
Edit-Run Behavior in Programming and Debugging
Abdulaziz Alaboudi

George Mason University
Fairfax, Virginia, USA

aalaboud@gmu.edu

Thomas D. LaToza
George Mason University

Fairfax, Virginia, USA
tlatoza@gmu.edu

Abstract—As developers program and debug, they continu-
ously edit and run their code, a behavior known as edit-run
cycles. While techniques such as live programming are intended
to support this behavior, little is known about the characteristics
of edit-run cycles themselves. To bridge this gap, we analyzed 28
hours of programming and debugging work from 11 professional
developers which encompassed over three thousand development
activities. We mapped activities to edit or run steps, constructing
581 debugging and 207 programming edit-run cycles. We found
that edit-run cycles are frequent. Developers edit and run the
program, on average, 7 times before fixing a defect and twice
before introducing a defect. Developers waited longer before
again running the program when programming than debugging,
with a mean cycle length of 3 minutes for programming and 1
minute for debugging. Most cycles involved an edit to a single file
after which a developer ran the program to observe the impact
on the final output. Edit-run cycles which included activities
beyond edit and run, such as navigating between files, consulting
resources, or interacting with other IDE features, were much
longer, with a mean length of 5 minutes, rather than 1.5 minutes.
We conclude with a discussion of design recommendations for
tools to enable more fluidity in edit-run cycles.

Index Terms—Debugging, Programming, Live programming,
Development environments

I. INTRODUCTION

Development work can be characterized as a three step
process in which developers edit, compile, and run code.
In modern development environments, the compile step is
automated, and this behavior is often referred to as an edit-
run cycle. During the edit step, developers read and change
the source code while adding new functionality or fixing a
defect. During the run step, developers inspect and execute
their program to test and observe the impact of the newly
added change or patch. Developers’ work often requires more
than a single edit and single run step, requiring cycling through
edit and run steps to achieve a desired output. Developers
may repeat edit-run cycles during debugging to test different
hypotheses [1]–[3]. In programming, developers following
test-driven development continuously introduce minor edits
before again running their tests [4].

To support developers’ work within edit-run cycles, re-
searchers have designed a variety of tools. Live programming
environments [5] aim to improve developers’ productivity by
merging the edit and run steps into a single step [6], allowing
developers to edit and run the program concurrently [7]–[12].

Live programming environments support developers within the
edit step by generating code snippets using examples provided
by developers [13], [14] or by supporting direct manipulation
of the output [15], [16]. Rather than displaying only the final
output of the program, live programming systems support
debugging by displaying intermediate values created during
the program’s execution [17], [18].

Live programming environments envision improving the
fluidity of the programming experience by changing how
developers work within edit-run cycles [19]. The end goal
is to create fluid edit-run cycles which empower developers
to focus on editing the program and immediately observing
the impact of their edit in the output and intermediate state
generated by the program. This fluid workflow envisioned by
live programming environments has three core properties:

1) Developers engage in short and frequent edit-run cycles.
2) Developers focus on the edit step while observing the

output.
3) Developers repeat edit-run cycles sequentially without

interruption within or between cycles.
Little is known about how close developers’ current edit-

run behavior is to this ideal. Embedded within their designs,
live programming environments embody implicit assumptions
about the behavior of developers within edit-run cycles. If de-
velopers were to work completely within a live programming
environment, how would their workflow adapt?

To investigate these questions, we conducted the first em-
pirical study of edit-run behavior. We used publicly available
data to analyze 28 hours of work on open source projects
by 11 professional developers [20]. Using this dataset, we
constructed edit-run cycles that occurred in debugging and
programming. We then investigated the fluidity developers are
able to achieve within their edit-run cycles. Specifically, we
examined:

RQ1 How long and frequent are edit-run cycles?
RQ2 How do developers edit and run during edit-run cycles?
RQ3 How sequential are edit-run cycles, and what causes gaps

within and between cycles?
As developers’ goals may influence their edit-run behavior,

we analyzed and report findings separately for edit-run cycles
in debugging and programming. Our analysis yielded 581 and
207 edit-run cycles in debugging and programming.

We found that edit-run cycles in debugging lasted one
minute on average and occurred seven times every 10 minutes.978-1-6654-4592-4/21/$31.00 ©2021 IEEE

Cycles in programming were longer and less frequent, lasting
on average three minutes and occurring twice every eight
minutes. Developers who used a text editor completed 69%
more edit-run cycles in each debugging episode, which were
each 55% longer, than developers who used an IDE. Both
debugging and programming edit-run cycles primarily focused
on editing. Developers spent more than half of edit-run cycle
time editing. Developers edited only one file of code per
cycle in 70% of debugging and 60% of programming cycles.
These findings suggest that developers’ edit-run cycle behavior
largely achieves the first two proprieties of fluidity, with edit-
run cycles in debugging closer to the ideal than programming.

Our analysis also revealed gaps which interrupted develop-
ers with other activities within and between edit-run cycles.
Edit-run cycles with gaps were four times longer than edit-run
cycles with no gaps. We identified four causes of these gaps,
including working with scattered code, unfamiliar third party
APIs, disintegrated development environments, and waiting to
compile. We conclude with a set of design recommendations
for programming tools which empower development work by
improving fluidity.

II. BACKGROUND

Our study of edit-run behavior builds on prior work exam-
ining debugging, programming, and exploratory programming
as well as the ideal of a fluid live programming experience
envisioned by live programming environments.

