
52 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 59 /20©2020 I E E E

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

IT OFTEN SEEMS as if nothing much
ever changes with programming tools.
The core experience of programming
seems remarkably static: type text in
a code editor, see compile errors, run
the code, add log statements, and
use the debugger to understand why
things did not work.

Over the past few decades, however,
computer scientists and psychologists

in areas such as cognitive psychol-
ogy, software engineering, human–
computer interaction, and computer
science education have studied pro-
gramming, revealing what makes
it hard. Through findings from this
work, new programming tools have
been invented that change fundamen-
tal aspects of how a developer inter-
acts with code.

In this article, I describe a few key
findings about what programming is
gleaned from the careful observation

and study of programming. Begin-
ning with the underlying theory about
the nature of human problem solving
from cognitive psychology, I explore
how this motivates an information
needs perspective on programming
and programming tools. Rather than
exhaustively surveying every finding
from the academic literature, I instead
focus on a few particularly common
and challenging developer activi-
ties—debugging, navigating concerns,
understanding design rationale, and
onboarding—and illustrate how one or
two key findings have motivated tools
to help developers work better.

The Psychology of
Problem Solving
Psychologists have long examined what
it is that humans do when they solve
problems.1 One key aspect of problem
solving is trial and error. Problem solv-
ing is often like a maze, where humans
choose which path to follow, back-
tracking as necessary when choices do
not work as expected. Beginning with
high-level goals, humans decompose
these into lower-level goals.

Programming is replete with nested
goals, as developers break down high-
level objectives (e.g., fix this bug, imple-
ment this feature) into ever lower-level
goals (e.g., determine what value this
field is first initialized to). This suggests
an answer to the question of “what is
programming?” Programming is the
act of translating a high-level change
to a program into a sequence of actions
with which to achieve this change.

In the best of circumstances, this
translation may be routine and easy,
as developers readily formulate ac-
tions that directly achieve their goals.
However, programming is often
dominated by moments when this is
challenging—when there are barri-
ers to achieving these goals or break-
downs where the understanding

Information
Needs: Lessons
for Programming
Tools
 Thomas D. LaToza, George Mason University

// Why is programming sometimes so

frustrating and annoying and other times

so fast and painless? This article surveys

a few of the important lessons emerging

from studies of programming and the new

programming tools they motivate. //

Digital Object Identifier 10.1109/MS.2020.3014343
Date of current version: 22 October 2020

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2020 at 06:41:39 UTC from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 53

of the impact of actions no longer
matches reality.

One way to make explicit how high-
level changes are decomposed into sub-
goals and the challenges this brings
is to view each subgoal as a question.
Researchers have examined the infor-
mation needs of developers, identify-
ing questions that they ask. One study
examining the questions developers re-
port to be hard to answer2 found ques-
tions such as the following:

• How can I refactor this without
breaking existing users?

• What does this do in this case?
• Which function or object should

I pick?
• Where is this functionality

implemented?

Questions often reflect specific situ-
ations that describe how code be-
haves, not across all executions, but
when specific events occur.

Based on these insights, tools can
then consider exactly how to make spe-
cific questions easier to answer. For ex-
ample, consider again these questions
and imagine how a tool could help.
Tools might

• work to identify which methods
or parameters are used externally
outside a project or which behav-
iors are visible

• enable developers to more eas-
ily simulate the execution of a
method with less setup

• allow developers to differentiate
the behavior of similar methods
through comparisons of execu-
tion behavior, crowdsourced
 content, or recorded perfor-
mance data

• assist in feature location, iden-
tifying methods involved in the
implementation of a specific
user-facing feature.

By investigating the fit between
the questions and situations that
developers find challenging and the
capabilities of tools in these situ-
ations, it is possible to understand
the degree to which tools support
developers. This might be more
carefully measured by, for example,
documenting how often a question
occurs, how much time it takes to
answer, or the consequences that
occur when developers cannot an-
swer the quest ion or answer it
in correctly. Tools can then be evalu-
ated for the impact that they have in
these situations.

What questions are the most
important for programming tools
to support? Studies offer many an-
swers. A study of questions devel-
opers report to be hard to answer
found that understanding design
rationale, understanding implemen-
tations, and debugging are the most
common challenges.2 A study of the
low-level actions developers take
while programming found that devel-
opers spend the most time navigating
code (35%), more than reading (20%)
or editing (20%) code. Of course, devel-
opers face a variety of other challenges
in specific situations, such as onboard-
ing onto a new project.3 While the
information needs literature suggests
a wide variety of other questions, I

explore these in detail as representa-
tive and particularly important.

