
PLATEAU
12th Annual Workshop at the
Intersection of PL and HCI

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
“CC BY 4.0” license.
cb

Programming Tools for Working with Design
Decisions in Code
Sahar Mehrpour ∗ and Thomas D. LaToza †

George Mason University, Fairfax, VA

Abstract

When writing code, developers make design decisions by choosing between alternatives. Subsequent work
with code requires reasoning about these design decisions, ensuring their code is consistent and answering
rationale questions about why they were made. While documentation might help, it is rarely updated and
often incomplete and untrustworthy. We propose a new form of documentation which is active, making design
decisions checkable and offering immediate feedback on violations as they occur. Active documentation helps
developers reason about design decisions by offering explanations and linked code snippets illustrating how to
follow a design decision. To ensure active documentation is easy to create and maintain, new ways to create
and edit checkable design decisions are needed. We offer a vision for active documentation, offer evidence for
its potential, describe several techniques to achieve it, and suggest future directions for programming tools to
better support it.

Keywords: Design decisions. Programming tools. Design rationale. Documentation. Defect detectors.

1 Introduction
Developers make design decisions whenever they choose between alternatives [1], whether between two
architectural styles or two approaches for persisting data into a datastore. Design decisions collectively
define how functional and non-functional requirements are satisfied by an implementation. Ignoring
and violating design decisions have substantial negative consequences, such as creating defects, code
decay, and architectural erosion [2], [3].

Due to their centrality to programming, developers find themselves constantly needing to under-
stand design decisions. Developers have long been instructed to make this easier by documenting
their design decisions [4]. But in practice this documentation is rarely updated, making it incomplete
and untrustworthy [5]. Instead, developers reverse engineer design decisions from code, and report
that rationale questions about why code was built as it was to be among the most challenging and
hard to answer [6], [7].

We believe there is an important opportunity to re-invent the nature of documentation and make it
active [8]. Rather than interact with plain text, documentation can instead be viewed as a specification,
which can be checked against code. At the same time, it needs to still fulfill the role of documentation
and be written in a language that is understandable by developers and explains why design decisions
were made. Moreover, as code is constantly changing, it needs to be a representation which is easily
and quickly editable, reflecting developer’s constantly changing understanding of their design in the
moment. And, rather then being viewed as a burden imposed on developers to create, documentation
should help developers in reasoning about their decisions as they make them, helping quickly gather
both positive examples of code following it and negative examples of violations and understand how
these are related to other decisions.

To explore this vision, we first studied the potential for helping developers work more effectively
with design decisions. We conducted a detailed study of code reviews, investigating the decisions that
developers violate and the potential for tools to help developers identify these violations (Section 3).
We found many of these issues could be written in the form of checkable rules, many of which can
even be checked by relatively simple AST-based program analysis tools. Based on these findings, we
have been creating a series of tools for making documentation active, helping developers more rapidly

∗Email: smehrpou@gmu.edu
†Email: tlatoza@gmu.edu

1/9

https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0002-9263-3360
https://orcid.org/0000-0002-9564-3337
smehrpou@gmu.edu
tlatoza@gmu.edu

and easily create checkable design rules and ensuring that these tools retain the value and benefits
that effective documentation can bring to developers. We built ActiveDocumentation [8] (Section 4)
to help developers follow design decisions in code and RulePad [9] (Section 5) to reduce the effort
required to write design decisions in a checkable form. We are currently exploring new techniques for
identifying implicit design decisions in code (Section 6).

2 Background
A design decision is a chosen technical alternative [1] which commits the project to a particular design
or otherwise restricts the design space [10]. Design decisions vary in their scope and complexity,
ranging from low-level decisions impacting a few lines of code to high-level architectural decisions
impacting the entire codebase [11]. Design decisions may be associated with a variety of attributes,
such as a description, author, impact [12], rationale [13], and constraints. Design rationale describes
the alternatives which were considered as well as the reasons for choosing the selected alternative [14],
[15]. The constraints of a design decision describe how code should be implemented to be consistent
with the decision [16]. These form a design rule imposed by the decision.