Edit-run cycles may occur while debugging, as developers
formulate and test hypotheses about the cause of a defect [1]–
[3], [21]. To formulate a hypothesis, developers look for clues
in the source code. To test a hypothesis, developers may edit
the source code and run the program. Developers often test
multiple incorrect hypotheses before fixing the defect [1], [22],
[23], which may result in multiple edit-run cycles. Researchers
have argued repeated edit-run cycles caused by testing fixes
based on incorrect hypotheses may be avoided by helping
developers debug more systematically [24]. WhyLine, for
example, systematically guides developers to navigate through
the source code from the incorrect output to the source of the
defect. In this way, WhyLine helps developers avoid formu-
lating hypotheses around irrelevant parts of the code. Fault
localization [25]–[28] tools also allow developers to avoid
formulating incorrect hypotheses by offering a ranked list of
potential fault locations that developers need to investigate. In
this way, developers might more quickly understand the cause
of the defect and require fewer edit-run cycles to fix it.

While programming, developers may continuously run their
programs while editing the source code to check their progress.
One effective programming strategy is to divide the pro-
gramming problem into sub-problems, allowing developers
focus on sub-problems and test them individually [29]. This
approach has gained exposure and popularity in the form of
test-driven development [4]. Developers test first, writing a
unit test and only then write the minimal amount of code to
make the test pass. After finishing the edit step, developers
run the test case against the new code. This creates an edit-

run cycle. Developers continue in edit-run cycles, writing
code and running unit tests until all desired functionality is
implemented. This approach has been found to reduce defects
and improve code quality [30]–[32].

Developers in exploratory programming [33], [34] use
edit-run cycles to rapidly prototype ideas and alternative
solutions [33], [35]. Data scientists often use exploratory
programming [36], where they may not know what the final
output should be and use edit-run cycles to explore possible
outputs. Researchers have built tools within computational
notebooks to help data scientists explore alternative solutions
faster by allowing them to navigate edit history [37], [38] and
interactively work with each running cell’s output [11], [16],
[39].

Live programming tools offer direct support for edit-run
cycles [7]–[12]. With live programming tools, developers
edit their program and the tool automatically compiles, runs,
and present the output [8], [19]. By automating the running
step, live programming tools aim to make problem-solving
and exploration more creative, programmers more productive,
and programming, in general, more accessible [6]. Some
live programming tools further support the edit-run cycle by
generating code snippets that developers may use in the edit
step. These tools use programming synthesis techniques, work-
ing from examples provided by developers or output direct
manipulation to generate code snippets [13]–[15]. Lab studies
of live programming tools have found that these tools can help
developers comprehend and debug code more effectively [17],
[18].

McDirmid [19] discusses “the promise of live program-
ming”, presenting the goal of creating environments in which
the “computer can then better assist the programmer in a fluid
experience rich in feedback and affordance”. Much of the
focus of these environments is on offering fast feedback and
fluid transitions between the edit and run steps. However, little
is known about how close developers’ edit-run cycles are from
a fluid ideal.

Prior work has designed a variety of tools enabling increased
fluidity within edit-run cycles. Building on this work, we
instead focus on investigating the edit-run behavior though
analyzing and the characterizing edit-run cycles themselves.
We contribute the first study of edit-run behavior in field
setting. Our work informs tool designers about the nature of
edit-run cycles and the barriers within these cycles to achieving
fluidity.

III. METHOD

To answer our research questions, we began with a publicly
available dataset of 28 hours of professional developer de-
velopment work, annotated with activity codes. From this, we
first identified edit and run steps by mapping activities to either
edit or run steps. We then analyzed the sequence of steps to
construct edit-run cycles within programming and debugging.
Finally, we analyzed the activities to identify causes of gaps
within and between edit-run cycles.

TABLE I: The live-streamed programming videos used in the dataset.

Developer
Observed Time

Project
ID Yrs. Exp.∗ Name and Brief Description LOC GitHub Stars Commits

D1 10 2:00:56 Firefox: A popular web browser. 4M JavaScript 2.1K 751K
D2 31 2:40:48 Curl: A library for transferring data. 138K C 19.9K 29K
D3 7 2:46:10 Serenity OS: A Unix-like operating system. 120K C++ 9.8K 18K
D4 8 3:28:35 Tox: A library for task automation. 10.7K Python 2.1K 2K
D5 8 2:59:49 Downshift: A set of web components built with React. 11K JavaScript 9.4K 664
D6 8 2:23:48 Uzual: A mobile app that helps track daily habits 2.5K JavaScript 63 204
D7 10 2:54:43 Vectrexy: A game emulator. 9.7K C++ 39 656
D8 9 3:05:25 Kap: A screen recorder for computers. 9.5K JavaScript 13.5K 870
D9 9 2:15:26 DevBette: A web application for a small business. 3.6K C# 60 316

D10 10 2:17:14 Alacritty: A cross-platform terminal. 16.5K Rust 30.6K 1.8K
D11 8 3:40:00 Webpack: A bundler for javascript. 95K JavaScript 57.8K 13.3K

∗ # of years contributing to open source projects.

TABLE II: Definitions of the activities coded in the dataset.

Activity Definition

Browsing A File Open a file of code and leave it without edits.
Editing A File Open a file of code and change its contents.
Testing Program Run a program to observe its final output.
Inspecting Program Run a program to observe program state values.
Consulting Resources Use the browser or local doc to search for info.
Other Engage in noncoding work (e.g., writing notes).

Fig. 1: Live-streamed programming videos depict developers at work
contributing to open source projects.