Debugging
Many factors can make debugging
hard: incorrect hypotheses may arise
from mistaken assumptions or misper-
ceptions of behavior, symptoms may
be separated from the root cause by
a chasm involving long and complex
control and data flow, and defects
may involve timing or synchronization
problems and be intermittent, inconsis-
tent, or infrequent.4,5

One important finding in the study
of debugging is the centrality of

fol lowing data and control flow,
particularly in large and complex co-
debases. Studies have characterized
how developers debug as the process
of information foraging, choosing
which of the many call relationships
between methods to navigate to find
necessary information.6 Developers
report hard-to-answer questions, such
as the following:

• In what situations or user sce-
narios is this called?

• How do calls flow across process
boundaries?

• What is the original source of
these data?

• How did this runtime state
occur?2

One important finding in the study
of debugging is the centrality of
following data and control flow,

particularly in large and complex
codebases.

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2020 at 06:41:39 UTC from IEEE Xplore. Restrictions apply.

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

Through observing the moment-
to-moment behavior of developers,
it is possible to explain what makes
this hard. Developers ask reachability
questions and search forward or back-
ward across control flow for state-
ments matching search criteria.5 For
example, to understand what a test
is doing that is different from normal
app behavior, developers attempt to
compare the execution behavior in
both cases, identifying statements that
executed differently in each case. This
is often difficult: developers can spend
tens of minutes answering a single

reachability question, may get lost and
disoriented, and might erroneously
make assumptions, causing bugs.

One way to better support debug-
ging might be to simply let developers
debug backward, stepping forward
rather than back. In situations where
developers want to, for example, trace
the original source of data, this can
help, as developers can more easily
follow data backward without having
to constantly set breakpoints and re-
run the code or guess and insert many
log statements. Research tools have
long envisioned this,7 and this fea-
ture can now be found in some com-
mercial tools, such as Visual Studio’s
Time Travel Debugging.

However, a better solution might
be to let developers directly express

their search and let their program-
ming environment identify relevant
information in the execution trace. In
Reacher, developers can, beginning
with a statement in the code, invoke
an upstream or downstream search,
generating a set of all statements that
executed before or in response to the
current statement.8 From this, devel-
opers can search, entering keywords
to match identifiers in method calls or
field reads and writes. This then gen-
erates a visualization that explains the
control flow between the method a
developer is currently viewing to each

of these related methods and state-
ments. Through this, developers can
complete programming tasks consid-
erably more quickly and successfully.

Navigating Concerns
Surprisingly, detailed examination of
developers’ time has shown that they
can spend 35% of their time simply
navigating, as they iterate through
search results, navigate between in-
direct dependencies, and recover
task contexts.9 One reason is that
concerns are often scattered, and
working to implement a specific fea-
ture will require gathering informa-
tion and editing code in many files.
More than 90% of the changes to the
Mozilla and Eclipse projects involved
multiple files.10

Developers also navigate to under-
stand the use and behavior of meth-
ods they call. Modern IDEs, such
as Eclipse and IntelliJ, support eas-
ily browsing to the definition of a
method, seeing its callers, or even fol-
lowing these paths several layers deep
in a tree view. However, developers
still struggle and can sometimes be-
come disoriented.8 Even small over-
head switching between files can
slow developers down or, worse yet,
cause them to miss information and
insert defects.

One solution is for the IDE to ex-
plicitly represent a task context, the
task-relevant methods and relation-
ships. In Mylar (now Mylyn), devel-
opers are offered a filtered element
browser, listing only elements that
belong to the task context.10 When
switching between elements within
the task context, developers need not
remember where functionality was
located, drill down through long and
complex package structures, and find
where they need to navigate to. De-
velopers can instead simply switch
between the relevant elements they
have recently interacted with or that
have been inferred to be relevant.
This enables developers to spend less
time navigating and more time edit-
ing code. Mylyn is now available as
part of the Eclipse IDE.

A more radical approach might
be to completely rethink how code
is displayed to the developer. Rather
than requiring developers to hierar-
chically browse through directories,
packages, files, and classes to find
relevant code, an IDE might instead
simply show only the code that is
relevant. The presentation need not
even be in the traditional, linear list-
ing of a file. Instead, the IDE might
directly show code on a 2D canvas,
including only task-relevant meth-
ods, depicting control and data flow

A better solution might be to let
developers directly express their
search and let their programming

environment identify relevant
information in the execution trace.

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2020 at 06:41:39 UTC from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 55

connections and even overlaying de-
bugging information.11 Task con-
texts might even be saved for later
use, enabling easier task resumption
or sharing with teammates. Debug-
ger Canvas is an add-in for Visual
Studio that offers such a canvas-
centered experience (Figure 1). Feed-
back from users revealed many times
when it offered substantial value,
such as when working with long
and complex control flow, in a large
unfamiliar codebase, or reasoning
about dependency injection. Practi-
cal usability and performance issues
sometimes limited its use.

