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Abstract Static analysis tools find defects in code, checking code against
rules to reveal potential defects. Many studies have evaluated these tools by
measuring their ability to detect known defects in code. But these studies
measure the current state of tools rather than their future potential to find
more defects. To investigate the prospects for tools to find more defects, we
conducted a study where we formulated each issue raised by a code reviewer
as a violation of a rule, which we then compared to what static analysis tools
might potentially check. We first gathered a corpus of 1323 defects found
through code review. Through a qualitative analysis process, for each defect
we identified a violated rule and the type of Static Analysis Tool (SAT) which
might check this rule. We found that SATs might, in principle, be used to
detect as many as 76% of code review defects, considerably more than current
tools have been demonstrated to successfully detect. Among a variety of types
of SATs, Style Checkers and AST Pattern Checkers had the broadest coverage
of defects, each with the potential to detect 25% of all code review defects. We
found that static analysis tools might be able to detect more code review defects
by better supporting the creation of project-specific rules. We also investigated
the characteristics of code review defects not detectable by traditional static
analysis techniques, which to detect might require tools which simulate human
judgements about code.
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1 Introduction

Modern code review is central to identifying an important and diverse range of
software defects (Bacchelli and Bird 2013; Wagner et al. 2005; Runeson et al.
2006). But it has long been envisioned that more of this work might be done
by tools which can reliably, quickly, and accurately identify defects as soon as
they occur or even offer automated support for fixing defects (Mao et al. 2016).
In pursuit of this vision, Static Analysis Tools (SATs) have been devised using
a wide range of static analysis techniques to detect behavioral defects, code
smells (van Emden and Moonen 2002), code style violations, code clones, build
issues, poor test coverage, and other types of defects. After being identified by
tools, most defects are addressed by developers (Balachandran 2013), demon-
strating the value of the defects found by these tools to developers (Habib and
Pradel 2018). Beyond detecting a defect, some tools suggest a cause or propose
fixes, as many developers expect (Johnson et al. 2013). For example, Style
Checkers propose edits to fix style defects and Syntax and Semantic Analyzers
propose corrections to address syntax errors.

To assess the state of this vision, SATs are often evaluated in their ability to
detect known defects. For example, studies have systematically compared the
lines with defects with the defect lines reported by FindBugs, JLint, and PMD,
revealing that 35% to 95% of defects reported through issue trackers might be
detected (Thung et al. 2012). Manually mapping known defects in Defects4J
to the defects found by Error Prone (Aftandilian et al. 2012), Infer (Calcagno
et al. 2015), and SpotBugs (the successor to FindBugs (Hovemeyer and Pugh
2004)) revealed that these tools could detect 4.5% of defects (Habib and Pradel
2018). A comparison of defects found in code review to those found by PMD
revealed that it could detect 16% of issues. By adding project-specific rules, it
might detect an additional 17% of the issues (Singh et al. 2017).

While these studies offer important evidence about the effectiveness of
contemporary tools, they offer less insight into the potential to continue to
improve the effectiveness of SATs. Of the 70% of code review defects (Singh et al.
2017) or 95% of known Defects4J defects not detectable by current tools (Habib
and Pradel 2018), what types of static analysis techniques might be necessary
to identify these defects? Answers to these questions offer important evidence
helping motivate investments in creating tools, help to prioritize investment in
specific techniques based on their potential impact, and identify specific use
cases where these tools might be successfully applied.

Answering these questions requires investigating the potential of future
SATs to detect defects. Rather than examine which defects can be found by
existing tools, these questions requires examining the type of defects which
may exist and the corresponding types of static analysis tools which might
be required to detect these defects, whether these tools exist today or do not.
In particular, answering these questions requires an alternative approach to
assessing static analysis tools. Rather than run static analysis tools that exist
today, it is necessary to instead examine the defects which exist today and
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then carefully consider how these might potentially be detected by current and
future tools.

In this paper, we investigate the potential of SATs to find more defects.
Rather than conservatively measure which defects can be detected by current
tools, we are optimistic, characterizing an upper bound of defects which might
be deterministically detectable through static analysis techniques. We focus
on the defects which may be identified through code review, which identify
a broad range of functional and non-functional issues (Beller et al. 2014).
By examining the reasoning code reviewers give to authors through their
code review comments, we formulate each issue raised by a code reviewer
as a violation of a rule. We then compare each rule against the rules which
SATs might check, generalizing across similar specific tools to focus on the
expressiveness of the underlying techniques behind these tools. In some cases,
this may include rules that cannot, in fact, yet be checked by any current tool.
For example, checking these rules might require a more precise static analysis
than is currently available. In other cases, these defects may correspond to rules
that could be checked by current tools, but which are simply not implemented.
In this way, we examine the potential of static analysis techniques to find
defects, rather than their current realization by contemporary tools or the rules
developers choose to write.

We also examine the characteristics of defects which cannot be detected by
static analysis tools, even assuming current techniques reach their full potential.
These defects are characterized by issues which require human judgement to
identify. For example, a code reviewer might find that, following inspection
of the uses of a constant, its identifier is inaccurate. Or a developer might
decide that, after examining a new event, it should be logged in a different
way. These defects reflect issues which cannot be deterministically identified
through the formal channel of code (Casalnuovo et al. 2020), encompasses
information specifying computer execution and derives its meaning from the
semantics of code. In these cases, human developers make judgements, using
information in the natural language channel of code (Casalnuovo et al. 2020)
such as identifiers, comments, or artifacts like documentation, as well as their
own knowledge. While traditional static analysis tools are limited to considering
only information in the formal channel, future ML or NLP based tools might
potentially detect some of these defects through use of the natural language
channel.

To investigate these questions, we examined the characteristics of defects
found in code review. We first collected 1323 review comments from 493 pull
requests across projects written in 33 different programming languages. We
then used qualitative data analysis to systematically identify a static analysis
technique which might detect the issue raised in each of the review comments.
To organize the types of static analysis-based tools which might be relevant,
we created a new taxonomy characterizing the representation of code used to
check for defects (e.g., abstract syntax tree, program execution, string literals),
the origin of the rule (e.g., programming language, project conventions), and
the consequences of its violation (behavioral changes or code quality). We also



4 Sahar Mehrpour, Thomas D. LaToza

classified each defect based on their impacts on the project (e.g., maintainability,
user interface). Using these two taxonomies, we then coded each of the 1323
review comments.

We found that current static analysis techniques using the formal channel
may be capable of detecting 76% of the defects found through code reviews.
This fraction is considerably higher than the 16% detected by PMD (Singh et al.
2017) and 4.5% detected by Error Prone, Infer, and SpotBugs (Habib and Pradel
2018), offering evidence that current SATs might find more defects if used to
their full potential. SATs leveraging simpler program representations, such as
AST Pattern Checkers and Style Checkers, were the most broadly applicable,
each identifying 25% of the defects reported, and together accounted for more
than two thirds of the defects which might be found by SATs. Examining these
defects, we identified specific features required to detect them. We also found
that code review defects not detectable by traditional static analysis techniques
are mainly maintainability and implementation defects.

2 Related Work

Our work builds on prior work proposing defect taxonomies, examining the
ability of SATs to detect defects, examining developers’ experience with SATs,
using machine learning techniques to detect defects, and examining the practices
of code review.

A defect may be defined narrowly as code which may lead to a system
failure (e.g., (Laitenberger 1998; Wiegers 2002; Burnstein 2002; Group et al.
2010; Runeson et al. 2006)) or more broadly as code that reduces the quality of
the codebase (Gilb et al. 1993; Humphrey 1995; Laitenberger and DeBaud 2000;
Runeson and Wohlin 1998). Mäntylä and Lassenius (Mäntylä and Lassenius
2009) broadly define defects as deviations from the viewpoint of a code reviewer.
We adopt this definition in this paper. Defect taxonomies generally focus on
describing the causes of defects (Basili and Selby 1987; Runeson et al. 2006).
The Orthogonal Defect Classification (ODC) (Chillarege et al. 1992) classifies
defects along two dimensions: defect type (e.g., function, interface, checks) and
defect trigger, specifying the conditions under which the defect surfaces based
on the development phase (e.g., review, test, deployment). One study of defects
found in code reviews identified three categories: evolvability defects which make
code hard to read and maintain, functional defects which result in incorrect
behavior, and false positives (Mäntylä and Lassenius 2009), influencing a later
taxonomy (Beller et al. 2014). Similarly, the General Defect Classification
(GDC) categorizes warnings generated by Static Analysis Tools into functional
and maintainability defects.

Static Analysis Tools (SATs) encompass a wide range of tools. SATs have
been used to detect violations of coding style (e.g., CheckStyle (bur 2004),
JSlint (Crockford 2011), JSNose (Fard and Mesbah 2013)), detect instances
of ‘bug patterns’ (e.g., PMD (Copeland 2005) and FindBugs (Hovemeyer
and Pugh 2004)), detect violations of architectural style rules (e.g., Struc-
ture101 (Str 2019), SAVE (Knodel and Popescu 2007), ArchJava (Aldrich et al.
2002), Darcy (Ghorbani et al. 2019)) or design rules (e.g., ActiveDocumen-
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tation (Mehrpour et al. 2019)), identify code smells (Sharma and Spinellis
2018), or detect behavioral defects (e.g., CPAchecker Beyer and Keremoglu
(2011)). Thung et al. (Thung et al. 2012) investigated 3 defect detection tools,
FindBugs, JLint, and PMD, on 3 programs, Lucene, Rhino, and AspectJ.
For 200 fixed defects, they compared the lines containing a fix with warnings
generated by the tools and found that between 1.9% to 50% of lines relating to
defects were missed by tools, with numbers varying greatly between projects
and how completely the defect was detected. Habib and Pradel (Habib and
Pradel 2018) investigated the ability of Error Prone (Google), Infer (Facebook),
and SpotBugs (the successor to FindBugs) to detect 594 real-world defects
across 15 software projects. They found that the tools were able to find 4.5%
of these defects. The undetected defects were mainly related to project-specific
rules.