A. Dataset
We began our analysis with a dataset of live-streamed pro-

gramming videos [40], publicly available through the observe-
dev.online platform1. The platform supports analysis of devel-
oper activity annotations alongside the recorded videos. The
dataset and platform are described in detail in Alaboudi et
al. [20]. We briefly review the dataset here.

1) Live-streamed programming
Developers live-stream their development work on open

source projects and invite other developers to join and watch
[41]. The initial stream is then archived as a video on platforms
such as YouTube and Twitch, making it available to other
developers to watch asynchronously. What distinguishes these
videos from other developers’ typical screencasts [42], [43]
is that these videos are not created as a tutorial or documen-

1https://bit.ly/3kkbL2W

tation for particular API usage. Instead, developers show the
entire development workflow as they work within open source
projects [40] (Figure 1).

The dataset we selected contains live-streamed program-
ming videos from 11 professional developers as they add new
functionality and fix defects within open source projects. The
11 professional developers have been active contributors to
open source projects for at least seven years. Many of these
developers shared that they have worked for large companies
such as Google, Microsoft, Lyft, PayPal, and Mozilla. The
open source projects that developers contribute to within these
videos vary in size, domain, and technologies. Projects are
active, with hundreds of commits, tens of GitHub stars and
forks, and thousands of lines of code. All projects also have a
final executable version of the software for public use. Table I
summarizes the characteristics of the annotated live-streamed
programming videos included in the dataset.

2) Developers activities

The dataset contains annotations of 3,544 activities that
occurred in the videos, describing developers’ moment-to-
moment behavior while programming and debugging. Table
II summarizes the activity annotations in the dataset. Videos
are first segmented into 89 debugging and 104 programming
episodes. A debugging episode begins when a developer
encounters a defect and begins work to fix it and ends when
the developers either fixes the defect or stops debugging. A
programming episode begins when developers do any kind
of development work other than debugging, and ends when
developers begin debugging or the video ends. Each episode
consists of a sequence of activities (Figure 2). For each activity
instance, the dataset describes the start and end times, the ques-
tions developers asked during this time, and several activity-
specific codes describing how work occurred. These include
describing whether the developer tested the program manually
or through automated tests for the test the program activity,
inspected the program through the debugger or logs for the
inspecting the program activity, and whether the developer
used documentation or Q&A forums for the consult resources
activity.

Type: table II.
Duration: start and end time.
Questions: questions asked by developers
in this activity.
Description: activity execution methods.

Time

Start End

Episode

Activity

Type: debugging or programming.
Duration: start and end time.

Fig. 2: Development work is segmented into debugging and program-
ming episodes. Each episode is composed of a sequence of activities.
Each activity instance is annotated with several activity-specific codes
describing how developers worked.

End

Time

Episode

Cycle 2Cycle 1

edit run other

Cycle 3Start

Fig. 3: We first mapped browsing a file and editing a file activities to
edit steps (green) and mapped testing the program and inspecting the
program to the run (red) steps. Edit-run cycles begin with the first edit
activity and end with the last run activity. Run steps preceding the
first edit (first activity) and edit steps following the last run step (last
activity) do not belong to an edit-run cycle. Activities not mapped to
either edit or run steps are included in the “other” category (gray),
which may occur both within and between cycles.

B. Data Analysis
To analyze the coded videos, we constructed and analyzed

edit-run cycles. To our knowledge, edit and run steps within
live programming have not before been precisely defined.
Therefore, we inferred definitions of these steps from tools
built to support edit-run cycles [6]. We define the edit step as
the set of activities in which developers browse, comprehend,
and edit code. We define the run step as the set of activities in
which developers run the program to test for the correct output
or inspect intermediate states created by executing the program
(e.g, stepping through the program using the debugger). Using
these definitions, we mapped activity browsing a file or editing
a file to the edit step. We then mapped activity testing or
inspecting a program to the run step. All other activity was
mapped to other types of work. Each cycle begins with an edit
step activity and ends with a run step activity. Other activities
may occur within or between cycles and constitute gaps within
and between edit-run cycles. Figure 3 depicts the sequencing
of activities within edit-run cycles.

There were a small number of incomplete cycles with only
an edit or run step. These occurred at the beginning or end
of episodes. We dropped incomplete cycles as they represent
duplicate cycles in the subsequent episode. For example,
developers may start a debugging episode with a run step that
was also part of a cycle in the previous programming episode.
In this example, we count only the complete cycle in the
programming episode and drop the run step at the beginning
of the debugging episode as a duplicate.

We wrote an automated script to map each activity instance
to an edit or run step. To verify the correctness and com-

TABLE III: The number and total time of episodes and edit-run
cycles.

Episode Type # of Episodes Total Episode Time # of Cycles Total Cycle Time

Debugging 89 15.3 hours 581 14.4 hours
Programming 104 13.1 hours 207 11 hours

TABLE IV: The mean episode length, cycle frequency, and cycle
length. The interquartile range is reported in parentheses (Q1-Q3).

Episode Episode length Cycles Frequency Cycle Length

Debugging 10 (1-12) minutes 7 (1-9) 1 (0.4-2) minutes
Programming 8 (2-10) minutes 2 (0-2) 3 (1-3) minutes

pleteness of the automated script, we manually coded cycles
for a random sample from each developer. We then ran the
script and identified incorrect cases. After iteratively revising
the scripts, the manually coded cycles exactly matched the
cycles generated by the scripts.