Software Query Languages and ToolsReverse Engineering Tools

Design Pattern Catalog Tools

Design Rationale Tools Documentation Generation Tools Static Analysis Tools System Architecture Tools

Is the design decision captured
when a developer makes a decision?

How does a developer find
design decisions?

Is the decision captured by linking to an
existing explanation of a design decision?

What parts of the design
decision are captured?

How is design rationale expressed?

Is the rule about dependencies between modules?

Test hypothesized design decisions by
identifying examples

Use examples to infer
design decisions

Yes No

Yes No

design rationale (not checked against code)

As alternatives and explanation
of a choice between alternatives

As explanation of a choice within the
description of the design decision

design rule (checked against code)

Yes No

Figure 1. Tools supporting working with design decisions in code make many choices about how decisions
are captured and represented (italic text), resulting in a variety of approaches (bold text).

A wide body of tools have envisioned ways in which developers might be better supported when
interacting with design decisions, from capturing and documenting decisions to recovering uncaptured
decisions from code (Figure 1). To capture decisions, tools may record and link design decisions
to existing artifacts like design pattern catalog tools (e.g., DRIM [17]). Or support documenting
checkable constraints, such as system architecture tools (e.g., SAVE [18]) and static analysis tools
(e.g., FindBugs [19]). Other attributes of design decisions, such as their description, rationale, and
alternatives, may be captured using design rationale tools (e.g., SEURAT [20]) or documentation
tools such as on-demand documentation tools [21]). If design decisions are not captured when the
decision is first made, tools may still offer support, helping developers find decisions by inferring them
from examples in code or testing hypothesized decisions by identifying examples in code. Reverse
engineering tools (e.g., DECKARD [22]) and software query languages and tools (e.g., EG [23]) are
designed to help developers to infer decisions or test hypothesized decisions.

One way to consider how tools support developers in their work with design decisions is to consider
related tasks (e.g., make a design decision, change a design decision) and goals developers face in
accomplishing these tasks (Figure 2). We identify six key goals in working with design decisions:
identifying [24], selecting [25], and documenting chosen alternatives [4], [26]; explaining and following
design decisions [27]; and checking hypothesized decisions [28], [29] (Table 1). Tools often support
more than one of these goals, and may vary in the effectiveness of their support for each (Table 2).
For example, static analysis tools enable developers to find and follow relevant design decisions in code

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 2/9

Design Decision

uncaptured

capturedCollect
Alternatives

Choose an
Alternative

Document
Design Decisions

Check
Hypothesized

Design Decisions

Find and Follow
Design Decisions

Reason about
Design Decisions

Change a Design Decision

Implement

Ask about
Rationale

Find Implicit
Design Decisions

Document

Make a
Design Decision

Figure 2. When working with design decisions, developers face many tasks (italic), leading to a variety of
goals (rectangles) depending on the status of design decisions (dark rectangles).

Table 1. When working with design decisions, developers seek to accomplish a number of distinct goals.

Goal Example
Goal 1 Identify potential alternatives How should functionality be decomposed into classes to achieve ex-

tensibility and maintainability?
Goal 2 Select an alternative as a design decision Is the best alternative for this situation the Command Pattern or

Publish/Subscribe?
Goal 3 Document the chosen alternative Communicate the design decision of selecting the Command pattern

to future developers through documentation.
Goal 4 Check hypothesized design decisions against

code
After reading the code, a developer hypothesizes that the Command
pattern is being used and seeks additional evidence to test this hy-
pothesis.

Goal 5 Find and follow relevant design decisions While creating a new class to implement a new user action, a de-
veloper tries to determine how it should be connected to existing
functionality that captures user toolbar actions.