A number of studies have examined how developers use SATs. One study
found that 59% of open-source projects use SATs, with projects written in
dynamically-typed languages benefiting most (Beller et al. 2016). An early
study at Google found that while the warnings generated by FindBugs were
not causing serious problems in production, early identification makes them
low-cost to fix (Ayewah and Pugh 2010). When SATs break the build, in most
cases developers fix the code rather than changing the configuration of the
tool (Zampetti et al. 2017). Developers prioritize warnings of SATs based on
development contexts (Vassallo et al. 2018). A number of studies have found
usability challenges with SATs. Developers face barriers using SATs due to poor
presentation of output, lack of support for collaborative environments to share
tool settings, complexity using customization, unclear results, and disjointed
process (Johnson et al. 2013). Tools often have a high false positive rate, and
developers wish to have the ability to prioritize errors, suppress warnings, and
get accurate results (Christakis and Bird 2016). Compiler error messages may
be improved by being written using new and more usable structures that more
effectively meet developers’ information needs (Barik et al. 2018). Disabling
errors and warnings not marked as useful can help maintain developer trust in
tools (Sadowski et al. 2018b).

More recently, research has begun to explore the use of machine learning
(ML) and natural language processing (NLP) techniques to detect defects in
code (Shafiq et al. 2021). ML-based defect detection tools first build a model
using traditional classifiers or neural networks, training the model with data
from code from different projects or older versions of the same project. Next,
the tools compare the target source code against the computed model to find
defects or predict the existence of defects. ML-based tools may build models
from semantic information in code such as comments (Huo et al. 2018), AST
tokens such as identifier names and operators (Wang et al. 2020), or source
code changes (Wang et al. 2020). This can then be used to identify defects, such
as missing authentication for smtp connections (Huo et al. 2018) or missing
IOException handling when reading files (Wang et al. 2020). Other ML-based
tools use models built from code metrics such as the lines of code or number
of methods (Nam and Kim 2015) to predict the existence of defects in code.
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Other ML-based tools transform code into intermediate representations before
building models. For example, DeepBugs (Pradel and Sen 2018) maps identifiers
to semantic representation vectors using NLP techniques and neural networks
and detects name-based defects such as incorrect orders of input parameters.
Some tools analyze semantic information in code such as argument names using
NLP techniques such as string distance and detect defects like incorrect order
of input parameters (Rice et al. 2017).

Code review remains one of the most important techniques for finding
defects, despite being less effective and efficient compared to techniques such as
testing (Runeson et al. 2006). Modern Code Review is a regular, informal, tool-
based process (Bacchelli and Bird 2013). Developers review code to improve
understandability and maintainability (Sadowski et al. 2018b), find defects,
transfer knowledge, offer alternative solutions, and track rationale (Bacchelli
and Bird 2013; Ebert et al. 2018). Developers sometimes, but generally rarely,
discuss design during code review (Viviani et al. 2018). Code review prac-
tices have commonality, even across projects and organizations (Rigby and
Bird 2013). Code reviewers need information including rationale and code
context (Pascarella et al. 2018).

Researchers have used code reviews as a lens with which to understand
defects and fixes. One study found that 75% of found defects are evolvability
defects, most of which cannot be fixed directly by tools (Mäntylä and Lassenius
2009). Another study again found that 75% of the changes made after code
review were related to the evolvability of code, and 35% of review comments are
discarded (Beller et al. 2014). Other studies used code reviews to investigate
the role of defect detectors in software development. One study found that
defects found by SATs are different from those found by tests, but are a subset
of those found in code review (Wagner et al. 2005). Another study found
many code review defects concern code improvements and suggested the need
for tools to eliminate these defects and free time for finding more important
defects (Bacchelli and Bird 2013). One study found that during code reviews,
some of the warnings generated by well-known SATs are resolved, and that
using SATs helps in fixing these warnings and thus speeds up the code review
process (Panichella et al. 2015). Another study found that PMD could be
used to identify 16% of the defects found through code review and that, by
implementing and integrating 4 new rulesets, can cover an additional 17% of
defects (Singh et al. 2017). Developers choose to approve 93% of the review
comments generated by PMD, FindBugs, and Checkstyle (Balachandran 2013).
Contributors repeatedly introduce the same types of manually detectable issues,
while they repeat automatically detectable issues at most 3 times (Ueda et al.
2018).

3 Analyzing Review Comments

In this paper, we consider the potential for future Static Analysis Tools (SATs)
that use the formal channel (Casalnuovo et al. 2020) to detect defects. To
explore the ability of SATs to detect more defects, we sought to investigate:

RQ1: What types of existing SATs are necessary to identify defects?
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RQ2: What features in SATs are necessary to detect defects?

RQ3: Which defects cannot be detected by only using the formal
channel?

To answer these research questions, we conducted a qualitative study of
defects identified in review comments. We manually examined defects identified,
investigating the potential to prevent each defect from occurring by creating a
rule which could be checked by a SAT. Throughout this process, we considered
in detail a broad range of tools which use the formal channel and might be
relevant and the features necessary in these tools to detect each defect. This
enables examining the potential impact of increasing the power of existing
analysis techniques, as well as highlighting defects which would require new
forms of analysis beyond the traditional use of the formal channel. Running
existing SATs would not answer these questions, as it would report issues
discovered by a tool as it is configured and exists today.

In this paper, we adapt a broad definition of a defect as a deviation of
code from a quality standard from the point of view of a reviewer (Mäntylä
and Lassenius 2009). This encompasses a wide variety of defects, including
defects that alter the behavior, quality, and performance of code. We exclude
documentation defects, which have been studied elsewhere (Aghajani et al.
2019)).

We analyzed defects found in code reviews and examined which SATs
might detect these defects and how these defects impact their projects. To
organize the types of SAT which might be relevant, we require a taxonomy of
tools. We first looked at existing defect classifications. Defect classifications
classify defects based on their technical properties (function, interface, checks,
assignment, timing, building and merging, documentation, and algorithms)
(e.g. (Board 1993; Chillarege et al. 1992; Mäntylä and Lassenius 2009; Beller
et al. 2016)), their severity and impact on the user (e.g. (Thelin et al. 2003)),
and the artifacts from which the defects originate (e.g. (Runeson et al. 2006)).
As these taxonomies do not categorize the analysis tools themselves, we created
a new taxonomy of SATs for defect detection, characterizing the representation
of code used to check for defects, the origin of the rule, and the consequences
of violations. In addition, we created a second taxonomy to characterize the
type of impact that each violation had, which adapted several categories from
existing taxonomies.

3.1 Data Collection
The process of data collection and cleaning is illustrated in Figure 1. To

obtain an initial corpus of code review comments, we first examined code
reviews posted in pull requests of public repositories. To encompass a broad
range of projects with varying programming languages and levels of complexity,
we selected the GHTorrent (Gousios 2013) dataset, a widely-used dataset
of GitHub data (e.g., (Brunet et al. 2014)). We examined a subset of the
GHTorrent dataset containing 36,185 pull requests (PRs) from public GitHub
repositories on May 5, 2019. As the original dataset includes too many PRs
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Include PRs with
Change Requests

Collect review 
comments

36185 PRs 2343 RCs795 PRs

Remove potentially 
uninformative PRs

493 PRs

2343 RCs

Remove 
uninformative RCs

1323 RCs

Open 
Coding PAT Classification

Defect Classification

Fig. 1 We employed a systematic process to identify defects from informative review
comments (RC) in pull requests (PR) and code each defect.

to manually inspect, we systematically selected a subset of PRs for further
analysis. We first used GitHub labels, provided by contributors, to identify PRs
that might potentially describe defects. Each GitHub pull request (PR) may
include one or more reviews, each labeled with approve (change approved by
the reviewer), comment (feedback by the reviewer), or change request (feedback
to address before merging). For our study, we only considered change requests,
as they were most likely to describe defects to be addressed. 795 PRs with at
least one change request were identified and considered for further analysis.
There are several potential explanations for the infrequency of PRs containing
a review with the change request label. First, many PRs lack reviews and
contain only comments. Second, change requests contain feedback needed to
be addressed for merging the PR and so are made before merging the PR.
Considering the high number of rejected PRs (20% to 93% (Silva et al. 2016)),
many PRs are not considered by reviewers and do not receive change request
feedback.

We next performed two rounds of data cleaning. In the first round, we
manually inspected each PR and filtered out PRs which were irrelevant or
missing required information. We removed PRs with non-English comments
with reviews from the github-learning-lab (used for learning purposes) which
related to homework assignments, which focused on wording and grammatical
issues in documents, and with inaccessible repository links. All links existed
at the time of data collection, but some later became unavailable. After this
process, 493 PRs remained. These pull requests spanned approximately 400
distinct projects in at least 33 different programming languages.

In the second round of data cleaning, we identified and filtered review
comments. We first systematically collected the discussions of change requests
for each of the 493 PRs through the GitHub API. In total, 2343 review
comments were collected. We manually analyzed each review comment and
excluded from our analysis review comments that were not detailed enough
for analysis (Section 4). This included review comments with no text, which
included directions for GitHub actions (e.g., merging), which were not written
in English, included only non-informative text such as emojis, were generated
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Fig. 2 We mapped each review comment to a rule. To do so, we examined artifacts and
information including the (A) the description of the PR, (B) committed changes in the PR
before the review, (C) faulty lines of code, (D) the review comment, (E) followup discussions,
and (F) changes made after the review.

by automated tools (e.g., bots), were not directly associated with specific lines
of code, or which lacked context, code, or sufficient explanation. After this
process, 1323 review comments remained. Our dataset is publicly available1.