To compare the edit-run cycles within debugging and pro-
gramming work, we compared edit-run cycles within debug-
ging and programming episodes. Our analysis revealed that
the episodes in debugging (n = 89, µ = 10 minutes, median =
4 minutes) and programming (n = 104, µ = 8 minutes, median
= 4 minutes) have the same duration distribution (two-sample
Kolmogorov-Smirnov p-value = 0.68, D = 0.1), making them
suitable to divide work into programming and debugging with
comparable units of time.

Finally, to better understand the causes of developers inter-
rupting edit-run cycles to do other work, we analyzed each
cycle, as well as transition between cycles containing other
work. We analyzed their behavior by examining the questions
they asked as well as the videos. In many cases, we needed
to observe a developer’s work beyond an edit-run cycle to
understand their intention. The dataset of edit-run cycles and
our analysis are available in the replication package2.

IV. RESULTS

Our analysis yielded 581 and 207 edit-run cycles for debug-
ging and programming, respectively. Table III lists the number
and length of the edit-run cycles we examined. Due to the
skewness of the data, we report the variance using interquar-
tile ranges and Letter-Value plots. Letter-Value plots encode
more information about skewed distributions than traditional
boxplots, recursively subdividing the remaining region in half
based on its median (e.g., fourths, eights, sixteenths) [44].

A. Length and Frequency of Edit-Run Cycles
A key property of the fluid interaction envisioned by live-

programming are short and frequent edit-run cycles. We found
that most edit-run cycles within both debugging and program-
ming work were less than five minutes. Table IV lists the mean
count of cycles per episode (cycle frequency) and cycle length.

Edit-run cycles in programming tended to be longer than
edit-run cycles in debugging. On average, edit-run cycles
in programming episodes were 3 minutes, with only 15%
longer than five minutes. Edit-run cycles in debugging were

2https://bit.ly/3r1QDSD

interpreted compiled
type of programming language

Debugging Programming

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Episode Length (minute)

0

10

20

30

40

50

60

Co
un

t o
f C

yc
le

s

(a) The distribution of edit-run cycle length in debugging and programming.

0 5 10 15 20 25 30 35 40
Episode Length (minute)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cy
cle

 Fr
eq

ue
nc

y

(b) The relationship between cycle frequency and episode length in debugging
and programming.

IDE Editor Compiled Interpreted
0

2

4

6

8

10

12

14

Cy
cle

 L
en

gt
h

(m
in

ut
e)

IDE Editor Compiled Interpreted

(c) A Letter-Value plot of cycle length by the type of development environment
and programming language.

IDE Editor Compiled Interpreted
0

5

10

15

20

25

Cy
cle

 Fr
eq

ue
nc

y

IDE Editor Compiled Interpreted

(d) A Letter-Value plot of cycle frequency by the type of development environ-
ment and programming language.

Fig. 4: The distribution of edit-run cycle length and frequency (cycles per episode).

TABLE V: Mean cycle frequency (cycles per episode).

Programming Language Development Env.
Episode Compiled Interpreted Difference IDE Editor Difference

Debugging 7.2 6 19% 5.9 10 69%
Programming 2.1 1.9 11% 2 1.7 21%

one minute, with only 5% longer than five minutes. Figure
4a plots the distribution of cycle length for debugging and
programming.

Debugging episodes contained an average of 7 edit-run
cycles per episode, as developers edited and ran the program
7 times before ultimately fixing the defect. Programming
episodes contained an average of 2 edit-run cycles per episode,
as developers tended to find the output not as expected and
begin debugging after running the program twice. We found a
strong positive correlation between debugging episode length
and cycle counts (Pearson r = 0.88), indicating developers
continue running the program regularly as debugging episodes
grow in length. However, there was only a moderate positive
correlation between programming episode length and cycle
counts (Pearson r = 0.59) (Figure 4b). This indicates that,
as programming episodes grow in length, developers do not
continue to regularly run the program.

We also examined how edit-run behavior varied with the
type of programming language (compiled or interpreted) and

TABLE VI: Mean cycle length (seconds).

Programming Language Development Env.
Episode Compiled Interpreted Difference IDE Editor Difference

Debugging 108.5 70.3 54% 77.9 120.4 55%
Programming 185.7 169.4 10% 155.9 314.3 102%

development environment (IDE or traditional text editor) (Fig-
ure 4c, Figure 4d, Table V, and Table VI). Developers who
used a text editor (D2, D4, D10) completed 69% more edit-run
cycles when debugging and spent 55% and 102% more time
in each cycle when debugging and programming, respectively,
than developers who used an IDE (D1, D3, D5-D9, D11).
Developers who used compiled languages (D2, D3, D7, D9,
and D10) completed 11% more cycles with 10% more time
in each cycle when programming and 19% more cycles with
54% more time each when debugging than developers who
used interpreted languages (D1, D4, D5, D6, D8, and D11).

B. Edit and Run Activities
We mapped 2026 activities to an edit step and 828 activities

to a run step, identifying edit and run steps within each of the
788 edit-run cycles. Table VII summarizes the characteristics
of edit and run steps within debugging and programming work.

In live programming, the emphasis on fluidity is largely
focused on enabling developers to remain focused on the

TABLE VII: Characteristics of edit and run steps by episode type
(debugging or programming).

Summary Debugging (

0 20 40 60 80 100
% of run steps

final
states

ou
tp

ut
 ty

pe) vs. Programming (

0 20 40 60 80 100
% of run steps

final
states

ou
tp

ut
 ty

pe

)

The edit step lasted for one minute
on average and was twice as long in
programming as in debugging. The run
step lasted for about half a minute for
both programming and debugging.

