it might later fail after another crowd worker

implemented other functionality. For example, Crowd Worker 1

wrote a test for micro-specification A where he invoked a function

with empty parameters. At the time, the test passed. However, ac-

cording to micro-specification B, the function must be invoked with

parameters. When Crowd Worker 2 implemented this behavior, the

test for micro-specification A then failed. In this way, unit tests

helped to facilitate coordination.

Crowd workers had different views about the value of review mi-

crotasks. Most thought review microtasks were easy to understand,

as the scope was narrow. However, when the micro-specification

was incorrect or unclear, this created challenges. To resolve this,

crowd workers had to write on the ticket to communicate about

the specification. They instead wished to be able to communicate

directly with the dedicated software engineer who had authored

the micro-specification. Moreover, one worker reported that, while

he also does review tasks in regular software development, review

microtasks are different. He reported that: "Usually, the viewpoints

of [the] review are based on syntax such as coding rules, format,

and so on. But in this project, I had to check whether the code meets

behavior; it takes a longer time than usual." Another crowd worker

complained that his work was rejected several times because the

code violated code rules.

All crowdworkers reported that understanding amicro-specification

and implementing backend microtasks could be completed in less

than one hour, with a wide range of responses ranging from 20 to

60 minutes. They reported that completing frontend microtasks

might take more than one hour, as the microtasks were larger.

Crowd workers were transient, and they could work on the

project in their slack time. One of the workers reported a preference

to complete multiple microtasks at a time. He told us he prefers to

complete 5 or 6 microtasks in one session for a couple of hours.

Based on the results of the questionnaire, we investigated the

challenges for crowd workers in staying motivated in microtask

programming. Crowd workers reported several reasons. Two re-

ported that they did not feel that they belonged to the project. These

crowd workers reported that if a microtask had been assigned to

them and the microtask had a due date, they would have been more

motivated. Two other workers reported that it was not clear if there

remained incomplete microtasks. If someone had asked them to

complete the incomplete microtasks which, they would have done

that. Another reported that since he thought someone else would

complete microtasks, he did not feel that he should do that.

Crowd workers reported several suggestions for increasing the

project velocity and the motivation of crowd workers. Two work-

ers suggested that instead of arbitrarily choosing microtasks they

should instead be assigned. Workers would then know that they

had a microtask that they must complete before its due date. Three

crowd workers shared that if there was an incentive like a score or

money, they would work harder. Another crowd worker suggested

dedicating a specific day to microtask programming.

The interview results confirm many of the questionnaire results.

Most crowd workers did not have problems with the lack of face-

to-face meetings with crowd workers. Four workers reported that

they only needed communication in the onboarding phase of the

project or their first microtasks. After that, they did not have specific

questions. Thus they felt they did not need any specific tools for

communication. They believed that workflow and tasks were clear

enough. On the other hand, two participants reported it would be

better if all communication were in a shared place like a question

and answer tool. They felt that sharing information might increase

their productivity. One participant reported: "... I prefer chat to

[a] ticket. I feel that it is a good point to record the history of the

actor’s actions using tickets. However, in many scenes, I need quick

answers from software designers. So, the chat is better than a ticket."

Can Microtask Programming Work in Industry? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

4.4 Perceptions of Use by Dedicated Software
Engineer

We conducted an interview with the dedicated software engineer to

gather feedback about the challenges he faced when he decomposed

tasks into microtasks and when he assembled the contributions

into a finished application.

Although the software engineer could complete all of the tasks

by himself, the software engineer reported that his time commit-

ment was reduced. While crowd workers were working on the

implementation microtasks, the software engineer used that time

to prepare the integration test and micro-specification for the next

sprint. As he had designed the project, he was able to complete the

tasks in a shorter time than the crowd workers. It is not clear if

someone else had created the tasks and the software engineer was

not involved in the design phase how much it time it would have

taken for the dedicated software engineer to complete all of the

tasks.

Manually decomposing tasks into microtasks was challenging. In

the backend, he tried to decompose a specification of a module into

a set of testable, smallest behaviors. It was challenging to describe

complex behaviors using only text. In the frontend, he tried to

decompose the web pages into a set of components. Each was the

smallest meaningful unit of the UI element. It was challenging to

consider what the minimum information needed to implement a

microtask was. The software engineer struggled to decide the level

of detail necessary for the micro-specifications. It was difficult for

the software engineer to predict how much time the crowd workers

would spend understanding the micro-specifications he wrote. He

also thought that the reason why the tasks took much more time

than he expected was the size of the microtasks. He described

much of the contents in the UI component’s specifications. So these

required much time to implement.