3.2 Analysis
To identify the relationship between SATs and the defects they might find,

we identified a rule for each defect. Rules express a constraint on a specific
representation of code and its execution, including its Abstract Syntax Tree
(e.g., (Copeland 2005), clone detectors), execution paths (e.g., code coverage
tools for test suites (JCo 2014)), and string literal values (e.g., tools using
regular expressions to check for valid filepaths). Rules may express universal
constraints (e.g., do not use a variable after it has been freed, avoid static
fields) or project-specific constraints (e.g., use loggers instead of print). Rule
constraints may describe prohibited or required conditions in code (Kruchten
2004), which may enable tools to use rule violations to identify defects as well
as suggest fixes (Section 8).

We first mapped each defect described in code review comments to a rule
which might prevent the defect. To formulate rules, we used all available
artifacts and information in the review comments. In addition to the text of the
comment, we considered other artifacts such as previous or followup discussions
(if they existed), the code to which the comment applied, and the final code
commit (if accessible) to see how the feedback was addressed. For example, the

1 https://doi.org/10.6084/m9.figshare.14925222
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review comment in Figure 2 describes a defect involving a misplaced method
which should be relocated to another file. From the name of the proposed file,
it can be inferred that the file contains utility methods. Another available
artifact is the implementation of the method, revealing that the method only
uses the input arguments to read data (using another utility method) and
writes the sorted data using another input argument. Using this information,
we can describe this defect as a violation of a rule: "If a method uses only its
arguments and other utility methods, then it should be located in a utility
class." While we cannot quantify how frequently rules apply, we found many
rules which were violated several times in the same PR. Review comments
also referenced other review comments to describe how to fix an issue. This
suggests that some rules are not one-off and reflect recurring issues.

Next, we mapped the formulated rules to SATs. To find this mapping, we
employed a systematic qualitative data analysis process (Saldaña 2015; Seaman
1999), adapting methods previously used to study code reviews (Sadowski
et al. 2018b). We used a two-step coding process (Saldaña 2015) to identify
categories of SATs and to map each review comment to a SAT.

In the first step, we applied open coding to generate a list of tool definitions.
We began with an initial list of well-known SATs that check rules against
code such as clone detectors, dead code detectors, and linters and created
definitions for these categories. As we applied these codes, we created codes for
new tool types when these were not applicable. The tool categories include both
the means and the purpose of the analysis. We considered three orthogonal
dimensions of tools as well as the purpose of tools to categorize SATs (defined
in Section 4 and Table 1). We considered SATs independent of programming
language (e.g., language-specific style checkers such as JSLint (Crockford 2011)
as Style Checkers). We ignored tools that do not check rules, such as those
that require developers to write code (e.g, keyword programming tools (Little
and Miller 2007)).

In the second step, we applied focused coding, grouping similar tools
identified in the previous step into categories through an iterative process. We
identified 12 types of SATs (Figure 4). Next we annotated review comments
by extracting rules’ properties and matching them against the dimensions and
purposes of SATs. For example, the rule we identified for the issue in Figure 2
requires that utility methods, which only use data from their arguments and
only call other utility methods, be located in utility classes. To check this
rule, method bodies may be examined for the variables referenced (i.e., only
arguments and not global variables or fields) and the methods invoked (only
other utility methods). These checks might be implemented through a tool
which examines the AST of this code. Therefore, we labeled this issue as one
which might be detected by an AST Pattern Checker (Section 4). Next, we
used the final codes to annotate each review comment with tools able to check
them (closed coding).

To investigate the impact of the defects on their projects, we built a second
taxonomy. We followed a similar approach and first applied open coding on the
rules for each defect identified from review comments. We used open coding
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Fig. 3 We classified defects based on their impacts on the project.

and annotated the data in two phases. In the first phase, the first author
applied descriptive coding and summarized each review comment in a word
or a short phrase. In the second phase, all authors discussed the theme of the
labels obtained and applied pattern coding iteratively. In each phase, authors
discussed relationships between labels to clarify differences and grouped similar
themes. To ensure consistency, we established coding guidelines. For example, if
a reviewer explicitly asked for a "fix," we coded the defect as an implementation
defect. Or if the reviewer asked for "consistency," we coded the defect as code
quality. When a defect may belong to several defect types, we considered the
most specific as the type of the defect. For example, we always considered
defects involving the user interface as user interface defects, defects involving
the performance of the codebase as performance defects, and defects involving
test suites as test suite defects. We identified 7 defect types, identifying distinct
impacts of a defect on a project. (Figure 3).

To ensure the reliability and repeatability of our classifications, we conducted
an inter-rater reliability check. Two authors individually labeled 3 sets of 70
randomly selected review comments using code definitions. After each round, the
authors compared the labels, identified divergences, and clarified the definitions
to refine the scope of labels. Finally, the authors applied the coding scheme to
an additional 70 randomly selected review comments. The calculated Cohen’s
κ for the SAT labels was κ = 0.53, showing that the agreement between the
two raters is “Moderate” (Landis and Koch 1977). For the defect classification
labels, the final calculated Cohen’s κ was 0.68, showing that the agreement
between the two raters is “Substantial” (Landis and Koch 1977). Disagreements
mainly arose from differing interpretations of the reviewers’ intent when the
artifacts available in the review comments were limited.

4 SAT Classification

We categorize SATs in our taxonomy through three orthogonal dimensions
and their purpose (Figure 4). The three orthogonal dimensions are Representa-
tion, Origin, and Consequence. Representation specifies whether rules are
represented by checking an AST representation of the source code, checking



12 Sahar Mehrpour, Thomas D. LaToza

What is the origin of the rules 
checked by the tool?

SpecificationsProgramming Language

What are the representations of 
the rules checked by the tool?

AST Code Execution

Syntax and 
Semantic Analyzers

Memory Leak 
Detectors

What is the purpose of the tool?

Checking Build 
and Config Files

Checking the Quality 
of Test Suites

Checking String 
Literals in Source Files

Continuous 
Integration Tools

Test Suite 
Quality Checkers

String Literal 
Checkers

Architectural 
Style Checkers

Checking Dependencies 
between Modules

Checking Source Files

What are the representations of 
the rules checked by the tool? Static Execution Simulators

AST Pattern CheckersAST

Code Execution

Best Practices

What is the purpose of the tool?

Checking String 
Literals in Source Files

String Literal 
Checkers

Finding Dead Code Dead Code 
Detectors

Checking Coding 
Style Conventions

Style 
Checkers

Finding Code Clone Code Clone 
Detectors

Finding Code Smell Code Smell 
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Static Execution 
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Fig. 4 Our SAT taxonomy categorizes the types of SATs based on the origin of the rules
they check, the purpose of the tool, and the representations of the rules they check (nodes
with italic text).

Representation Origin Consequence
SAT Categories A CE St L Sp BP CQ B
Style Checkers ✓ ✓ ✓ ✓
Continuous Integration Tools ✓ ✓ ✓ ✓ ✓
Static Execution Simulators ✓ ✓ ✓ ✓ ✓
Architectural Style Checkers ✓ ✓ ✓ ✓
Test Suite Quality Checkers ✓ ✓ ✓ ✓ ∼ ∼
Dead Code Detectors ✓ ✓ ✓ ✓
Code Clone Detectors ✓ ✓ ✓ ✓
Syntax and Semantic Analyzers ✓ ✓ ✓
String Literal Checkers ✓ ✓ ✓ ✓ ✓
Code Smell Detectors ✓ ✓ ✓ ✓
Memory Leak Detectors ✓ ✓ ✓
AST Pattern Checkers ✓ ✓ ✓ ✓

Table 1 Our SAT taxonomy includes 12 categories of tools. Each is specified through
three dimensions: Representation, Origin, and Consequences. (A: AST, CE: Code Execution,
St: Strings, L: Language, Sp: Specifications, BP: Best Practices, CQ: Code Quality, B:
Behavioral). The ∼ symbol indicates indirect influence.

String literals in source files, or Code Execution and tracking and monitoring
paths in code. Origin indicates whether rules originated in the definition of the
programming Language, are imposed by project Specifications, or are generated
by Best Practices. Consequence indicates the impact of violations on code,
by decreasing the quality and maintainability or by impacting its behavior by



Can Static Analysis Tools Find More Defects? 13

changing its output. We classified SATs first based on the Origin dimension,
and next based on the purpose of the tools (e.g., finding dead code or finding
code clones). In the last step, SATs are classified based on the Representation of
the rules checked by the tools (Figure 4). We also examined the Consequences
of rules checked by SATs, but this dimension did not differentiate between
any additional types of tools. Many real world static analysis tools, such as
SonarQube (SonarSource 2022), Coverity (Bessey et al. 2010), Tricorder (Sad-
owski et al. 2015), and Infer (Calcagno et al. 2015), combine several of these
categories together.

Here we define each SAT category (Table 1). As many SATs encompass
hundreds of related tools (e.g., Static Execution Simulators), we illustrate each
with seminal examples of tools.

Style Checkers ensure the readability of code by checking code style
conventions (e.g., CheckStyle (bur 2004)). Violations decrease code quality.
Rules may be expressed through constraints on a program’s AST, through
formatting and style conventions for comments, or for typos in comments and
identifiers.

Continuous Integration Tools ensure a successful build and integration
process of components, such as by checking rules related to the availability and
compatibility of libraries and the correctness of configuration settings in build
and configuration files (e.g., Jenkins (Jen 2019), Travis CI (Tra 2019)). These
rules may be expressed as constraints on an AST representation, the execution
of code, or on string literals. Rules are project-specific, and violations change
the program’s behavior.