0 2 4 6 8 10 12
Step Length (minute)

Ru
n

 E

di
t

Edit steps occupied the majority of edit-
run cycle time in debugging and pro-
gramming.

0% 20% 40% 60% 80% 100%
Cycles Length

Ru
n

Ed
it

During each edit step, developers on
average edited only one file.

0% 20% 40% 60% 80% 100%
Edit-Run Cycles

0
1
2

+3Fil
es

 E
di

te
d

During an edit step, developers usually
edit files they visit. Developers visited
files that they only browsed in only
25% of the edit steps.

0% 20% 40% 60% 80% 100%
Edit-Run Cycles

0
1
2

+3Fil
es

 B
ro

ws
ed

Developers usually run the program
manually (manual). Only 18% of run
steps used automated tests (tests).

0% 20% 40% 60% 80% 100%
Edit-Run Cycles

Manual

Tests

Ru
n

M
et

ho
d

Developers usually run the program to
observe the final output (final). Only
23% of run steps used logs or the
debugger (states). 0% 20% 40% 60% 80% 100%

Edit-Run Cycles

Final

StatesOu
tp

ut

edit step. We found that in both debugging and programming
developers spent the majority of the edit-run cycle time
editing. The edit step constituted on average 59% (±27%) of
the edit-run cycle time in programming and 53% (±26%) in
debugging. Run steps constituted less time, but still constituted
much of the cycle length in debugging. On average, the run
step consumed 26% (±23%) of cycle time in programming
and 42% (±26%) in debugging.

Developers generally focused on editing a single file in
programming and particularly when debugging. Only 20% of
edit-run cycles in programming involved editing more than one
file and only 10% of edit-run cycles when debugging. Edit-
run cycles far more often involved browsing other files, with
40% of debugging cycles and 53% of programming cycles
involving browsing one or more files. Note that the sum of
the edit and run steps may not equal the total cycle time. This
is due to gaps where developers did other work besides edit
and run steps (Section IV-C).

Developers generally executed the program manually
through the GUI or command line rather than through au-

tomated tests. This was particularly true for programming.
Only 9% of edit-run cycles in programming and 21% of
edit-run cycles in debugging involved running the program
through automated tests. Developers mostly ran the program
to observe its final output. Developers only observed program
state through logs or the debugger within 27% and 10% of the
cycles.

C. Gaps Within and Between Edit-Run Cycles
In perfectly fluid live programming, developers sequentially

engage in edit-run cycles, beginning the next cycle without
any interrupting other work between or within the cycle. We
found that most cycles did not contain gaps during or between
them. 94% of edit-run cycles in debugging and 82% of edit-
run cycles in programming were sequential with no gaps in
which developer engaged in activities beyond the edit or run
steps. In some cases, gaps occurred, where developers engaged
in other activities (Figure 5). In the following sections, we
examine the gaps within and between edit-run cycles as well
as their causes.

1) Gaps within edit-run cycles
Edit-run cycles contained gaps during the edit step much

more often (33% in programming, 13% in debugging) than
during the run step (5.3% in programming, 1.5% in debug-
ging). During gaps in the edit step, developers most often inter-
acted with their development environment (7.7% of debugging
and 22.7% of programming edit-run cycles). This included
using tools to search for code snippets across the codebase,
installing third party libraries, and navigating between files.
Consulting resources was also a common type of work during
gaps in the edit step (3.7% of debugging and 11.6% of
programming edit-run cycles). Browsing the issue tracker was
much more common in edit step gaps in programming (13%)
than in debugging (2.6%). Run steps did not contain gaps as
often as edit steps, showing more focus and less need to do
work beyond observing the program output.

Gaps within edit-run cycles introduce friction, reducing
the fluidity of developers interactions when editing code and
observing the output. We found that edit-run cycles with gaps
were four times longer (Figure 6). Edit-run cycles without
gaps (n = 629) lasted an average of 1 minute. In contrast,
edit-run cycles containing gaps (n = 159) lasted an average of
5 minutes.

2) Gaps between edit-run cycles
Developers most often transitioned from one edit-run cycle

to the next in programming (n = 135) and debugging (n
= 493) sequentially without any gaps. Transitions between
debugging edit-run cycles had fewer gaps than programming
edit-run cycles. 18% of transitions between programming edit-
run cycles contained gaps while only 6.4% of transitions
between debugging edit-run cycles contained gaps. When a
transition contained gaps, developers spent on average 22
seconds when debugging and 53 seconds when programming.
The most common type of other work developers did during
the gaps between cycles wan interacting with the development

Edit Run

Interacting with dev. env.
Browsing version control
Consulting Resources
Taking notes

Interacting with dev. env.
Browsing version control
Consulting Resources
Taking notes

0.4%

4%

0.4%

1.4%

0.3%
0.6%

87%
13%

6.4%93.6%

0.2%

3.7%

2.6%

7%

Gaps Within Edit-Run Cycles

Gaps Between Edit-Run Cycles

Interacting with dev. env.
Browsing version control
Consulting Resources
Taking notes0.2%

0.1%

98.5%
1.5%

0.2%

0.5%

0.7%

(a) 581 edit-run cycles in debugging episodes with 493 transitions.

Edit Run

Interacting with dev. env.
Browsing version control
Consulting Resources
Taking notes

Interacting with dev. env.
Browsing version control
Consulting Resources
Taking notes

0.7%

10.4%

6.7%

3.7%

3.9%
18%

67%
33%

18%82%

3.7%

11.6%

13%
22.7% Interacting with dev. env.