Aggregating microtasks and conducting integration tests was

not straightforward for the software engineer. There were not au-

tomated continuous integration tools, which added much time. He

suggested that the test results might be used to monitor project

progress.

5 LIMITATIONS AND THREATS TO VALIDITY

When we design any case study, care should be taken to mitigate

threats to validity [28].

Construct validity addresses the degree to which a case study

aligns with the theoretical concepts used. To reinforce construct

validity, there are three ways: using multiple sources of reliable

evidence, establishing a chain of evidence, and having key infor-

mants review reports of a draft case study [28]. In this case study,

we used only one source from one web application system develop-

ment project. To establish a chain of evidence, ITS and VCS were

used to maintain a record of all data of the study. Finally, outside

researchers studying crowdsourcing software engineering were

involved in the study and reporting of study results. In this case

study, we make no causal inferences, so internal validity is not a

concern.

External validity is the ability of a case study’s findings to gen-

eralize to the broader population of interest [28]. A possible threat

to external validity is that we only analyzed one project. Microtask

programming is not inherently domain specific and would be rele-

vant for other projects beyond developing web applications. Both

of the key supporting tools (ITS and VCS) in the case study are

widely used in software development projects. This supports the

external validity of our study.

Reliability is the ability to repeat a study and observe similar

results [28]. To reinforce our study’s reliability, we defined and doc-

umented the microtask programming workflow and the approach

for assigning microtasks to crowd workers. By using the same pro-

cess and tools, other researchers or practitioners may replicate the

case study in their own context.

6 DISCUSSION

In this paper, we investigated the potential of applying microtask

programming in a company setting, reporting on a project un-

dertaken at NTT to build a web application through microtask

programming. Japanese IT vendors such as NTT face a serious IT

talent shortage. Microtask programming may help to address this

by increasing the fluidity of developer assignments within large

organizations.

In adopting microtask programming, there were four key ways

in which development work differed from standard practice: (1) a

finer granularity of work, (2) less face to face communication, (3)

associating contributions with artifacts, and (4) enabling develop-

ers primarily assigned to a different project to contribute in their

free time. Contributions were smaller than typical, focusing on

implementing or reviewing the behavior specified in an individual

micro-specification. Rather than participate in the typical daily face

to face or conference meetings to coordinate, crowd workers in-

stead collaborated by reading tickets describing their work. Rather

than work on tickets encompassing an issue spanning multiple

source code artifacts, crowd workers instead worked on an indi-

vidual artifact, reducing necessary project knowledge. And rather

than work exclusively on a dedicated software project, seven crowd

workers made contributions to a second project in their available

free time. These differences led to a different style of work.

There were also differences in the nature of the review tasks.

The focus of code reviews is traditionally on conventions, such as

coding rules and format. In microtask programming, workers were

also responsible to check whether the code satisfied its expected

behavior. As a result, review tasks took longer than usual.

Adapting microtask programming did not require a change to

the project life-cycle . Microtask programming was organized in

the same four key project steps typically used by the organization

(Fig. 3). The key difference was that microtasking added a new level

of detail in the detailed design step, where the specifications were

decomposed into micro-specifications.

The results demonstrate the potential for microtask program-

ming to increase the fluidity of project assignments within an orga-

nization. The project met its objectives and successfully completed

its system testing. Crowd workers assigned to other projects were

able to contribute in their slack time and largely felt that the on-

boarding costs were reduced.

Prior to beginning the project, there were concerns about the

quality of the code and the project’s time to market. It was not clear

how much the output of the crowd could be trusted. The project

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Shinobu Saito, Yukako Iimura, Emad Aghayi, and Thomas D. LaToza

was built and tested to evaluate if the system satisfied its require-

ments. The system testing revealed only a few defects, which was

considered quite successful. There were also concerns about the

efficiency of microtask programming. It was not clear how much

time would be needed to complete a project through microtask pro-

gramming. However, in less than 2 months, the project completed

9 functions and 5 UI Components. This alleviated concerns that

microtask programming might be excessively slow.

The project also revealed several challenges with applying mi-

crotask programming. The crowd workers reported that they found

staying motivated to be harder. Crowd workers found the style of

work used in microtasking to be unfamiliar and different. Motiva-

tion may also have been reduced because microtask programming

was not typical practice and workers did not feel they needed to

be as productive. Workers did not directly gain anything for their

contributions, further reducing their motivation.