Static Execution Simulators check rules by data flow analysis, control
flow analysis, model checking, type checking, abstract interpretation, sepa-
ration logic, or symbolic execution (e.g., CPAchecker (Beyer and Keremoglu
2011)). They may generate representations of execution such as call graphs
or dependency graphs (e.g., Reacher (LaToza and Myers 2011)). Rules are
expressed through project-specific specifications or programming languages,
and checked through analysis of the code execution. Violations impact the
behavior or quality of code.

Architectural Style Checkers check the as built software architecture
of code against the intended as designed architecture, and may include rules
that encompass many components (e.g., ArchJava (Aldrich et al. 2002)). They
impose constraints on the names and locations of elements as well as their
dependencies and communication. Rules are specified per-project and may be
checked against the AST or by code execution.

Test Suite Quality Checkers check the quality of test suites, such as
by evaluating code coverage or testing critical inputs (e.g., JCov (JCo 2014)).
Rules are expressed through constraints on the AST of tests, the execution
behavior of tests, or the allowable values of string literals. Rules are project-
specific, and violations may indirectly impact the program’s behavior and code
quality.
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Dead Code Detectors detect code fragments that are never executed
because they are unused or unreachable (e.g., JSNose (Fard and Mesbah 2013),
DUM (Romano et al. 2016)).

Code Clone Detectors identify contiguous segments of source code
that are syntactically and semantically similar (Svajlenko and Roy 2015)
(e.g., CCFinder (Kamiya et al. 2002)). Code clones include (1) identical code
fragments, (2) identical code fragments with different user-defined identifiers
and literal values, (3) similar code fragments with statements added, removed,
or changed, and (4) semantically similar code fragments implementing the
same functionality (Roy and Cordy 2007). The presence of code clones is often
considered poor coding practice, violating code quality standards. Code Clone
Detectors detect code clones by analyzing ASTs or code execution.

Syntax and Semantic Analyzers check code for conformance to a
programming language’s syntax and semantics. This includes constructing the
AST of the program and checking it against the language grammar (syntax)
as well as type checking and verifying the consistency of the AST with rules
defined by the programming language (semantic analysis). Violations of these
rules impact the behavior of the code.

String Literal Checkers check for the compliance of string literals in
code with standard formats, such as for log messages or addresses of external
hosts (e.g., Regex checkers). Rules are project-specific, and may be specified
through grammars or regular expressions. Violations may impact the quality
or behavior of code.

Code Smell Detectors identify defects that violate best practices and
decrease the maintainability of code (van Emden and Moonen 2002) (e.g.,
PMD (Copeland 2005), Findbugs (Hovemeyer and Pugh 2004), JSNose (Fard
and Mesbah 2013)). They may rely on rules concerning the program’s AST or
execution. In some taxonomies, code smells also include code clones and dead
code fragments. In our taxonomy, we separate these from code smells.

Memory Leak Detectors identify memory that is allocated but not
released (e.g., SABER (Sui et al. 2012), LeakChecker (Yan et al. 2014)). For
example, a rule may specify where a specific variable must be allocated and
then later released. Rules may be checked through code execution, are imposed
by programming language semantics, and their violation impacts program
behavior.

AST Pattern Checkers check code against rules expressible through a
pattern which may be represented through the AST of a program. These rules
are specified by project specifications and affect the behavior or the quality of
the code. AST Pattern Checkers may check rules which require the presence
of code, prohibit code, or express alternatives. If a rule is checkable by both
AST Pattern Checkers and another category of tools (e.g., Architectural Style
Checkers), we label the rule with the latter category.

4.1 Defects not Detectable by SATs
Checking some rules required additional information beyond the informa-

tion found in the formal channel used by SATs. These rules required human
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judgement, which might be based on information from the natural language
channel in code found in identifiers or comments, in design documents, or from
a developers’ own knowledge and judgement. While static analysis tools using
the formal channel alone are unable to check these rules, future tools using
the natural language channel might potentially be able to check some of these
rules.

5 Defect Classification

We identified 7 types of defects; Requirements, User Interface, Implementation,
Maintainability, Performance, Test Suite, and Build Config (Figure 3). The
Maintainability and Implementation categories are similar to the Evolvability
and Functional defects identified by Mäntylä and Lassenius (Mäntylä and
Lassenius 2009).

Maintainability defects impact the quality, rather than the behavior, of
code. Maintainability defects encompass defects universally applicable to all
projects, such as code smells, as well as project-specific defects. For example,
refactoring improves the readability of the code, and defects that require
refactoring are Maintainability defects. This category includes a subset of
Evolvability defects (Mäntylä and Lassenius 2009) that contains a broader
range of defects that “make the code less compliant with standards, more
error-prone, or more difficult to modify, extend, or understand”.

Implementation defects (also known as Functional Defects (Mäntylä and
Lassenius 2009)) occur when code does not satisfy its requirements. Rules
preventing implementation defects are defined per-project and their violations
change the behavior of code. This category of defects contains a subset of
Functional defects (Mäntylä and Lassenius 2009) which “may cause system
failure when the code is executed.”.

Build Config defects encompass anything that may cause the build and
integration of the codebase to break, such as missing scripts or inconsistent
external libraries. This includes defects in scripts and config settings that
configure how a compiler and other tools integrate source code into a running
application. For example, incorrect local or external addresses of libraries are
Build Config defects. Defects such as using methods from incorrect libraries
does not break the build and thus they does not fall in this category.

Test Suite defects encompass all defects in test suites. These include
incorrect and ineffective test suites, such as an incorrect assertion that makes the
test suite incorrect or insufficient code coverage. As tests checks the correctness
of applications, Test Suite defects may be related to behavioral defects. Tests
can check code, and therefore, indirectly impact code quality.

User Interface defects encompass visual appearance and the ways in
which elements behave. Defects impact the interface displayed to the user and
the resulting usability of the application for the user. We label a defect as a
User Interface defect if it directly changes the user interface and the way the
user interacts with it. For example, an inappropriate element color is a User
Interface defect. However, an incorrect implementation used to set a color (e.g.,
specificity, inheritance, or cascading in CSS) is not a User Interface defect.
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Requirements defects involve missing consideration or misinterpretation of
project requirements. If through review comments or code changes the contrib-
utor indicates that they understood the requirements but implemented them
incorrectly, the identified defect is not a Requirements defect. We differentiate
misinterpreting requirements from incorrectly implementing requirements. For
example, if persisting specific data is a requirement, then keeping the data in a
cache or disposing the data are misinterpretation and ignoring the requirements.
An incomplete or incorrect implementation is an incorrect implementation of
the requirements.

Performance defects encompass issues impacting runtime or memory usage,
such as unnecessary computation or poorly optimized memory allocation. For
example, performance defects include unnecessary queries to the database
which reduce application performance.

5.1 Comparison with Other Defect Taxonomies
Our taxonomy adapts some categories from existing defect taxonomies

but differs in its goal. Our taxonomy focuses on the impact of the defect,
while most existing defect taxonomies focus on the cause of the defect (Sec-
tion 2). Our taxonomy has important similarities to ODC (Chillarege et al.
1992) and the classification of defects found in code reviews by Mäntylä and
Lassenius (Mäntylä and Lassenius 2009). ODC (Chillarege et al. 1992) has 8
main defect types based on the immediate cause of the defect (e.g., incorrect
data validation, assignment errors). Our taxonomy instead organizes defects
based on the impact of the defect on the project. For example, ODC does not
explicitly identify Maintainability or Performance defects. The main difference
in Mäntylä and Lassenius (Mäntylä and Lassenius 2009) is the major categories,
which are Functional and non-Functional defects.

6 RQ1: What types of existing SATs are necessary to identify defects?

To investigate the potential of SATs to find more defects, we first examined the
defects which are detectable through the use of the formal channel (Casalnuovo
et al. 2020) or FC. The formal channel of code encompasses information
specifying computer execution and derives its meaning from the semantics of
code. We found 12 types of SATs necessary to identify more defects (Sections 6.1
to 6.12). We found that AST Pattern Checkers and Style Checkers were the most
broadly applicable, encompassing 25.70% and 25.62% of all defects, respectively.
Our results are listed in Table 2.

6.1 AST Pattern Checkers
Among all tool types, AST Pattern Checkers had the broadest potential

applicability (25.70% of all defects, 33.70% of FC defects) to detect defects.
Many of the defects potentially detectable concern incorrect implementations
of requirements or the maintainability of code.

Among all defects potentially detectable by AST Pattern Checkers, many
involved violations of rules defined by implementation rules (55.29% of defects
potentially detectable by AST Pattern Checkers). Some were caused by incorrect
usage of existing code (e.g., incorrect method calls) or extra implementation
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All Defects FC Defects
SAT Type and Defect Type Count Overall % Tool Type % Overall %
All SATs 1009 76.27 % 100 %
AST Pattern Checkers 340 25.70 % 33.70 %
Maintainability 83 24.41 %
Implementation 188 55.29 %
Test Suite 8 2.35 %
User Interface 33 9.71 %
Requirement 20 5.88 %
Performance 8 2.35 %
Style Checkers 339 25.62 % 33.60 %
Maintainability 339 100 %
Continuous Integration Tools 67 5.06 % 6.64 %
Build Config 67 100 %
Static Execution Simulators 65 4.91 % 6.44 %
Maintainability 16 24.62 %
Implementation 43 66.15 %
Requirement 1 1.54 %
Performance 5 7.69 %
Architectural Style Checkers 60 4.54 % 5.95 %
Maintainability 57 95.00 %
Test Suite 3 5.00 %
Test Suite Checkers 29 2.19 % 2.87 %
Test Suite 29 100 %
Code Clone Detectors 28 2.12 % 2.78 %
Maintainability 27 96.43 %
Test Suite 1 3.57 %
Dead Code Detectors 27 2.04 % 2.68 %
Maintainability 27 100 %
Syntax and Semantic Analyzers 20 1.51 % 1.98 %
Implementation 20 100 %
String Literal Checkers 20 1.51 % 1.98 %
Maintainability 10 50.00 %
Implementation 10 50.00 %
Code Smell Detectors 10 0.76 % 0.99 %
Maintainability 10 100 %
Memory Leak Detectors 4 0.30 % 0.40 %
Implementation 4 100 %

Table 2 The percentage of defects which might potentially be detected (FC), by tool category
and by defect type. The Count column is the number of defects. The Overall % column for
All Defects lists the percentage of all defects found in review comments of that type. The
Tool Type % column lists the percentage of defects found by the tool of that defect type. The
Overall % of Defects Detectable by SATs column lists the percentage of detectable defects
found in review comments.

