
Crowd Development

Thomas D. LaToza1, W. Ben Towne2, André van der Hoek1, James D. Herbsleb2
1Department of Informatics

University of California, Irvine
Irvine, CA USA

{tlatoza, andre}@ics.uci.edu

2Institute for Software Research
Carnegie Mellon University

Pittsburgh, PA USA
{wbt, jdh}@cs.cmu.edu

Abstract—Crowd development is a development process
designed for transient workers of varying skill. Work is
organized into microtasks, which are short, self-descriptive, and
modular. Microtasks recursively spawn microtasks and are
matched to workers, who accrue points reflecting value created.
Crowd development might help to reduce time to market and
software development costs, increase programmer productivity,
and make programming more fun.

Index Terms—crowdsourcing, distributed development,
gamification, social software development

I. INTRODUCTION
Today’s crowdsourcing systems enable large, challenging

tasks to be performed in parallel by crowds of transient work-
ers. In 2011, players of the game Foldit produced an accurate
3D model of an enzyme in just 10 days, a problem that had
stumped researchers for 15 years [7]. A team in the DARPA
network challenge recruited a crowd to locate 10 balloons,
placed throughout the United States, in under 9 hours. And
while still in beta, over 100,000 players of Duolingo translated
websites into a foreign language as they learned a language
with their friends [3]; that project continues to grow.

One of the earliest successes of the crowd is open source
software development: large, reliable, open source projects
such as Linux and Apache demonstrate the scope of what
crowds can achieve. However, open source software develop-
ment still presents a fairly high barrier to participation for ac-
tivities beyond bug reporting, with mailing lists to join, a
codebase to explore, conventions to learn, a distributed social
network of various personalities to navigate. This dissuades
developers who are not strongly committed from contributing,
leaving a large amount of the potential value in the “long tail”
of participation untapped.

We believe the time has come to fundamentally re-envision
software development for the crowd. What if a transient worker
could join a project and contribute immediately? What if work-
ers learned valuable software development skills while contrib-
uting? What if software development felt more like a game,
and less like work? What if software development work sup-
ported fine-grain parallelism, so that a crowd could build a
large application in a day?

Crowd development is a development process that organiz-
es work into microtasks. Microtasks are short – on the order of
seconds to a few minutes – and provide specific completion
criteria. Microtasks are self-descriptive, enabling workers to
immediately contribute. Microtasks are modular, enabling fine-

grained parallelism by providing a view of the system one arti-
fact (e.g., method) at a time, exposing only aspects of other
artifacts needed for the task at hand. Microtasks may fail,
through malicious work, disappearing workers, or legitimate
error. Microtask completions accrue points in an incentive sys-
tem, incentivizing good behavior. And microtasks recursively
spawn microtasks, allowing the system to detect and advertise
work items. Crowd development differs from both traditional
and open source development in making the unit of work short,
modular, and self descriptive, potentially enabling new tech-
niques for task assignment, feedback, incentives, coordination,
and management that better match the work to be done.

This paper describes a vision for crowd development, out-
lining benefits it might achieve and research challenges to be
addressed. How is work divided up? How are tasks matched to
workers and quality ensured? What motivates workers to par-
ticipate? For each challenge, we discuss important tradeoffs
and considerations and survey potential solutions, recognizing
that there may be many valid alternatives.

II. RELATED WORK
As ‘outsourcing’ is the practice of taking jobs traditionally

done by experts in one company in one region and having them
be done by different individuals in a different region,
‘crowdsourcing’ is the practice of enabling a large, distributed,
crowd to complete work traditionally done by experts within
one firm. Several reviews provide an introduction to this field,
suggesting that a large diverse crowd will generally do a better
job than a single expert, and describe some conditions under
which that is more likely to be the case [6][16][19]. Much work
in the area of crowdsourcing has focused on techniques for
ensuring quality, such as using redundancy or filtering out
work done by unskilled or unmotivated workers. A number of
experiments have helped build theory and practices that allow
tasks with individual accuracy below traditionally acceptable
levels (e. g. 70% correct) to be combined in ways that lead to
overall task quality above even high quality thresholds. Further
work in crowdsourcing has examined construction of complex
workflows [10] [16], so that even creative work or tasks with
nontrivial interdependencies can be crowdsourced. This work
provides essential building blocks for crowd development.