Goal 6 Determine why an alternative was selected After seeing that communication is mediated through Command pat-
terns, the developer tries to determine why it was selected instead of
a Publish/Subscribe approach.

and offer partial support for documenting the chosen alternatives, checking hypothesized decisions,
and reasoning about decisions. But they offer no support for identifying alternative decisions and
choosing between alternatives.

3 Design Decisions in Code Reviews
To better understand the types of decisions developers fail to follow in their everyday work, we studied
the defects found by code reviews and evaluated the potential of programming tools to detect these
defects.

A number of studies have examined the ability of defect detectors to identify defects. For example
studies found that FindBugs, JLint, and PMD might detect 35% to 95% of defects reported through
issue trackers [30], Error Prone, Infer, and SpotBugs could detect 4.5% of defects in Defects4J
dataset [31], and PMD could detect 16% of issues in code review comments [32]. However, our
analysis differed in that, rather than run the tools that exist today, we instead qualitatively investigated
the nature of each code review issue. Through this process, we were able to systematically examine
not only what defects can definitely be found today, through the tools as they exist and are currently
configured, but also which might be found by using the same underlying program analysis approach,
but with a perfect database containing every design decision in the project.

We systematically collected and qualitatively analyzed more than 1300 defects found in code
reviews. For this analysis, we used all available information, including submitted code, updated code,
reviewers’ comments, and followup discussions, to formulate each defect as a violation of a rule. While
we did not count the frequency each rule applied within a codebase, we observed many to be violated
several times in the same repository. We then compared these rules against the underlying techniques
used by various program analysis tools. We created a taxonomy of tools (Table 3), focusing on
characterizing the representation of code used to check for defects (e.g., abstract syntax tree, program
execution, string literals), the origin of the rule (e.g., programming language syntax and semantics,
project-specific design decisions), and the consequences of its violation (behavioral changes or code

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 3/9

Table 2. Existing developer tools help developers achieving different goals involving design decisions with
different levels of support; denotes full support, denotes partial support, and denotes no support.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6
Documentation Generating Tools
Static Analysis Tools
Design Rational Tools
Design Pattern Catalogs
System Architecture Tools
Reverse Engineering Tools
Software Query Languages and Tools

Table 3. Program analysis tools differ in their representation of code (A: AST, CE: Code Execution, St:
Strings), origin of defects (L: Language, Sp: Specifications, BP: Best Practices), and consequences (CQ:
Code Quality, B: Behavioral). The ∼ symbol indicates indirect influence.

Representation Origin Consequence

PAT Categories A CE St L Sp BP CQ B
Style Checkers ✓ ✓ ✓ ✓
Continuous Integration Tools ✓ ✓ ✓ ✓ ✓
Data Flow Analyzers ✓ ✓ ✓ ✓ ✓
Architectural Style Checkers ✓ ✓ ✓ ✓
Test Suite Quality Checkers ✓ ✓ ✓ ✓ ∼ ∼
Dead Code Detectors ✓ ✓ ✓ ✓
Code Clone Detectors ✓ ✓ ✓ ✓
Compilers ✓ ✓ ✓
String Compilers ✓ ✓ ✓ ✓ ✓
Code Smell Detectors ✓ ✓ ✓ ✓
Memory Leak Detectors ✓ ✓ ✓
AST Pattern Checkers ✓ ✓ ✓ ✓

quality).
Our analysis revealed that existing program analysis techniques may be capable of detecting three-

quarters of the defects found in code reviews. This is considerably higher than the 16% of issues found
by studies of existing defect detectors [32], suggesting the potential for program analysis techniques
to be used to find more defects. In particular, we found that style checkers and AST-based defect
detectors might potentially detect half of the defects found in code reviews. However, many of these
defects differ considerably from the typical defects found today by these tools. Rather than encode
rules such as variables should be defined before use, these rules instead captured project specific rules.
That is, they capture design decisions which developers had violated.