(e.g., extra check for an input). For example, one defect required a specific
method invocation for every instance of an object:

Example 1. "we will want to emit the clicked signal no matter whether the
topic is sensitive or not."
If any instance of an object is created, then a specific method should be
called regardless of the object properties.

Another frequent type of defect which might be detectable by AST Pat-
tern Checkers involve maintainability defects (24.41% of defects potentially
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detectable by AST Pattern Checkers). These include code conventions and best
practices (e.g., using ‘equals()’ instead of ‘==’ for comparing String literals)
true across projects as well as project-specific rules. For example, one rule
stipulated use of a logger instead of print to signal errors (Ex. 2).

Example 2. "Remove e.printStackTrace(); use logger instead."
If an error is emitted, then it should be tracked using logger.

Other defects involved the user interface of the program (9.71% of defects
potentially detectable by AST Pattern Checkers). These concerned violations
of the intended visual design of the user interface or potential negative impacts
for the usability of the software for end-users. For example, one review comment
concerned a defect where an external link on the system website had an incorrect
setting in which the browser was directed to leave the website. This setting
impacted the usability of the system for the user and could be addressed by
changing an HTML tag attribute (target). The review comment specified that
this attribute should be applied in a specific set of enumerated circumstances
(all external links).

Example 3. "please add a target="_blank" and a descriptive title tag to all
the external links"
If an HTML tag contains an external link, then the tag should also include
a specific property and a proper title.

Some potentially detectable defects negatively impacted performance or
memory use (2.35% of defects detectable by AST Pattern Checkers). For
instance, one defect involved persisted data that was retained in-memory. The
reviewer specified that persisted data should only be retrieved on demand from
the database rather than retained in memory (Ex. 4).

Example 4. "Why are we keeping these [persisted data] in memory at all? We
could just as well load them on demand when a new channeld gets started"
If persisted data is used, it should be loaded on demand rather than retained
in-memory.

6.2 Style Checkers
We found that Style Checkers had a high potential to detect defects (25.62%

of all defects and 33.60% of all FC defects). Style Checkers check a wide range
of maintainability rules, such as best practices and universal coding conven-
tions. For example, reviews frequently surfaced defects involving violations of
indentation and spacing conventions or universal naming conventions (Ex. 5).

Example 5. "Do not use underscore in method naming. Read [document
on] java code convention. Method name should be getTaskStatus [instead of
get_task_status]"
If an identifier is for a method, then it should not include underscores.
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6.3 Continuous Integration Tools
Continuous Integration Tools might be used to detect defects that break the

build and the integration of the codebase (5.06% of all defects). For example,
these tools can detect whether incorrect versions of a library is used by checking
configuration files (Ex. 6).

Example 6. "Please use the same version for spring 5.1.6.RELEASE or
5.1.5.RELEASE."
If a library is used, then a specific version should be used.

6.4 Static Execution Simulators
Static Execution Simulators might potentially be used to detect 4.91% of all

defects. We found that many of these defects concern incorrect implementation
of requirements or maintainability defects. These tools may also sometimes
be relevant to detecting defects involving system performance. Static Execu-
tion Simulators can detect incorrect, incomplete, or extra implementations
of requirements through code abstraction (66.15% of defects detectable by
Static Execution Simulators). For examples, these tools can check if a variable
correctly holds one of a set of permitted values or if a temporal property holds
for events in code. In Example 7, a defect in a system with publish/subscribe
architecture can be detected by checking the order in which method calls occur.

Example 7. "This doesn’t really work, event is thrown before anything registers
for it."
If an event is emitted, there should be at least one subscriber.

Static Execution Simulators might also be used to detect maintainability
defects (24.62% of defects potentially detectable by Static Execution Simula-
tors). For example, a rule might describe how specifiers on mutability might
be applied based on a variable’s usage (Ex. 8).

Example 8. "[It] looks like a const method to me."
If a method does not mutate data in any fields, then it should be specified
as const.

Static Execution Simulators might also be applied to performance defects
(7.69% of defects detectable by Static Execution Simulators). Defects that
impact runtime or memory usage might be specified by tracing values assigned
to variables and fields. For example, static execution simulation might be used
to determine whether a variable is needed by identifying where it is assigned
values and how it is used (Ex. 9).

Example 9. "... table index i and exact bit number j is known, why not to
set it right away instead of packing it up in big number and unpack it again?
If I check correctly this is only place where this macro is used."
If some data is small and rarely used, then it should not be stored in large
fields.
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6.5 Architectural Style Checkers
Architectural Style Checkers might potentially be used to detect 4.54%

of the defects in our dataset. These tools might check maintainability rules
specifying allowed architectural styles. For example, a tool might check if
classes within a component follows its policy on the correct level of accessibility
(Ex. 10).

Example 10. "Make the class modifier and all its queries as package local ...
otherwise, you won’t be able to access these."
If a class belongs to a specific package, then all its elements should be
package local.

They might also check rules concerning where elements should be located,
specifying necessary refactorings (Ex. 11).

Example 11. "Move this method to CanvasDataService, the service defines a
set of related logic together with some enum fields, I see no reasons to keep
them apart."
If elements share similar logic, then they should be kept together in the
codebase.

6.6 Test Suite Quality Checkers
Test Suite Quality Checkers (2.19%) might be used to find defects affecting

the correctness and effectiveness of test suites, such as low code coverage or
missing or redundant tests (Ex. 12).

Example 12. "... please add one or more functional tests to cover this new
flag."
If new code is added, then there should be tests that cover it.

6.7 Code Clone Detectors
Code Clone Detectors (2.12%) may be used to find code which duplicates

other functionality. Most of the code clone defects resulted from re-implementing
functionality found in parts of the program with which the contributor was
less familiar. Others were introduced by repeatedly implementing short code
fragments within the same pull request (Ex. 13).

Example 13. "... Because parties.find(p => p.id === candidate.partyId)!.name
is now used 5 times across 3 files, ... should be abstracted in some way?"
If a code fragment is repeatedly duplicated, then it should be abstracted
into a method.

6.8 Dead Code Detectors
Dead Code Detectors (2.04%) might be used to detect code which is never

executed. Dead code was often caused by unawareness by the developer of the
potential states of the application (Ex. 14). Other causes of dead code included
code migration and refactoring of functionality.
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Example 14. "Please remove this unused click event listener and the
discordLabelText_Click function."
If a method is not called, then it should be removed.

6.9 Syntax and Semantic Analyzers
Syntax and Semantic Analyzers (1.51%) may be able to detect defects such

as incorrect import statements, missing or extra characters in code, and typos
in identifiers (Ex. 15).

Example 15. "Typo (missing ‘t’): defaultDotsLoader"
If an identifier is referenced, then it should be defined.

6.10 String Literal Checkers
String Literal Checkers (1.51%) may be able to detect defects in string

literals that lead to incorrect implementation of requirements or reduce code
maintainability. String Literal Checkers may be used to detect incorrect string
literals violating system requirements and altering system behavior (50.00%
of defects detectable by String Literal Checkers). For example, String Literal
Checkers can check whether a correct host name is used for client-server
applications. They can also check whether strings literals assigned to variables
are among approved lists of strings (Ex. 16).

Example 16. "[The value of an object property] must be one of those values
[defined in a list]"
If a property belongs to a specific object type, then its value must be selected
from a predefined list.

String Literal Checkers might also check custom maintainability rules where
specified formats are defined for string literals (50.00% of defects detectable by
String Literal Checkers). For example, they can check whether log messages
are printed consistently (Ex. 17).
Example 17. "Follow the common pattern for log messages, where the first
parameters are the simulation time and class name, such as the example below:
LOGGER.debug("{}: {}: {} (PEs: {}) mapped to {} (available PEs: {})",}"
If a string literal is a logger message, then it should follow the predefined
format.

6.11 Code Smell Detectors
Code Smell Detectors might potentially detect 0.76% of all defects, such as

code which is unnecessarily long or complex (Ex. 18).
Example 18. "... this is a bit lengthy. Would be worth factoring this out to
some common method. ... split function into 2"
If a method is too long, then it should be broken into several methods.

6.12 Memory Leak Detectors
We found that Memory Leak Detectors have the potential to detect the

fewest of the defects found through code review (0.30% of all defects). These
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tools can detect defects like unfreed memory allocations (Ex. 19). There are
several reasons why memory leak defects were infrequently observed. One may
be support by modern programming languages in automatically managing
memory has resulted in few defects. Another may be that these defects are
simply rarely found through code review, instead surfacing only through testing.

Example 19. "This [memory allocation] isn’t being free’d.
If memory is allocated, then it should eventually be freed.