Browsing version control
Consulting Resources
Taking notes1.4%

2%

94.7%
5.3%

0.4%

3.8%

1.4%

Gaps Within Edit-Run Cycles

Gaps Between Edit-Run Cycles

(b) 207 edit-run cycles in programming episodes with 193 transitions.

Fig. 5: Transitions between edit and run steps in (a) debugging and (b) programming, with gaps within cycles (top) and between cycles
(bottom) where developers worked on other activities.

Without Gaps With Gaps
0

2

4

6

8

10

12

14

16

Cy
cle

 L
en

gt
h

(m
in

ut
e)

Debugging
Programming

Fig. 6: The distribution of cycle length without and with gaps.

environment (4% debugging transitions and 10.4% program-
ming transitions).

3) Causes of gaps within and between edit-run cycles
To understand the cause of gaps which interrupted fluid edit-

run cycles, we examined the work developers did during these
gaps. We identified four common causes.

Scattered code. To successfully edit code, developers may
need information located in other files, blocking them from
further progress editing. During the edit step, developers asked
question such as “How did this value got set?” (D4), “What
is the difference between these two implementations?” (D1),
“Where is this code located?” (D5), and “Does this function
save the object property?” (D7). To answer these questions,
developers navigated and searched across multiple source files.
The mechanics of searching and navigating between files
created gaps within edit-run cycles. For example, D1 spent
almost 20% of their cycle time searching and navigating
between files. This was to “understand the lifetimes of session
storage and make sure that [he] fully understood it” before
introducing changes to the session storage code.

Unfamiliar third-party APIs. Editing code using unfamil-
iar APIs sometimes interrupted the edit step as developers
learned more by consulting internet resources. Developers
asked questions such as “What other APIs does this library
have?” (D1), “What am I suppose to do to get the desire

output?” (D7), and “Why does this API throw an error?”
(D8). For example, D10 switched to reading documentation
five times while working within an edit step. He gradually
wrote code using the API, while spending 26% of the cycle
time consulting documentation.

Disintegrated development environment. Developers used
a wide range of tools in their development environment,
including a code editor, issue tracker, terminal, and note editor.
These tools were often not integrated, causing gaps when
developers switched to them. For example, three developers
(D4, D5, D6) introduced a new third party library to the
codebase during an edit step. Before using the libraries,
they stopped editing, switched to the terminal, invoked the
installation script for the library, and waited for the library
to install before continuing to edit the source code. Between
edit-run cycles, three developers (D4, D8, D11) periodically
switched to the version control system to check code history
and commit new changes.

Waiting to compile. Developers experienced gaps not
only due to their immediate needs but also when waiting
for operations to complete. For example, while waiting for
their program to compile and the test cases to execute, three
developers (D4, D5, D11) switched to check their issue tracker
and other communication channels. This behavior did not
increase the length of cycles by itself, as developers were
already waiting for their program to run. However, it was a
cause of gaps within run steps.

V. LIMITATIONS AND THREATS TO VALIDITY

Our analysis of developers’ edit-run workflow have several
limitations and potential threats to validity. One potential threat
to external validity is the representativeness of the developer
activities that we analyzed. Our analysis of edit-run cycles
drew from an existing dataset of professional developers at
work [20]. All the videos in the dataset show professional
developers with at least seven years of experience working
on active open source projects. Developers worked within
a diverse set of development environments, programming
languages, and technology stacks. The work that developers
did during the videos was eventually committed to the project.

A potential threat to construct validity is that the method

TABLE VIII: Design recommendations for enabling fluidity within edit-run cycles

Cause of Gap Design Recommendation Examples

Scattered relevant code Reduce the overhead of searching and
navigating multiple files.

• Help developers quickly locate and navigate between relevant code
(e.g., REACHER [45])

• Allow developers to create and navigate within task-specific views (e.g.,
Code Bubbles [46], Patchworks [47]).

Unfamiliar third-party APIs Help developers quickly find docu-
mentation, code examples, and expla-
nations of API errors.

• Offer in-situ auto complete and documentation for third party APIs
(e.g, IntelliSense [48]).

• Support searching for and integrating code examples (e.g, Codeexchange
[49], Strathcona [50], and Codelets [51]).

• Offer potential fixes and explanations of error messages (e.g,
HelpMeOut [52]).

Disintegrated development en-
vironment

Reduce the need to switch to different
tools by seamlessly integrating them
into the same environment.

• Offer integrated support for committing and browse code changes (e.g.,
Auto-git [53]).

• Auto-detect and install third party libraries (e.g, Auto Install [54]).
• Offer integrated note-taking views for tracking task progress.

we used to construct edit-run cycles did not actually capture
edit-run cycles. To mitigate this threat, we first reviewed
existing live-programming literature [6] and defined the activ-
ities constituting edit-run cycles. We then wrote a script that
automated the construction of cycles based on these definition.
Finally, we coded randomly selected cycles for all developers
and checked that the constructed cycles started and ended in
accordance to our definitions of edit-run cycles.

Inherent to the nature of exploratory studies, our analysis
was purely descriptive and does not establish cause and effect
relationships between any of the measures we observed. Our
work offers a characterization of the activities that occurred.
Future work is required to examine the causality of relation-
ships, particularly through controlled experiments.