4 Making Documentation Active
To help developers more effectively work with design decisions in code, we proposed a new form
of documentation which is active [8]. (Figure 3). ActiveDocumentation makes the design rule
constraints imposed by decisions checkable as AST patterns, which we found to be a commonly
applicable representation (Section 3). ActiveDocumentation helps developers follow design decisions
by maintaining an active link between code and captured design decisions, actively checking the
decisions against code, and informing developers about divergences between code and design decisions.
The active links enable developers to find examples of code following decisions, which is often sought
by developers [33], and to update design decisions to be consistent with code. To help developers
easily find relevant design decisions, ActiveDocumentation surfaces design decisions related to the
current files and includes a tagging mechanism for organizing and browsing design decisions.

We evaluated ActiveDocumentation by conducting a user study asking participants to implement
a feature in an unfamiliar codebase. We found that ActiveDocumentation enabled developers to work
more quickly and successfully with design decisions in code. Developers used the examples identified

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 4/9

Figure 3. ActiveDocumentation enables developers to find and follow relevant design decisions, surfacing
design decisions related to the current file.

by ActiveDocumentation to learn how to follow design decisions, and used identified violations to find
incorrect and incomplete code. Developers reported that the instant feedback in ActiveDocumentation
helped them detect defects early.

5 Helping Developers Write Checkable Design Decisions

C

D

A B

Figure 4. Developers may use RulePad to author checkable design decisions by either using (B) snippet-
based authoring to express design decisions using simple code-based templates in a structured editor or (A)
using semi-natural language to express design decisions in a notation close to prose. While editing decisions,
developers may examine the behavior of the decision by (D) viewing a list of example code snippets which
satisfy or violate the decision.

In today’s tools, there is a wide gulf between explaining a design decision in a prose document
and writing a defect pattern in PMD. Yet, if documentation is to be made checkable, it is necessary
for a developer to express their design decision in a way that can translated into a specification
which can be used by a program analysis tool. Many static analysis tools such as Error Prone [34]
and Infer [35] are extensible, enabling developers to write new defect patterns. However, they require
substantial knowledge of program analysis to write, either in a general purpose programming language

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 5/9

(e.g. FindBugs [19]) or through complex query notations (e.g. XPath in PMD [36]). These notations
impose a substantial barrier in both expertise and effort. Asking developers to constantly document
their design decisions in checkable form clearly requires reducing these barriers.

We created two complimentary techniques for documenting checkable design decisions: snippet-
based authoring and semi-natural language authoring [9]. These approaches are complimentary in
their balance between simplicity and expressiveness. Developers may first use snippet-based authoring
to express design decisions through simple code-based templates, using their knowledge of code to
author simple rules in a structured editor that looks like code. But more complex design decisions,
requiring more control over conjunction and disjunction, cannot be expressed. In semi-natural language
authoring, developers can use a language that looks like a natural language description of a decision
to author a wide range of decisions. But developers must first learn the semi-natural language.

We implemented these two approaches in RulePad, an extension to our ActiveDocumentation tool,
in a Graphical Editor and Textual Editor. As developers author design decisions, they receive immediate
feedback in the form of positive examples following the decision and code snippets which violate the
decision (Figure 4-D). The Graphical Editor and Textual Editor are bidirectionally synchronized. As
developers edit rules in the Graphical Editor, they can understand their design decision by reading the
constructed semi-natural language representation in the Textual Editor (Figure 4-C).

In a user study comparing authoring checkable design decisions in RulePad against existing support
in PMD, we asked developers to author a series of design decisions. We found that participants were
able to successfully author 13 times more query elements using RulePad than PMD and were more
willing to used RulePad in their everyday work.