RQ1 12 types of SATs may be able to detect 76% of defects identified in
code reviews using the formal channel. Style Checkers and AST Pattern
Checkers are most broadly applicable, potentially able to detect 33.60% and
33.70% of defects.

7 RQ2: What features in SATs are necessary to detect defects?

To find the required features in SATs to detect defects, we looked at defects
detectable by SATs and identified important required features for each type of
SAT.

7.1 AST Pattern Checkers
The most broadly applicable tools were AST Pattern Checkers: 25.70% of

all defects. Many of these defects involved violations of project-specific rules
(Ex. 20). To detect AST-based project-specific defects, AST Pattern Checkers
should enable developers to author custom AST-based rules, as in extensible
checkers such as PMD and RulePad (Mehrpour et al. 2020).

Example 20. "DO NOT read information other than canvas type in this view,
just get graph-type from the request.GET..."
If a method is a getter reading data from an API, then it should only read
the data specified in the getter identifier.

While most defects concerned a single element (e.g., block, method, or file),
some involved rules crosscutting several elements. For example, one reviewer
suggested that to define new REST URL endpoints through a specific REST
framework, overriding superclass methods is enough and there is no need to
assign annotations to the methods (Ex. 21). Tools can identify violations of
this rule by checking the AST of classes and methods. To detect crosscutting
and more complex AST-based defects, AST Pattern Checkers should support
complex and crosscutting rules.

Example 21. "Since this class is inherited from viewsets.ViewSet, you can just
override def get(self, request), then you don’t have to add extra decorators."
If a method of the target class has specific annotations and the superclass
has a method with the same annotations, then the method can override the
one in the superclass and remove extra annotations.

To identify necessary features for checking AST-based rules, we analyzed
the defects potentially detectable by AST Pattern Checkers in detail. AST-
based rules can be formulated in two parts: when the rule should apply (the
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quantifier of the rule) and how the rule should apply (the constraints of the
rule). A defect occurs when a snippet of code satisfies the rule quantifier and
violates the rule constraints. Tools such as ActiveDocumentation (Mehrpour
et al. 2019) identify code snippets where only the quantifier applies as well as
where both the quantifier and the constraints apply and compares the results to
identify defects. More traditional defect detectors such as PMD and FindBugs
detect defects by checking for the co-occurrence of both parts of the rule. For
example, the rule "UseIndexOfChar" of PMD states that when the index of
a single character of a string is looked for, then it is more efficient to use
String.indexOf(char)2. PMD checks this rule by checking the called methods
(indexOf and lastIndexOf) and the type of input argument (String or Char) and
throws errors if it detects a violation3.

Based on the characteristics of the rule constraints we observed in our
dataset, we identified three categories of AST-based rule violations: Incorrect
(45.29% of defects potentially detectable by AST Pattern Checkers), Extra
(25.88%), and Missing Code (28.82%) violations. An Incorrect Code violation
occur when a code snippet follows the quantifier conditions but the implemented
constraints contain incorrect code (Ex. 22). An Extra Code violations occur
when a code snippet follows the quantifier conditions but the implemented
code contains extra unwanted code (Ex. 20). A Missing Code violation occur
when a code snippet follows the quantifier constraints but the implemented
constraints are incomplete (Ex. 3).

Example 22. "Do not return status code ... either success or throw error so
that client can react in a proper way."
If a method is making a request to an external server, it should process the
response status and return success or throw error.

To check for these three categories of rule violations, tools should support
multi-step rule verification. In the first step, tools should find the code snippets
on which rules are applied by checking code against the conditions of rule
quantifiers. In the next step, tools should verify the constraints of the rules
on the code snippets found in the previous steps. And finally, tools should
report code snippets violating the constraints. For some AST-based rules, the
quantifier and constraints are applied on the same part of the AST. To check
these rules, existing tools such as PMD or FindBugs are capable of executing
a single AST query to check each rule (Figure 5). However, more complex and
crosscutting rules may require executing multiple AST queries.

7.2 Style Checkers
Style Checkers were the second most broadly applicable tools, potentially

detecting 25.62% of all defects in our dataset. Almost half of these related
to rules about the format of code, including rules about spacing, indentation,
and empty lines. Less common defects related to typos in comments, naming

2 https://pmd.github.io/latest/pmd_rules_java_performance.html#useindexofchar
3 https://github.com/pmd/pmd/blob/master/pmd-java/src/main/java/net/sourceforge

/pmd/lang/java/rule/performance/UseIndexOfCharRule.java
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Fig. 5 In PMD, AST-based rules can be configured as queries of unwanted code snippets
on the AST of code.

Fig. 6 CheckStyle checks sets of universal coding style rules on code, such as format of code
or general naming conventions.

conventions such as camel-case or lowercase letters, and program language
conventions such as lambdas.

Many defects were violations of common best practices, such as defects
related to code formatting (Ex. 23 to 25), typos in comments (Ex. 26), or
naming conventions (Ex. 27). Others were violations of project-specific rules
defined by developers, such as imports with wildcards (Ex. 30), incorrectly
structured comment blocks (Ex. 31), or missing required prefixes for method
names (Ex. 32). Many of these defects are detectable by simple local checks on
code as is done in CheckStyle (bur 2004) (Figure 6).

Some defects require more complex rules to detect. For example, some
projects may declare a style rule that commented code should instead be
removed (Ex. 29). Syntactically valid commented code from other comments
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Common Best Practices
Format of the code Example 23. "[Add] space after while."

Example 24. "Please keep two tabs indentation."

Example 25. "[Add] two empty lines between classes and
functions."

Typos in comments Example 26. "start comment from capital letter as other
comments."

General naming convention Example 27. "Method name is camel case, so getArticles
instead of getarticles."

Program language
convention

Example 28. "[In python] a class without ancestors doesn’t
need a pair of parenthesis [after its identifier name]."

Commented code Example 29. "Please remove the commented out code."

Project-Specific Rules
Imports with wildcards Example 30. "Don’t do import * if it’s not necessary."

Comment block structure Example 31. "I think our convention should be to not use
in-line comments, would rather it was on top of the code block
its trying to explain."

Method name conventions Example 32. "Name test methods like: testCrateTransaction,
testUpdateTransaction, testUpdateTransaction_invalidId,
testCreateTransaction_missingTaskId, etc..."

Ordering and organizing
elements

Example 33. "Please separate the std imports into their own
group."

Example 34. "Can you please move [method] content after
rawContent? In the App rawContent is called first."

Table 3 Style Checkers are able to detect violations of common best practices as well as
violations of project-specific rules. We included examples from our dataset for each category
of rules.

can be distinguished by simple checks4, but detecting unparsable commented
code requires further computation and a more complex parser. Other defects
concerned how code elements are ordered and grouped, such as organizing
internal and external library imports (Ex. 33) or sorting methods to match
the order in which they are invoked (Ex. 34). To detect ordering defects, Style
Checkers might use both static analysis as well dynamic analysis to determine
the order of elements.

7.3 Less Frequent Tools
Defects potentially detectable by Continuous Integration Tools encompassed

5.06% of all defects. Most were violations of universal rules, such as outdated or
inconsistent versions of libraries, missing scripts when adding or using a library
or a framework, incorrect paths, or an incorrect config file format. Others were
violations of project-specific rules, such as extra scripts (pwd or ls commands),

4 https://github.com/checkstyle/checkstyle/issues/2982
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required scripts for failed steps, and required libraries. Many of these might be
detected by static checks.

Static Execution Simulators might potentially detect 4.91% of all defects
in our dataset. By tracking data flow, these tools may help in identifying the
mutability of variables (Ex. 8), confirming the need for variables (Ex. 9), and
detecting possible overflow or underflow (Ex. 35). Some defects also required
the ability to detect undesired sequences of events (Ex. 7).

Example 35. "[The variable] overrun can underflow in the minus operation.
make it int here to fix."
If a variable is mutable, then its type should be adjusted to avoid underflow.

Architectural Style Checkers might potentially identify 4.54% of all defects
in our dataset. These defects were mostly project-specific. Tools might check
for violations of naming conventions (both universal and project-specific), the
correct location of code elements (e.g., classes, methods, etc.), the correct
visibility of code elements, and the correct location of functionality within
elements (Ex. 36).

Example 36. "Instead of extending the parent class, implement the function-
ality as delegation pattern so we can reuse it for other callbacks if needed."
If a class contains utility functionalities, then they should be extracted and
implemented as a separate class extending a dedicated superclass.

Test Suite Quality Checker might potentially detect 2.19% of all defects
in our dataset. The majority of concern the coverage of newly implemented
functionalities in tests. Code coverage in tests can be checked by dynamic
analysis as it is already covered in existing off-the-shelf tools like JCov (JCo
2014). Other required features include parameterizing the tests, verifying the
correctness of tests (e.g., always passed or failed tests), and identifying test
cases testing the same condition.

Other types of SATs are well-defined in the literature, with well-known
necessary features. For example, Code Clone Detectors and Dead Code Detec-
tors might potentially detect 2.12% and 2.04% of all defects. To detect these
defects, these tools should be able to detect unreachable or unexecuted code as
well as syntactic or semantic code clones through static or dynamic analysis.
Syntax and Semantic Analyzers might potentially detect 1.51% of all defects
by performing static analysis. String Literal Checkers might potentially detect
1.51% of all defects by identifying the String locations by static analysis and
applying pattern checking techniques such as Regex to find violations. Code
Smell Detectors and Memory Leak Detectors might potentially detect the least
frequent defects (0.76% and 0.30% of all defects) by applying static or dynamic
analysis.
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RQ2 Many defects are violations of project-specific rules, which requires
defect detectors to be extensible to extend the default universal checks
offered. For Style Checkers, while most rules are checkable by simple local
analysis, other rules such as ordering require more complex parsers or
applying dynamic analysis. To detect AST-based rule violations, in addition
to support project-specific rules, tools should support crafting and checking
crosscutting rules through executing multiple AST queries.