From the viewpoint of project management, it was difficult to

monitor the status of the crowdworkers because theywere assigned

to other projects. Onlywhen theywere not busy in their own project

could they make contributions to the project. This made it hard to

anticipate when and how often they would be able to contribute.

As a result, estimating progress and handling risk in the project

were very difficult.

While project participants perceived onboarding overhead to be

reduced, there was still considerable overhead involved for crowd

workers to get started and begin contributing. At the beginning

of the project, workers were confused about the new concept and

workflow. Workers also did not have their regular face to face meet-

ings. It may be that after workers become more comfortable and

familiar with microtask programming, some of this overhead may

decrease. Moreover, while microtask programming often includes

a pre-configured development environment, workers did not bene-

fit from this in our study. Offering this might reduce onboarding

overhead.

In this project, crowdworkers manually selectedmicrotasks from

an issue tracking system. We are planning to develop techniques to

generate these assignments, by considering crowd worker’s main

area of work and expertise and their current daily tasks.

In the project, the dedicated software engineer’s workload in-

creased during the detailed design step in which they created the

micro-specifications. As there was no systematic method available

for completing this work, the dedicated software engineer had to

manually determine how to do this through trial and error, which

increased their workload. This effort might be reduced through

tool support, creating more detailed guidelines, or by adapting the

workflow to find new ways to use the crowd.

Microtasking was only adopted for parts of the project which

required less project knowledge to complete or that were not com-

plex. Tasks that required more knowledge still involved a dedicated

software engineer, as they required a level of knowledge that crowd

workers did not have. This included 1) designing the system archi-

tecture, 2) designing and configuring the database, 3) completing

tasks that involved screen transitions, 4) completing tasks which

required infrastructure knowledge. In addition, the project’s scope

was limited to a development phase, rather than encompassing

other phases such as maintenance. Better understanding how to

employ microtasking in more complex programming tasks, when

focusing on non-functional or crosscutting considerations such

as performance, and in phases such as maintenance are essential

questions for future work.

7 CONCLUSION

In this paper, we reported an industrial case study of the applica-

tion of microtask programming to a web application development

project. Work to implement a system was decomposed into a set of

micro-specifications, which were then implemented and reviewed

by the crowd. Crowd workers were primarily assigned to other

projects and worked in their free time. A system with approxi-

mately 8,000 LOC in total was built, of which approximately 35%

was implemented and reviewed by six crowd workers. Individual

contributions made by crowd workers were small, averaging about

58 LOC.

The project results suggest the promise of microtask program-

ming for making the assignment of developers to projects more

fluid. Based on the results from this project, high-level management

at NTT has realized the potential benefits. We plan to apply the

approach to not only other development projects but also to sys-

tem operation and maintenance projects. We are also planning to

develop a tool for automating the integration of components imple-

mented by crowd workers. We are considering potential approaches

for managing progress and risk.

ACKNOWLEDGMENTS

We thank the participants in the study for their participation. We

also are grateful to Motoi Yamane, Masayuki Oda, Keiji Kataoka,

and Motoi Yamane at Piecemeal Technology for their assistance in

the case study. This work was supported in part by the National

Science Foundation under grants CCF-1414197 and CCF-1845508.

REFERENCES
[1] Emad Aghayi. 2020. Large-Scale Microtask Programming. In Symposium on

Visual Languages and Human-Centric Computing. 1ś2.
[2] Emad Aghayi, Thomas D. LaToza, Paurav Surendra, and Seyedmeysam Abol-

ghasemi. 2021. Crowdsourced Behavior-Driven Development. Journal of Systems
and Software (2021).

[3] Aybüke Aurum, Ross Jeffery, Claes Wohlin, and Meliha Handzic. 2013. Managing
software engineering knowledge. Springer Science & Business Media.

[4] Finn Olav Bjùrnson and Torgeir Dingsùyr. 2008. Knowledge management in
software engineering: A systematic review of studied concepts, findings and
research methods used. Information and Software Technology 50, 11 (2008), 1055ś
1068.

[5] Maximilian Capraro and Dirk Riehle. 2016. Inner source definition, benefits, and
challenges. Computing Surveys 49, 4 (2016), 1ś36.

[6] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney.
2017. Codeon: On-demand software development assistance. In Conference on
Human Factors in Computing Systems. 6220ś6231.