6 Suggesting Design Decisions From Code

</> 1

</> 2

1
2
3
4
5

6
1
4
2
5

1 2 3 4 5 6 7 8 9 10 11
</> 1
</> 2
</> 3
</> 4

1 2 4
1 2 6
2 4 5 6
4 6 11
5 11

Frequent Itemsets
(co-occurring features)

Feature/Code Unit Table Suggested Design RulesCodebase Features in each Unit1 2

3

4

Figure 5. To suggest design decisions to developers, features are first extracted from code and stored in a
data table. From this, frequent co-occurring features are identified and displayed as suggested design rules.

When design decisions are not written down, developers use source code as their primary resource
and reverse engineer design decisions from code [7]. Developers look for examples in code, try to infer
rules from examples, and test hypothesized rules against code.

We believe programming tools can offer better support here. We envision a tool which helps
developers by suggesting potential design decisions relevant to their current work (Figure 5). To
find design decisions, features are first extracted from each code element (e.g., class, method, field)
(Figure 5-1). These features might include the identifier of the superclass, the parameter types for
a method, or the initial value of fields. Each code element can then be represented by its features
(Figure 5-2). Through frequent itemset mining algorithms, co-occurring features can next be identified
(Figure 5-3). Finally, frequent itemsets can themselves be clustered and rendered in a readable form
as suggested design rules (Figure 5-4).

One key challenge with mining approaches is helping to surface interesting and relevant design
decisions from the vast quantity of coincidental occurrences. Widely used algorithms for mining
frequent itemsets (e.g., FP-Growth [37]) focus mostly on the number of features co-occurring and
less on their importance or relevance. Many itemsets may be highly similar, creating more noise to

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 6/9

sift through. Meeting these challenges requires approaches for clustering itemsets and finding ways
to identify potential design decisions which are most relevant and interesting.

Another key challenge is selecting the features with which to represent code. The potential number
of features is exponential in the size of the code snippet, making it rapidly intractable to examine
all possible features. To address this challenge, a set of standard features might be curated from
examples of design decision in codebases. But it is crucial to offer extensbility, letting developers
themselves create new features.

To evaluate the effectiveness of an approach, it is important to investigate its ability to suggest the
design decisions developers might care about. This might be assessed by finding a corpus of design
decisions for a codebase and comparing it to those extracted. But it is important to also conduct user
studies to evaluate the ability of such techniques to help developers more quickly and successfully find
and follow relevant design decisions.

7 Conclusion
Understanding the rationale behind code has long been particularly painful and time consuming due
to the failure of programming tools to adequately support the process of creating and maintaining
documentation. By thinking more broadly about what documentation might and should be to effec-
tively support work with design decisions, many opportunities for better tools can be found. Rather
than conceive of documentation as a passive document, to be manually created and maintained, it
can instead be thought of as an active view of code, co-created together by the developer and their
programming tools. Our studies show the potential value of this approach to improving the ability
of developers to work effectively. But there a wide range of goals which developers pursue when
working with design decisions, each of which requires careful consideration of how to offer effective
tool support.

References
[1] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,” Communications of

the ACM, vol. 15, no. 12, pp. 1053–1058, 1972. doi: 10.1007/978-3-642-48354-7_20.

[2] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does code decay? assessing the
evidence from change management data,” Transactions on Software Engineering, vol. 27, no. 1, pp. 1–
12, 2001. doi: 10.1109/32.895984.

[3] M. Lindvall, R. T. Tvedt, and P. Costa, “Avoiding architectural degeneration: An evaluation process
for software architecture,” in International Software Metrics Symposium (METRICS), 2002, pp. 77–86.
doi: 10.1109/METRIC.2002.1011327.

[4] D. L. Parnas and P. C. Clements, “A rational design process: How and why to fake it,” Transactions
on Software Engineering, vol. SE-12, no. 2, pp. 251–257, 1986. doi: 10.1109/tse.1986.6312940.

[5] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documentation: The state of
the practice,” IEEE Software, no. 6, pp. 35–39, 2003. doi: 10.1109/ms.2003.1241364.