8 RQ3: Which defects cannot be detected by only using the formal
channel?

In order to detect defects, SATs traditionally rely exclusively on interpreting
code based on its syntax and semantics. Throughout the paper, we refer to
tools which rely on this information about code, such as traditional SATs, as
making use of the formal channel. However, in some cases, this information
may be insufficient to determine the intended behavior of code. During code
review, human developers may make use of additional information to identify
defects. For example, a developer might read the comment of a method and,
based on this, decide that the code does not correctly implement this behavior.
To understand the nature of defects not detectable through the use of the
formal channel alone, as used by traditional SATs, we examined defects which
require more information to detect, which we label as ‘defects not detectable
by using only the formal channel’ NFC (Section 4.1). We specifically examined
the types of human judgments necessary to interpret these defects and the
information in the natural language channel of code such as comments and
identifiers (Casalnuovo et al. 2020) or in artifacts other than code that supports
this.

An NFC defect may require information from various artifacts or even tacit
knowledge known only by the developer themselves to be detected. For example,
a developer may identify incorrect logic implemented in a method by looking
at the method identifier and comments which are in the natural language
channel of code (Ex. 49). Or a developer might identify an incorrect constant
identifier by inspecting the use cases of the constant (the formal channel) and
then comparing this to comments and identifiers describing the intent of the
constant (the natural language channel) (Ex. 37). A developer may also use
information beyond the code to detect a defect. For example, a developer might
choose between several possible ways of logging an event by considering the
meaning and importance of the event, which cannot be determined from the
formal channel of code (Ex. 42). This information may be instead be described
in documentation or rely on information about the project tacitly held by the
developer.

Investigating defects not detectable through the formal channel alone is
helpful to investigate the potential for future tools which use information
beyond the formal channel in their analysis of code. Through the use of ML
or NLP techniques, future tools might perform some of the same analysis
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All Defects NFC Defects
Defect type Count Overall % Overall %
All NFC 314 23.73 % 100 %
Maintainability 154 11.64 % 49.04 %
Implementation 88 6.65 % 28.03 %
Requirement 30 2.27 % 9.55 %
Other 42 3.17 % 13.38 %

Table 4 Percentage of code review defects not detectable by SATs through the formal
channel (NFC) by defect type. The Count and Overall % Columns are defined as in Table 2.

as a human developer, inferring intent from the natural language channel
information found in code identifiers or comments or through other artifacts.

We found that NFC defects involve maintainability defects such as in-
correctly named identifiers (Ex. 37), implementation defects like incorrect
implementations (Ex. 41), and requirement defects like incomplete implementa-
tions (Ex. 43). We found that, among all NFC defects, maintainability defects
are the most frequent, encompassing 49.04% of all NFC defects, followed by
implementation defects (28.03% of NFC defects). Our results are summarized
in Table 4.

8.1 Maintainability
The most frequent type of NFC defects were maintainability defects (49.04%

of NFC defects). Many concerned identifier naming. Compared to issues such
as camel-case letters in method names (Ex. 27), which might be detected by
Style Checkers, these defects did not involve a list of rules which could be
easily enumerated and instead required human judgment and common-sense
knowledge. For example, a developer may view an identifier as not correctly
communicating the purpose of a variable.

Example 37. "I’d rename [CRSF_LINK_STATUS_UPDATE_US] to CRSF_LINK_STATUS
_UPDATE_TIMEOUT_US or similar to indicate that this is a timeout value."
If a constant needs to be defined, then its name should reflect its purpose.

Another common issue was in the use of comments, including comments
which were missing, unnecessary, incorrect, incomplete, or misplaced. For exam-
ple, one defect concerned a missing inline comment. This was not universally
prohibited or required, but necessary only in cases where code was hard to
understand. This requires developer judgement to ascertain.

Example 38. "A comment wouldn’t hurt here that tells that its basically
looping as long the result is WSAEFAULT because that is the result in case the
buffer is too small."
If the logic of code is not easy to understand, then a comment is required.

Others issues concerned the readability of code, particularly those that
dealt with its organization and how this communicated intent and whether
code constituted one intent or multiple intents.
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Example 39. "These are two separate queries anyway, so there’s no point in
doing it in one LINQ statement and hiding it in a gameEventAndGames. Just do
two LINQs assigning to gameEvent and games."
If conceptually there are multiple queries, then write each query separately.

8.2 Implementation
The second most common category of NFC defects involved incorrect im-

plementations (28.03% of NFC defects). These involved identifying incomplete,
unnecessarily complex, or incorrect implementations. For example, one reviewer
identified a defect where they found that a specific value should never be passed
as an argument but should instead be computed from a different argument
(Ex. 40).

Example 40. "I think passing the cache as a ... third argument to [the
function] and fetching the solution inside that function might work without
the overloader."
If implementing a method which requires a specific value, then the value
can be accessed by passing a different value as an argument and calculating
the desired value within the method from the argument.

Other implementations were incomplete, and reviewers suggested additional
work to be done based on their understanding of what functionality was needed.
One reviewer found that an error was particularly important, and required a
new API error to signal it (Ex. 41).

Example 41. "This error condition means that we have run out of guest PCI
slots ... So we should introduce a new API error for it."
If an error is important, then there should be a specific API error dedicated
for it.

Identifying this defect requires evaluating the meaning and significance of
errors which occur.

Other implementations were incorrect. One reviewer identified an event
that was logged at an incorrect level, based on their understanding of the
importance of the data to the user (Ex. 42).
Example 42. "[LOG.info()] should probably become LOG.debug(), given [the
output] when this is set to [LOG.info()]."
If the output information is not useful to the end user, then the debug logger
should be used.

Identifying this defect requires making a human judgement about the
importance of an event to the user.

8.3 Requirements
9.55% of NFC defects concerned incorrect implementation of requirements.

These included implementations that were incorrect, incomplete, or which
violated constraints. For example, one reviewer felt that checks which signaled
failures too frequently should be avoided when possible, with the condition
logged rather than signaling a failure (Ex. 43).
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Example 43. "This check, while correct, may be a bit aggressive in the current
network and might result in a lot of failures ... We can still enforce that we
don’t announce by simply not sending [signatures] ourselves. Please don’t
fail the channel over such a minor offence, but log it and we can tighten this
later."
If a check leads to excessive failures, then it should be avoided.

Other requirements defects concerned incomplete implementations which
required additional code. Viewing it as necessary that when important events
occur, a user should be notified, one reviewer found a case where this did not
occur (Ex. 44).

Example 44. "It might be useful to add a message here explaining that the
effect has timed out for [the end users]."
If an event is important to end users, then they should receive a notification
when it occurs.

Requirements defects also concerned constants which were incorrectly chosen.
One reviewer felt that a constant allocating resources was incorrectly chosen,
in light of the amount of resources which they expected might be required
(Ex. 45).

Example 45. "How did you come up with this number 100k [for the stack
size]? Seems low."
If a resource limit is specified, it should be high enough to support typical
use in practice.

8.4 Less Frequent Defect Types
User interface defects (5.73% of NFC defects) involved incomplete, incorrect,

or undesired implementations of user interface features. Defects involved an
incorrect implementation of a user interface element (Ex. 47) or an incorrect
color scheme for user interface elements (Ex. 48). For example, one reviewer
felt that, whenever the user rejected an action, they should be given a timer to
revert it before it is finalized (Ex. 46).

Example 46. "This should decrease influence, and add a ‘refused to remove
troops’ countdown - so this doesn’t pop up every single turn"
If an end user rejects an action, then the application should display a timer
to allow the user to revert the action before finalizing it.

Example 47. "Let’s not do variant="h6" for this label. We want the hierarchy
to emphasize the title on the left. Let’s just go with the default typography
variant (no variant prop needed)."
If the visual properties of an element distort the emphasis of the title, then
its properties should be left as default.



Can Static Analysis Tools Find More Defects? 31

Example 48. "I suggest that you choose colors which would be easier to see
when playing the game."
If colors are used for visual elements, then they should be easy to distinguish
for end users.

We found that 4.46% of NFC defects concerned incorrect, missing, and
hard-to-read tests. Defects involved issues such as test suites which had not
been updated to match the implementation (Ex. 49), incorrect use of boundary
values (Ex. 50), unreadable tests (Ex. 51), and additional needed tests (Ex. 52).

Example 49. "If this now relies on the object keys order, this test should be
updated to reflect that."
If a test is designed for a specific feature in the test, then its implementation
and its title should reflect that.

Example 50. "(optional) As for the chosen value, it is better to choose the
"edge value", i.e. the first one that would be incorrect (-2). If we choose -4,
we aren’t really covering -3 and -2 with this test."
If a value needs to be assigned in a test, then it should be an edge value.

Example 51. "I’d prefer for this function to be parameterized, so X-Foo, X-Bar
could be in (or near) the TestFetchSignWithForwardedRequestHeaders function
itself. This would make it easier to compare the test fixture against the
expected value."
If an assertion in a test contains several important input parameters, then
it should be parameterized.

Example 52. "Please add a test that returns actual numbers that you expect to
get when you send some value. like sending (winner=p1, p1=1400, p2=1400)
returns (p1=1450, p2=1350)."

Build configuration defects encompassed 1.91% of NFC defects in our dataset
and concerned incorrect or incomplete configuration code. One reviewer had a
rule that a specific configuration file was only expected to be listing the tests
that were expected to fail (Ex. 53).