VI. DISCUSSION
Live programming environments aim to empower develop-

ers by creating a fluid edit-run experience where developers
engage in short, frequent, and sequential edit-run cycles. We
conducted the first empirical study investigating how devel-
opers’ current edit-run behavior compares to the fluid ideal
envisioned by live programming environments. We found that
edit-run cycles were generally short when both debugging and
programming and under 5 minutes in length. Edit-run cycles
in debugging were shorter, lasting on average one minute per
edit-run cycle instead of three minutes for edit-run cycles in
programming. We found that edit-run cycles in debugging
were more frequent, where developers on average tried out
and ran seven edits before fixing a defect. Edit-run cycles
were less frequent in programming, with only two cycles
per programming episode. This suggests that debugging work
most closely embodies the rapid and fluid cycles envisioned by
live programming. Moreover, as envisioned by live program-
ming, developers spend most of their time in edit-run cycles
editing, focusing primarily on editing a single file of code
and testing the impact on the final output. Developers who
used a traditional text editor had 69% more edit-run cycles in
each debugging episode, which were each 55% longer, than
developers who used an IDE.

We found that gaps within and between edit-run cycles

sometimes occurred, interrupting developers. Cycles with gaps
were, on average, four times longer than those without. These
gaps were caused mainly by developers engaged in satisfying
information needs. A variety of studies of information needs
examine in detail potential causes of these gaps, reporting
questions that developers ask [21], [55], [56]. While live
programming systems traditionally focus on more directly
supporting the edit or run step, our findings offer evidence of
the importance of supporting developers’ information seeking.
To better support fluidity in edit-run cycles, development
environments must provide more rapid and integrated support
for satisfying these needs.

We propose three design recommendations for increasing
the fluidity of developers’ work within edit-run cycles (Table
VIII). These recommendations broaden the traditional scope
of the live programming environment, encompassing more of
developers’ work within development tasks. We also offer sev-
eral examples of systems which embody techniques following
these recommendations.

One cause of gaps was searching across files for scattered
code. Live programming environments should aim to reduce
these gaps by creating better task-focused views, helping
developers find and navigate between code more quickly.

When working with unfamiliar third-party APIs, developers
were distracted from their edit-run cycles as they searched
for documentation, code examples, and explanations of error
messages. Live programming environments might do more to
integrate support for these needs within the programming en-
vironment, through in-situ documentation [48], code examples
[49]–[51], and debugging support [22], [52].

Fluidity was also reduced in cases where developers
switched between tools. Developers committed their progress
to a version control system, installed libraries, and documented
their progress and plans. Live programming environments
might increase fluidity by integrating, or even automating,
more of this functionality within the IDE.

ACKNOWLEDGMENTS
This research was funded in part by the National Science

Foundation Grant CCF-1845508.

REFERENCES

[1] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment with
practitioners,” in Symposium on Foundations of Software Engineering,
2017, pp. 117–128.

[2] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, 2005.

[3] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying
the advancement in debugging practice of professional software devel-
opers,” Software Quality, vol. 25, no. 1, pp. 83–110, 2017.

[4] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[5] S. L. Tanimoto, “A perspective on the evolution of live programming,”
in Workshop on Live Programming. IEEE, 2013, pp. 31–34.

[6] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory
and live, programming and coding,” The Art, Science, and Engineering
of Programming, 2018.

[7] A. Goldberg and D. Robson, Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[8] S. L. Tanimoto, “Viva: A visual language for image processing,” Visual
Languages & Computing, vol. 1, no. 2, pp. 127–139, 1990.

[9] S. L. Tanimoto, “A perspective on the evolution of live programming,”
in Workshop on Live Programming, 2013, pp. 31–34.

[10] S. McDirmid, “Living it up with a live programming language,” in
OOPSLA Onward!, 2007.

[11] S. Lau, A. Sarkar, S. Srinivasa Ragavan, and T. Barik, “Tweakit: Sup-
porting end-user programmers who transmogrify code,” in Conference
on Human Factors in Computing Systems, 2021.

[12] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,
and N. Tillmann, “It’s alive! continuous feedback in ui programming,”
in Conference on Programming Language Design and Implementation,
2013.

[13] K. Ferdowsifard, A. Ordookhanians, H. Peleg, S. Lerner, and N. Po-
likarpova, “Small-step live programming by example,” in Symposium
on User Interface Software and Technology, 2020, pp. 614–626.

[14] M. Santolucito, W. T. Hallahan, and R. Piskac, “Live programming
by example,” in Conference on Human Factors in Computing Systems,
2019, pp. 1–4.

[15] R. Chugh, B. Hempel, M. Spradlin, and J. Albers, “Programmatic and
direct manipulation, together at last,” ACM SIGPLAN Notices, vol. 51,
no. 6, pp. 341–354, 2016.

[16] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat, and
K. Patel, “mage: Fluid moves between code and graphical work in
computational notebooks,” in Symposium on User Interface Software
and Technology, 2020, pp. 140–151.

[17] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Conference
on Human Factors in Computing Systems, 2014, pp. 2481–2490.

[18] S. Oney, B. Myers, and J. Brandt, “Interstate: a language and environ-
ment for expressing interface behavior,” in Symposium on User interface
software and technology, 2014, pp. 263–272.

[19] S. McDirmid, “The promise of live programming,” in Workshop on Live
Programming, vol. 16, 2016.

[20] A. Alaboudi and T. D. LaToza, “An exploratory study of debugging
episodes,” arXiv preprint arXiv:2105.02162, 2021.

[21] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in International Conference on Software
Engineering, 2007, pp. 344–353.

[22] A. Alaboudi and T. D. LaToza, “Using hypotheses as a debugging aid,”
in Symposium on Visual Languages and Human-Centric Computing,
2020, pp. 1–9.