[6] T. D. LaToza and B. A. Myers, “Hard-to-answer Questions About Code,” in Evaluation and Usability
of Programming Languages and Tools (PLATEAU), 2010, pp. 1–6. doi: 10.1145/1937117.1937125.

[7] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a study of developer work
habits,” in International Conference on Software Engineering (ICSE), 2006, pp. 492–501. doi: 10.1145/
1134285.1134355.

[8] S. Mehrpour, T. D. LaToza, and R. K. Kindi, “Active Documentation: Helping Developers Follow
Design Decisions,” in Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
2019, pp. 87–96. doi: 10.1109/vlhcc.2019.8818816.

[9] S. Mehrpour, T. D. LaToza, and H. Sarvari, “Rulepad: Interactive authoring of checkable design rules,”
in European Software Engineering Conference and International Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2020, pp. 386–397. doi: 10.1145/3368089.3409751.

[10] G. Fairbanks, Just enough software architecture: a risk-driven approach. Marshall & Brainerd, 2010.

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 7/9

https://doi.org/10.1007/978-3-642-48354-7_20
https://doi.org/10.1109/32.895984
https://doi.org/10.1109/METRIC.2002.1011327
https://doi.org/10.1109/tse.1986.6312940
https://doi.org/10.1109/ms.2003.1241364
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/vlhcc.2019.8818816
https://doi.org/10.1145/3368089.3409751

[11] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, and N. Medvidovic, “Recovering architectural design deci-
sions,” in International Conference on Software Architecture (ICSA), 2018, pp. 95–9509. doi: 10.1109/
ICSA.2018.00019.

[12] P. Kruchten, “An ontology of architectural design decisions in software-intensive systems,” in Groningen
Workshop on Software Variability Management, 2004.

[13] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” Software Engineering
Notes, vol. 17, no. 4, pp. 40–52, 1992, issn: 0163-5948. doi: 10.1145/141874.141884.

[14] T. P. Moran and J. M. Carroll, Design rationale: Concepts, techniques, and use. CRC Press, 1996.

[15] J. Lee, “Design rationale systems: Understanding the issues,” IEEE Expert, vol. 12, pp. 78–85, 3 1997.
doi: 10.1109/64.592267.

[16] C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity. MIT Press, 2000, vol. 1.

[17] F. Peña-Mora and S. Vadhavkar, “Augmenting design patterns with design rationale,” AI EDAM, vol. 11,
no. 2, pp. 93–108, 1997. doi: 10.1017/S089006040000189X.

[18] J. Knodel and D. Popescu, “A comparison of static architecture compliance checking approaches,” in
Working IEEE/IFIP Conference on Software Architecture (WICSA), 2007, pp. 12–12. doi: 10.1109/
wicsa.2007.1.

[19] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), 2004, pp. 132–136. doi: 10.1145/1028664.1028717.

[20] J. E. Burge and D. C. Brown, “Software engineering using rationale,” Journal of Systems and Software,
vol. 81, no. 3, pp. 395–413, 2008. doi: 10.1016/j.jss.2007.05.004.

[21] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A. Gerosa, M. Godfrey, M.
Lanza, M. Linares-Vásquez, et al., “On-demand developer documentation,” in International Conference
on Software Maintenance and Evolution (ICSME), 2017, pp. 479–483. doi: 10.1109/icsme.2017.17.

[22] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable and accurate tree-based detection
of code clones,” in International Conference on Software Engineering (ICSE), 2007, pp. 96–105. doi:
10.1109/icse.2007.30.

[23] C. Barnaby, K. Sen, T. Zhang, E. Glassman, and S. Chandra, “Exempla gratis (EG): Code examples for
free,” in European Software Engineering Conference and International Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2020, pp. 1353–1364. doi: 10.1145/3368089.3417052.