Design Rationale
You’re looking at some really strange
code that seems to defy explanation:
a method call is being made to a get-
ter function, but the return value of
the getter is ignored. Can you just re-
move it? Or is there some reason this
code is here?

Developers working in large and
complex codebases are constantly
bombarded with questions about ra-
tionale. Some of the most frequently
reported hard-to-answer questions2

and most serious problems developers
report facing12 include the following:

• Why wasn’t it done this other
way?

• Was this intentional, accidental,
or a hack?

• What is the policy for doing
this?

This is largely because design rules
vanish, failing to be documented or
updated and remaining tacit in devel-
opers’ heads.

IDEs might better support devel-
opers in working with design ratio-
nale by making it more explicit and
better connected to the code. Rather
than leave it in documents discon-
nected from the code or in comments
disconnected from all of its uses, de-
sign rules might instead be bidirec-
tionally connected to the code. In

active documentation, design rules
are made explicit and checked against
the code.13 Developers can view de-
sign rules for the current file in a
panel to the right of their code (Fig-
ure 2). When editing code, developers

receive immediate feedback, with vio-
lated design rules highlighted in red.
Developers can see text describing the
rationale for the design rule. To deter-
mine how to write code the right way,
developers can navigate to positive
examples of code snippets that fol-
low the rule. This enables developers
to work faster and more successfully.

Onboarding
You see a really interesting open source
project to build a new multitrack audio

FIGURE 1. The Debugger Canvas visually arranges methods and debug windows on a 2D canvas. For example, when stepping

through multithreaded code, each thread gets its own color, the currently executing method is highlighted in yellow, and each bubble

has its own debugger window. (Source: Rob Deline; used with permission.)

Even small overhead switching
between files can slow developers
down or, worse yet, cause them to
miss information and insert defects.

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2020 at 06:41:39 UTC from IEEE Xplore. Restrictions apply.

56 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

editor and recorder. Having always
wanted to work on an audio project,
you decide you’d like to contribute. But
what do you need to do to get started?

Software engineering researchers
have studied the barriers that devel-
opers face when joining new projects
in traditional organizations and in
open source projects. In open source
projects, these barriers can include

• identifying appropriate contacts
and receiving feedback

• identifying tasks and artifacts
• understanding the project struc-

ture, complex code, and setting
up a workspace

• outdated, unclear documentation
• learning project practices.3

Together, these barriers can take days
or more to overcome. Knowing that

these barriers exist, developers may
be dissuaded from contributing to a
project. This diminishes the devel-
opers available to contribute to open
source projects, further stressing busy
contributors in responding to requests
from users.

Programming tools have envisioned
ways to reduce these barriers. One first
step is to provide a more preconfigured
programming environment, reducing
the need to download and configure
a new tool, set up dependencies, and
ensure building works correctly. Com-
mercial tools have already begun to
solve this issue, offering cloud-hosted
programming environments that are
preconfigured and ready to code. Tools
such as Codesandbox, available at
https://codesandbox.io/, offer an on-
line code editor, complete with pre-
built projects.

But could programming environ-
ments go further to reduce onboard-
ing barriers? A substantial problem
is just how much knowledge about
a project a developer must have to
make a meaningful contribution. De-
velopers must find where in the code
to start and identify related methods
as well as read this code to under-
stand how it works. What if the IDE
could instead simply create a small,
self-contained task where a developer
could decide to contribute to a soft-
ware project in 20 or 30 min?

In microtask programming, devel-
opers complete self-contained micro-
tasks, such as implementing a few
lines within a function or listing a
set of test cases for the description
of a function.14 Rather than view
or understand the whole codebase,
developers instead work with an

(a) (b)

FIGURE 2. Active documentation integrates design rules into the IDE, offering explanations of related design rules and immediate

feedback when rules are violated. For example, when (a) editing the file DesignDocCommand in the code editor, (b) the active

documentation identifies design rules that apply to this file, including examples of rules satisfied and violated by code in the file.

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2020 at 06:41:39 UTC from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 57

individual artifact, such as a function
or a test. The IDE tracks the state of
each artifact, identifying what work
needs to be done next and automati-
cally generating microtasks as neces-
sary. Using microtask programming,
developers can onboard onto a new
software project and submit a code
contribution in less than 15 min.
These contributions can then be com-
bined by the environment back into
working code.