Example 53. "Please remove this particular test result [from the config file],
since it passes with your changes."
If a test is expected to PASS, then it should not be listed in a specific
configuration file.

The least frequent category of NFC defects were performance defects (1.27%).
For example, one reviewer identified a case where a performance optimization
was possible, and a slow method called many times might be called just once.
(Ex. 54).

Example 54. "(optional) If we want to we could reduce the multiple traversal
issue by calling preOrder just once from within validateOptions()."
If a method has a high execution cost, then it should be called as few times
as possible.
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RQ3 We found that 23.73% of all defects identified by code reviews are
not detectable by existing types of SATs using the formal channel. NFC
defects involve violations of rules which require human judgment to check.
Almost half of these were maintainability defects, with issues involving
identifier naming and the use of comments. Other common defects included
implementation defects involving incorrect, overly complex, or incomplete
code and requirement defects involving requirements which were incorrectly
implemented.

9 Threats to Validity

Our study has several important limitations and internal and external threats
to validity.

Internal Validity. A potential threat to the internal validity of our results
is the accuracy of our coding. To create our coding scheme, we first applied two
cycles of open coding, creating a definition for each code. To ensure our coding
scheme could be accurately and repeatably applied, we applied and refined
the definitions, clarifying ambiguity across multiple cycles of closed coding. To
label each code review comment, we needed to understand reviewers’ intent
as well as the context of the review comment. To gain insight into the review
comments, we used all available artifacts included and referenced by the pull
requests. However, the complexity of the projects, and the unavailability of
some artifacts, sometimes made this challenging. It was also necessary for us
to interpret the intent of each comment. To do this accurately, we consulted
previous and subsequent review comments in the same pull request to add
additional context. Reviewers may also express multiple defects stated in a
single review comment. In our coding process, we selected the most emphasized
defect in each comment.

External Validity. Our dataset of PR comments was taken exclusively
from open source projects. Our findings might potentially differ for commercial
projects. However, our dataset is diverse in the types of the projects, number of
contributors, and programming languages. The repositories in the dataset range
from group projects with a small number of contributors to open source projects
with many contributions. A limitation of our study comes from focusing on
defects found through code review. It is possible that some defects are simply
never, or only very rarely, found by code review, but are instead revealed only
through testing or other quality assurance measures. Further work is needed
to determine how the types of defects found in code review, which we examine,
are similar or different from those found by other quality assurance measures.

10 Discussion

In this paper, we investigated the potential of SATs to find more defects. We
found that SATs have the potential to detect 76% of defects identified in code
reviews, considerably more than the 4.5% of defects found to be detectable
by Error Prone, Infer, and Spotbugs (Habib and Pradel 2018) or 16% of code
review defects found by PMD (Singh et al. 2017). There are several potential
interpretations of this divergence. Defects may have occurred in code written
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in programming languages not supported by these tools. The defects might
be able to be detected by these tools, but require additional rules which had
not been written to detect. Finally, some of the defects might, in principle, be
found through the use of these techniques, but might require more powerful
static analysis techniques with greater precision than is possible today.

10.1 Analyzing Code Review Defects
Code review defects have long been used as a proxy to evaluate the ability

of defect detectors to find defects (Singh et al. 2017; Wagner et al. 2005; Beller
et al. 2016). The goal of a defect detector must be to check for defects as defined
by a project’s developers. While developers reviewing code may have different
definitions of correctness (Sadowski et al. 2018a) or even suggest changes that
might seemingly be viewed as unnecessary or inconsistent, we believe that
measuring the success of a tool against what its users, the developers, wish it
might find is still the most important metric with which to define its success.

When we marked defects as being potentially detectable by static analysis
techniques, this does not imply that this is possible with today’s static analysis
tools. Our analysis is aimed at motivating future tools, and is consequently
inherently optimistic in considering what might be possible. In practice, some
of these defects may require much more powerful analysis techniques, or might,
in fact, require analysis techniques that are impossible to create.

10.2 Using SATs to Detect More Defects
Many of the rules we identified were project-specific, necessitating developers

in specific projects to write them rather than relying on the creators of the SAT
to have already written them. Whereas today’s tools are known for general
rules but are extensible to project-specific rules (e.g., PMD, Tricorder), our
results strongly suggest that future defect detectors would greatly increase
their ability to identify defects by embracing project-specific rules. Making it
easier for developers to themselves quickly author project-specific rules might
help bridge this gap. Our findings can guide practitioners to better understand
and prioritize different types of SATs.

We found AST Pattern Checkers to have wide applicability, able to po-
tentially detect 25% of all code review defects. This is again higher than the
16% of code review defects that have been identified to be detectable found
by PMD, a common AST Pattern Checker (Singh et al. 2017). As Static
Analysis Tools, AST Patterns Checkers are comparatively simple, relying on
syntactic checks rather than tracking data flow or more complex rules. Our
results suggest several important ways that these tools might be extended to
identify more defects. We found three types of AST-based violations detectable
by AST Pattern Checkers, including Incorrect Code violations, which are not
directly supported by existing SATs. This suggests the value of investing more
in further improving AST Pattern Checkers, where the important barriers
remain primarily in what rules are supported and the difficulty of supporting
individual developers in authoring project-specific rules.

Beyond simply identifying the presence of a defect, developers also in-
creasingly expect Static Analysis Tools to help in the process of proposing a
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fix (Johnson et al. 2013). While current SATs can detect 2 out of the 3 types of
AST-based rule violations we identified, many are not yet capable of proposing
fixes. To propose fixes to Missing or Extra Code violations, tools may suggest
code by using separate AST patterns for a quantifier (when the rule applies)
and a constraint (what the code must satisfy). For example, ActiveDocumenta-
tion (Mehrpour et al. 2019) compares code against two separate AST patterns,
enabling it to identify Missing Code violations. PMD (Copeland 2005) and
FindBugs (Hovemeyer and Pugh 2004) can detect undesired code snippets, and
thus, may detect Missing or Extra Code violations. However, they are not able
to differentiate Incorrect code and other types of violations. In addition, they
are not always able to suggest fixes5.

SATs such as Memory Leak Detectors that only detect a small percentage of
the defects found in code review, might still be valuable to developers in some
cases. Deciding on using a SAT requires the developers to make an engineering
trade-off to balance the cost of running the tool and against the potential
benefits of using the tool. In some cases, even infrequent defects may be severe
enough that they warrant substantial effort to prevent.

In this study, we used a new qualitative method to investigate the potential
of tools to identify defects. Specifically, we focused on evaluating the potential of
static analysis tools to detect defects found in code reviews. While static analysis
tools are widely used to detect defects, many non-static analysis techniques, such
as mutation testing or ML-based techniques, have also increased in popularity in
recent years. Comparing the ability of static and non-static analysis techniques
would help weigh the cost of applying non-SAT defect detection techniques
against the benefits gained through the defects found by each analysis method.
Future studies might make use of our qualitative method to examine other
types of analysis techniques such as unit tests and compare the types and
quantity of defects potentially detectable by a variety of analysis techniques.

10.3 Detecting NFC defects
We found that 24% of code review defects cannot be detected by existing

types of SATs, as these defects require human judgment to identify and
information beyond the formal channel information that traditional SATs use
to identify defects. However, these defects may not be entirely impossible for
tools to detect. Tools which employ techniques from machine learning and
natural language processing may make it possible to simulate the process
human developers use to make judgements about the correctness of code.
Recent work has begun to explore the potential for tools to utilize machine
learning techniques to detect defects in code (e.g., (Nam and Kim 2015; Huo
et al. 2018)). ML-based defect detectors use information other than the formal
channel of code such as comments (Huo et al. 2018), identifier names (Pradel
and Sen 2018), or previous defect fixes (Wang et al. 2020) to predict defects
offering optimism to detect NFC defects. Natural language processing techniques
may also be used to process source code information and detect NFC defects

5 E.g., some tools offer quick fixes for limited types of defects found by FindBugs,
https://github.com/kjlubick/fb-contrib-eclipse-quick-fixes
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such as input parameter misplacement(Rice et al. 2017). Recent progress in
designing deep learning-based tools, such as GitHub CoPilot (GitHub 2021),
demonstrate the great potential of the natural language channel in working
with code.

10.4 Documentation and SATs
Our findings also suggest the potential for a closer relationship between

documentation and SATs. A common challenge developers face is the inaccessi-
bility and incompleteness of information in code. Code review is an important
approach for on-boarding and helping developers gain knowledge about code. In
many cases, this knowledge is not explicitly structured or documented. Source
code knowledge is often written down by developers only in code reviews,
leaving it scattered in pull requests and buried in review comments. Rather
than simply address issues in each individual commit, developers who find
issues in code review might instead write checkable rules to find future issues of
the same form. Tools such as Getafix (Bader et al. 2019) have already begun to
explore the potential for this interaction paradigm. Our work suggests the broad
potential for a variety of types of SATs to be constantly used by developers to
create rules which capture important project-specific knowledge.

10.5 Future of Code Review
In current practice, the code review process has little to no connection

with defect detectors, as code reviewers examine the submitted code manually
to identify defects. In some software development teams, developers work to
write style rules and ask contributors to check their code against them before
submitting the code. Our results suggest that many of the issues developers
are finding during code review might be written as rules at the time developers
perform code review. For example, a developer finding an issue during code
review might see an issue in one place, write a new rule to check this, and then,
as part of their code review, detect other violations of the rule. The code review
might then include a new rule and highlight current violations of the rule. Our
results suggest a potential for code review tools to more directly integrate rule
checkers, in particular supporting easy authoring of new rules. This would
save code reviewers from repeatedly applying rules to code, pushing this work
onto tools, making rules more consistently checked, potentially decreasing the
number of defects in code, and reducing the cost of code review.
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