[24] M. X. Liu, J. Hsieh, N. Hahn, A. Zhou, E. Deng, S. Burley, C. B. Taylor, A. Kittur, and B. A. Myers,
“Unakite: Scaffolding developers’ decision-making using the web,” in Symposium on User Interface
Software and Technology (UIST), 2019, pp. 67–80. doi: 10.1145/3332165.3347908.

[25] R. Beheshti, “Design decisions and uncertainty,” Design Studies, vol. 14, no. 1, pp. 85–95, 1993, issn:
0142-694X. doi: https://doi.org/10.1016/S0142-694X(05)80007-9.

[26] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software architecture
knowledge management: Practice and future,” Journal of Systems and Software, vol. 116, pp. 191–205,
2016. doi: 10.1016/j.jss.2015.08.054.

[27] S. Rugaber, S. B. Ornburn, and R. J. LeBlanc, “Recognizing design decisions in programs,” IEEE
Software, vol. 7, no. 1, pp. 46–54, 1990. doi: 10.1109/52.43049.

[28] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software development teams,”
in International Conference on Software Engineering (ICSE), 2007, pp. 344–353. doi: 10.1109/ICSE.
2007.45.

[29] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering questions during a programming
change task,” Transactions on Software Engineering, vol. 34, no. 4, pp. 434–451, 2008. doi: 10.1109/
TSE.2008.26.

[30] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu, “To what extent could we detect field
defects? an empirical study of false negatives in static bug finding tools,” in International Conference
on Automated Software Engineering (ASE), 2012, pp. 50–59. doi: 10.1145/2351676.2351685.

[31] A. Habib and M. Pradel, “How many of all bugs do we find? a study of static bug detectors,” in
International Conference on Automated Software Engineering (ASE), 2018, pp. 317–328. doi: 10 .
1145/3238147.3238213.

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 8/9

https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.1145/141874.141884
https://doi.org/10.1109/64.592267
https://doi.org/10.1017/S089006040000189X
https://doi.org/10.1109/wicsa.2007.1
https://doi.org/10.1109/wicsa.2007.1
https://doi.org/10.1145/1028664.1028717
https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1109/icsme.2017.17
https://doi.org/10.1109/icse.2007.30
https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1145/3332165.3347908
https://doi.org/https://doi.org/10.1016/S0142-694X(05)80007-9
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1109/52.43049
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213

[32] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson, “Evaluating how static analysis tools can reduce
code review effort,” in Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
2017, pp. 101–105. doi: 10.1109/vlhcc.2017.8103456.

[33] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software developers use static
analysis tools to find bugs?” In International Conference on Software Engineering (ICSE), 2013, pp. 672–
681. doi: 10.1109/icse.2013.6606613.

[34] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful program analysis tools using an
extensible java compiler,” in International Working Conference on Source Code Analysis and Manipula-
tion (SCAM), 2012, pp. 14–23. doi: 10.1109/SCAM.2012.28.

[35] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W. O’Hearn, I. Papakonstanti-
nou, J. Purbrick, and D. Rodriguez, “Moving fast with software verification,” in NASA Formal Methods
Symposium, ser. Lecture Notes in Computer Science, vol. 9058, 2015, pp. 3–11. doi: 10.1007/978-3-
319-17524-9_1.

[36] T. Copeland, PMD Applied. Centennial Books, 2005.

[37] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” in International
Conference on Management of Data (SIGMOD), 2000, pp. 1–12. doi: 10.1145/342009.335372.

Mehrpour and LaToza | PLATEAU | v.12 | n.1 | | 2021 9/9

https://doi.org/10.1109/vlhcc.2017.8103456
https://doi.org/10.1109/icse.2013.6606613
https://doi.org/10.1109/SCAM.2012.28
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/342009.335372

	Introduction
	Background
	Design Decisions in Code Reviews
	Making Documentation Active
	Helping Developers Write Checkable Design Decisions
	Suggesting Design Decisions From Code
	Conclusion