A few systems have begun to explore crowdsourcing indi-
vidual software development tasks. TopCoder organizes com-
petitions for tasks such as authoring algorithms, UI, and soft-
ware design [20]. Collabode provides an experience similar to
Google Docs for code, enabling developers to “micro out-

978-1-4673-6290-0/13 c© 2013 IEEE CHASE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

85

source” freeform tasks to other developers [5], and Mo-
bileWorks plans to add programming tasks [9]. But no system
has yet scaled crowdsourcing from development tasks to a de-
velopment process.

III. RE-ENVISIONING DEVELOPMENT FOR THE CROWD
Crowd development might enable a range of benefits that

fundamentally improve the way software is built.
Shorter time to market: By dividing tasks into microtasks,
crowdsourcing increases the potential for parallelism. Work
that might have been done by a single worker over an hour
might now be done, in parallel, by 20 workers in three minutes.
Taken to the extreme, this could enable dramatically faster time
to market. If a crowd of 1,000,000 workers worked on a single
application for a day, could it build a large application?
Democratizing development: Players of the game Foldit fold
proteins not through their expert knowledge of biology, but
through a game that encodes it into the rules. Recent work has
applied this paradigm to verification, encoding the construction
of formal specifications as a puzzle game for non-programmers
[15]. Fragmenting software development work into microtasks
opens the possibility of allowing non-programmers to contrib-
ute either directly or through re-encoding the work required by
the microtask as a game. Could a game that encodes writing
sort routines into a puzzle be a grandmother’s past time?
Increased programmer productivity: Studies have long
found that some developers are more than 10x more productive
than others [17]. One source of these differences is knowledge:
expert developers see code in ways that help them work far
more effectively [12]. For example, in debugging, having seen
a similar bug before can have a greater effect than a dedicated
tool [11]. The ability to search the web for code snippets and
explanations of errors has begun to more efficiently distribute
knowledge from the haves to the have-nots. But programmer
productivity might be even further increased by designing
mechanisms to share a wider range of knowledge and more
effectively matching questions to experts.
Reduced software development costs: Crowdsourcing sys-
tems such as Duolingo provide a new paradigm for compensat-
ing workers, providing a fun, intrinsically motivating experi-
ence that delivers value to them as a byproduct of their work.
Compared to micropayment compensation models such as Me-
chanical Turk and MobileWorks, this is in some sense a “fair-
er” model, where individuals gain the value of learning another
language, while translating the Web, for free. This also means
much lower cost for the project sponsor. Translating the re-
mainder of the English Wikipedia into Spanish using profes-
sional services, even at low rates of ($0.05 / word), would cost
over $50M (p. 53 [13]), but may be done for nearly free in Du-
olingo. This two-sided generation of value could be applied to
software, dramatically reducing the costs of developing new
software and opening new capabilities for nonprofits that can-
not afford the costs of either traditional contract software de-
veloping or the costs associated with cultivating a new open
source community.
Making programming more fun: Programming is a challeng-
ing, skilled endeavor that many may sometimes enjoy. But

programming also involves frustrating debugging and writing
tedious boilerplate code. Studies have found that a task is fun
when, moment to moment, it is optimally challenging, balanc-
ing the demands of the task to the skill of the worker so that it
is neither too challenging to prevent progress nor too easy to be
tedious [1]. Organizing work into small, self-descriptive, mi-
crotasks so that anyone can quickly begin work, makes it easier
for a bored or frustrated developer to skip to the next task, let-
ting the system find another developer that might be better suit-
ed to the work. Moreover, more finely partitioning tasks per-
mits workers to specialize and request tasks that are better
match to their own unique interests and skills.
Conducting software engineering field experiments: Com-
panies such as Google rigorously test potential new user expe-
riences with A/B testing, a user evaluation technique in which
portions of the user population are automatically assigned to a
control or experimental condition, and performance measures
are taken. If users notice at all, it is only that they were seam-
lessly migrated to a new version; no recruiting of participants is
necessary. Crowd development enables software engineering
researchers to adopt this approach by shifting the programming
environment from the desktop to microtasks in the cloud.
Software engineering researchers could then evaluate new tools
and ideas (e. g. about task dependency structures) through ex-
periments conducted with real users doing real work. Moreo-
ver, working in the cloud on small, individually evaluated mi-
crotasks provides a range of easily captured, fine-grained
measures of task time and success. A/B testing could dramati-
cally lower the barriers to experimentation in software engi-
neering, greatly increasing the available evidence for the use-
fulness of new tools and practices.