B ehavioral science offers a lens
with which to understand
programming as the act of

translating high-level changes to pro-
grams into actions. By observing the
moment-to-moment activity of devel-
opers, it is possible to describe what
makes programming hard by identi-
fying specific questions that are hard
to answer. Tools can change how to
program by offering new and eas-
ier ways to answer these questions.
However, both the tasks and con-
texts where programming occurs are
diverse, requiring many approaches.
As a developer, it is important to be a
knowledgeable consumer of program-
ming tools, being aware of just what
challenges are most important in their
context and what tools may be avail-
able to meet these challenges.

References
1. H. A. Simon, The Sciences of the Ar-

tificial, 3rd ed. Cambridge, MA: MIT

Press, 1996.

2. T. D. LaToza and B. A. My-

ers, “Hard-to-answer questions

about code,” in Proc. Workshop

Evaluation and Usability of Pro-

gramming Languages and Tools

(PLATEAU), 2010, pp. 1–6. doi:

10.1145/1937117.1937125.

3. I. Steinmacher, M. A. Graciotto Silva,

M. A. Gerosa, and D. F. Redmiles,

“A systematic literature review on

the barriers faced by newcomers

to open source software projects,”

Inf. Softw. Technol., vol. 59, pp.

67–85, Mar. 2015. doi: 10.1016/j.

infsof.2014.11.001.

4. M. Eisenstadt, “My hairiest bug war

stories,” Commun. ACM, vol. 40,

no. 4, pp. 30–37, Apr. 1997. doi:

10.1145/248448.248456.

5. T. D. LaToza and B. A. Myers, “De-

velopers ask reachability questions,”

in Proc. Int. Conf. Software Engineer-

ing (ICSE), 2010, pp. 185–194. doi:

10.1145/1806799.1806829.

6. J. Lawrance, C. Bogart, M. Burnett,

R. Bellamy, K. Rector, and S. D. Flem-

ing, “How programmers debug, revis-

ited: An information foraging theory

perspective,” Trans. Softw. Eng., vol.

39, no. 2, pp. 197–215, 2013. doi:

10.1109/TSE.2010.111.

7. H. Lieberman and C. Fry, “Bridging

the gulf between code and behavior

in programming,” in Proc. Conf.

Human Factors Computing Systems

(CHI), 1995, pp. 480–486. doi:

10.1145/223904.223969.

8. T. D. LaToza and B. A. Myers,

“Visualizing call graphs,” in Proc.

Symp. Visual Languages and Human-

Centric Computing (VL/HCC),

2011, pp. 117–124. doi: 10.1109/

VLHCC.2011.6070388.

9. A. J. Ko, B. A. Myers, M. J. Coblenz,

and H. H. Aung, “An exploratory

study of how developers seek, relate,

and collect relevant information dur-

ing software maintenance tasks,”

Trans. Softw. Eng., vol. 32, no. 12,

pp. 971–987, 2006. doi: 10.1109/

TSE.2006.116.

10. M. Kersten and G. C. Murphy, “Using

task context to improve program-

mer productivity,” in Proc. Symp.

Foundations Software Engineer-

ing (FSE), 2006, pp. 1–11. doi:

10.1145/1181775.1181777.

11. R. DeLine, A. Bragdon, K. Rowan, J.

Jacobsen, and S. P. Reiss, “Debugger

canvas: Industrial experience with the

code bubbles paradigm,” in Proc. Int.

Conf. Software Engineering (ICSE),

2012, pp. 1064–1073. doi: 10.1109/

ICSE.2012.6227113.

12. T. D. LaToza, G. Venolia, and R.

DeLine, “Maintaining mental models:

A study of developer work habits,” in

Proc. Int. Conf. Software Engineer-

ing (ICSE), 2006, pp. 492–501. doi:

10.1145/1134285.1134355.

13. S. Mehrpour, T. D. LaToza, and R.

K. Kindi, “Active documentation:

Helping developers follow design de-

cisions,” in Proc. Visual Languages

and Human-Centric Computing

(VL/HCC), 2019, pp. 2–11. doi:

10.1109/VLHCC.2019.8818816.

14. T. D. LaToza, A. Di Lecce, F. Ricci,

W. B. Towne, and A. van der Hoek,

“Microtask programming,” Trans.

Softw. Eng., vol. 45, no. 11, pp.

1106–1124, 2019. doi: 10.1109/

TSE.2018.2823327.

ABOUT THE AUTHOR

THOMAS D. LATOZA is an assistant professor of computer science

at George Mason University. His research interests include studying

how humans interact with code and designing new ways to build

software. Further information about him can be found at https://

cs.gmu.edu/~tlatoza/. Contact him at tlatoza@gmu.edu.

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2020 at 06:41:39 UTC from IEEE Xplore. Restrictions apply.