[7] Anurag Dwarakanath, Upendra Chintala, NC Shrikanth, Gurdeep Virdi, Alex
Kass, Anitha Chandran, Shubhashis Sengupta, and Sanjoy Paul. 2015. Crowd
build: A methodology for enterprise software development using crowdsourcing.
In International Workshop on Crowd sourcing in Software Engineering. 8ś14.

[8] John S Edwards. 2003. Managing software engineers and their knowledge. In
Managing Software Engineering Knowledge. 5ś27.

[9] Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein, and Jürgen Münch.
2014. Onboarding in open source projects. IEEE Software 31, 6 (2014), 54ś61.

[10] Max Goldman et al. 2012. Software development with real-time collaborative
editing. Ph.D. Dissertation. Massachusetts Institute of Technology.

[11] Max Goldman, Greg Little, and Robert C Miller. 2011. Real-time collaborative
coding in a web IDE. In Symposium on User Interface Software and Technology.
155ś164.

[12] InnerSourceCommons. 2020. InnerSourceCommons. https:
//innersourcecommons.org

Can Microtask Programming Work in Industry? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[13] InnerSourceCommons. 2020. InnerSourceCommons/InnerSourcePatterns. https:
//github.com/InnerSourceCommons/InnerSourcePatterns

[14] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The onion patch:
migration in open source ecosystems. In Symposium European Conference on
Foundations of software Engineering. 70ś80.

[15] Walter S Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffrey P Bigham, and
Michael S Bernstein. 2015. Apparition: Crowdsourced user interfaces that come
to life as you sketch them. In Conference on Human Factors in Computing Systems.
1925ś1934.

[16] Thomas D LaToza, Micky Chen, Luxi Jiang, Mengyao Zhao, and André van der
Hoek. 2015. Borrowing from the crowd: A study of recombination in software
design competitions. In International Conference on Software Engineering. 551ś
562.

[17] Thomas D LaToza, Arturo Di Lecce, Fabio Ricci, W Ben Towne, and André Van
Der Hoek. 2015. Ask the crowd: Scaffolding coordination and knowledge sharing
in microtask programming. In Symposium on Visual Languages and Human-
Centric Computing. 23ś27.

[18] Thomas D LaToza, Arturo Di Lecce, Fabio Ricci, W Ben Towne, and Andre van der
Hoek. 2018. Microtask programming. Transactions on Software Engineering 45,
11 (2018), 1106ś1124.

[19] Thomas D LaToza, W Ben Towne, Christian M Adriano, and André van der Hoek.
2014. Microtask programming: Building software with a crowd. In Symposium
on User Interface Software and Technology. 43ś54.

[20] Thomas D LaToza and Andre van der Hoek. 2015. Crowdsourcing in software
engineering: Models, motivations, and challenges. IEEE Software 33, 1 (2015),

74ś80.
[21] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2017. A survey of the use of

crowdsourcing in software engineering. Journal of Systems and Software 126
(2017), 57ś84.

[22] Trade Ministry of Economy and Industry. 2020. 2025 Digital Cliff. https:
//www.meti.go.jp/english/press/2018/pdf/0907_004a.pdf

[23] Rafael Prikladnicki, Leticia Machado, Erran Carmel, and Cleidson RB de Souza.
2014. Brazil software crowdsourcing: a first step in a multi-year study. In Inter-
national Workshop on crowd sourcing in Software Engineering. 1ś4.

[24] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology
59 (2015), 67ś85.

[25] Klaas-Jan Stol and Brian Fitzgerald. 2014. Inner sourceśadopting open source
development practices in organizations: a tutorial. IEEE Software 32, 4 (2014),
60ś67.

[26] Klaas-Jan Stol and Brian Fitzgerald. 2014. Two’s company, three’s a crowd: a case
study of crowdsourcing software development. In International Conference on
Software Engineering. 187ś198.

[27] Georg Von Krogh, Sebastian Spaeth, and Karim R Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research Policy 32, 7 (2003), 1217ś1241.

[28] Robert K Yin. 1998. The Abridged Version of Case Study Research- Design and
Method. Vol. Chapter 8. Sage Publication, Inc.

	Abstract
	1 Introduction
	2 Related Work
	3 Microtask Programming in a Company
	3.1 Project Overview
	3.2 Organization Structure
	3.3 System Architecture
	3.4 Software Development Process
	3.5 Workflow and Tools for Crowd Workers

	4 Results
	4.1 Project Activities
	4.2 Crowd Worker Productivity
	4.3 Perceptions of Use by Crowd Workers
	4.4 Perceptions of Use by Dedicated Software Engineer

	5 Limitations and threats to validity
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