[23] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks,” IEEE Transactions on
software engineering, vol. 32, no. 12, pp. 971–987, 2006.

[24] A. Zeller, “Automated debugging: Are we close,” IEEE Annals of the
History of Computing, vol. 34, no. 11, pp. 26–31, 2001.

[25] Mark Weiser, “Program slicing,” in International Conference on Soft-
ware Engineering, 1984, pp. 439–449.

[26] R. A. DeMillo, H. Pan, E. H. Spafford, R. A. DeMillo, H. Pan, and
E. H. Spafford, “Critical slicing for software fault localization,” in
International Symposium on Software Testing and Analysis, 1996, pp.
121–134.

[27] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with
confidence,” in Conference on Programming Language Design and
Implementation, no. 6, 2006, pp. 169–180.

[28] Xiangyu Zhang, R. Gupta, and Youtao Zhang, “Precise dynamic slicing
algorithms,” in International Conference on Software Engineering, 2003,
pp. 319–329.

[29] S. V. Anton, Think Like a Programmer, An Introduction to Creative
Problem Solving. No Starch Press, 2012.

[30] J. C. Sanchez, L. Williams, and E. M. Maximilien, “On the sustained
use of a test-driven development practice at ibm,” in Agile, 2007, pp.
5–14.

[31] E. M. Maximilien and L. Williams, “Assessing test-driven development
at ibm,” in International Conference on Software Engineering, 2003, pp.
564–569.

[32] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, “Realiz-
ing quality improvement through test driven development: results and
experiences of four industrial teams,” Empirical Software Engineering,
vol. 13, no. 3, pp. 289–302, 2008.

[33] M. B. Kery and B. A. Myers, “Exploring exploratory programming,”
in Symposium on Visual Languages and Human-Centric Computing.
IEEE, 2017, pp. 25–29.

[34] J. Trenouth, “A survey of exploratory software development,” The
Computer Journal, vol. 34, no. 2, pp. 153–163, 1991.

[35] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic
programming: How rapid ideation and prototyping occur in practice,” in
Workshop on End-user software engineering, 2008, pp. 1–5.

[36] J. W. Tukey et al., Exploratory data analysis. Reading, Mass., 1977,
vol. 2.

[37] M. B. Kery, A. Horvath, and B. A. Myers, “Variolite: Supporting
exploratory programming by data scientists.” in Conference on Human
Factors in Computing Systems, vol. 10, 2017, pp. 3 025 453–3 025 626.

[38] A. Head, F. Hohman, T. Barik, S. M. Drucker, and R. DeLine, “Man-
aging messes in computational notebooks,” in Conference on Human
Factors in Computing Systems, 2019, pp. 1–12.

[39] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A
unified programming-by-example interaction for synthesizing readable
code for data scientists,” in CHI conference on human factors in
computing systems, 2020, pp. 1–12.

[40] A. Alaboudi and T. D. LaToza, “Supporting software engineering
research and education by annotating public videos of developers
programming,” in Workshop on Cooperative and Human Aspects of
Software Engineering, 2019.

[41] J. Koebler, “Thousands of people are watching this guy code
a search engine,” 2015, accessed: 2019-01-16. [Online]. Avail-
able: https://motherboard.vice.com/en_us/article/pgax4n/thousands-of-
people-are-watching-this-guy-code-a-search-engine

[42] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowledge using
youtube,” in International Conference on Program Comprehension,
2015, pp. 104–114.

[43] M. Ellmann, A. Oeser, D. Fucci, and W. Maalej, “Find, understand, and
extend development screencasts on youtube,” in Workshop on Software
Analytics, 2017, pp. 1–7.

[44] H. Hofmann, H. Wickham, and K. Kafadar, “Letter-value plots: Boxplots
for large data,” Computational and Graphical Statistics, vol. 26, no. 3,
pp. 469–477, 2017.

[45] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Symposium
on Visual Languages and Human-Centric Computing, 2011, pp. 117–
124.

[46] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola Jr, “Code bubbles: rethinking
the user interface paradigm of integrated development environments,” in
International Conference on Software Engineering, 2010, pp. 455–464.

[47] A. Z. Henley and S. D. Fleming, “The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Conference on Human Factors in Computing Systems, 2014,
pp. 2511–2520.

[48] “Intellisense,” Visual Studio, 2021, accessed: May 2021. [Online].
Available: https://bit.ly/2QW1Nea

[49] L. Martie, T. D. LaToza, and A. van der Hoek, “Codeexchange:
Supporting reformulation of internet-scale code queries in context (t),”
in International Conference on Automated Software Engineering. IEEE,
2015, pp. 24–35.

[50] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in International conference on Software engi-
neering, 2005, pp. 117–125.

[51] S. Oney and J. Brandt, “Codelets: linking interactive documentation
and example code in the editor,” in Conference on Human Factors in
Computing Systems, 2012, pp. 2697–2706.

[52] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do: suggesting solutions to error messages,” in
Conference on Human Factors in Computing Systems, 2010, pp. 1019–
1028.

[53] “auto-git,” Visual Studio, 2021, accessed: May 2021. [Online].
Available: https://bit.ly/2PZiRiR

[54] “Auto install,” Visual Studio, 2021, accessed: May 2021. [Online].
Available: https://bit.ly/3tu2UPd

[55] T. D. LaToza and B. A. Myers, “On the importance of understanding the
strategies that developers use,” in Workshop on Cooperative and Human
Aspects of Software Engineering, 2010, pp. 72–75.

[56] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering., vol. 34, pp. 434–451, Jul. 2008.