IV. DIVISION OF LABOR

A. How Can Development Work be Effectively Decomposed?
Can software development work be split into microtasks

that are only seconds or a few minutes in duration? Can a soft-
ware development microtask be done by a transient worker
with no knowledge of the project? Can a worker reason com-
pletely modularly about a method? What knowledge is required
to do development microtasks? Can some tasks be expressed as
puzzle games playable by non-programmers?

What might a microtask look like:
Sketch a method. Workers are given a description of a funci-
ton, its signature, and pre-and post conditions, and asked to
sketch pseudocode of an implementation. When workers have
questions (e.g., “how can I make this string uppercase?”, or “is
this parameter guaranteed to always be a positive number?”),
they ask the crowd. When a worker wants to call a function,
they describe what it should do. Microtasks are then generated
to expand the description, find and reuse an existing function if
present, or write a new implementation iteratively.
The Testing Game. Players write input and output pairs for a
function. The actual output of the function is then revealed, and
players are informed if their output matches. If it does not,
players have a choice: bet some of their points that they are
correct or update their answer to match the function. If they
choose to bet, additional workers are independently shown the

86

two outputs and asked to vote on the correct value, without
knowledge of each output’s source. If the crowd votes for the
worker’s value, the worker wins their bet, and the failing test
generates a debug microtask.
Debug a function. A worker sees a method and a failing unit
test, and is asked, can you fix the code to make it pass? When
values returned by functions appear wrong, the worker de-
scribes the erroneous behavior, spawning microtasks to write a
new unit test and fix the function.

B. How Can a Crowd be Coordinated?
How can a crowd create a system with conceptual integrity?

What interdependencies between microtasks must be man-
aged? How can a crowd make decisions? How can knowledge
be presented to transient workers who do not know the right
question to ask? A range of coordination models might help to
address these challenges:
Collective decision making: A worker poses the question,
“How should I store this data?” One set of workers –
knowledge librarians – scour the answers to existing questions,
looking for an answer. If none is found, a second set of workers
– database experts – each independently answer the question.
Finally, a third set of workers – decision makers – rate each
answer and the system picks the highest rated option.
Pushing knowledge: A worker reviews implementations con-
taining an interaction with a database, checking to ensure that it
is compliant with each decision in the library of database inter-
action decisions.
Iterative critique: A crowd of workers is each given a de-
scription of a webpage element to design. Each worker edits
html and css (by code or WYSIWYG) to create an initial de-
sign. A second crowd then visits a gallery of designs, adding
critiques expressing both positive and negative aspects and
assigning an overall rating. Ratings are tabulated, the best de-
sign chosen, and critiques returned to the designers. A new
crowd is then tasked to improve the artifact, addressing the
criticisms and incorporating positive aspects from the other
designs. Iterative critiques continue until the crowd is collec-
tively satisfied with the final product.

C. What Makes a Decomposition Efficient?
The decomposition of software development work can be

characterized along a number of dimensions, such as the granu-
larity of the system view, the nature of sequential dependencies
and flow of information between microtasks, the number of
alternatives solicited, and the mechanisms for aggregating con-
flicting alternatives. Efficient decompositions increase parallel-
ism (reducing time to market), minimize overhead and rework,
effectively distribute knowledge, and ensure quality. Many of
these objectives may conflict, leading to different crowd devel-
opment approaches optimized for different qualities.

V. ASSIGNING WORK & ENSURING QUALITY

A. How Should Microtasks be Matched to Workers?
Effectively matching workers to microtasks requires match-

ing the skill and knowledge demands of the task to the abilities
and interests of the worker, while simultaneously ensuring

work does not stall waiting for microtasks to complete. There
are three general approaches to task assignment: workers select
microtasks, the system assigns microtasks, or workers assign
microtasks to other workers. In traditional organizations, task
assignment is often done by other workers (e.g., managers or
bug triagers). In open source projects and existing crowdsourc-
ing systems such as Mechanical Turk, task assignment is often
done by the workers themselves, who decide what interests
them, as letting workers choose their work enhances intrinsic
motivation [8]. Any of these designs could be used in crowd
development. However, manual task selection, by the workers
themselves or other workers, adds overhead, which is particu-
larly acute due to the small size of the microtasks. A worker
who spends 1 minute looking for a 1-minute microtask is half
as productive, all else being equal.

It may be possible to provide the motivational benefits of
choice while enjoying the efficiency benefits of automatic task
assignment. Workers could express task preferences (e.g., write
tests, debug), which the system uses to generate assignments.
This provides a rich space for exploring the attributes of the
task and worker critical to generating the best match.

B. How Can Quality be Ensured?
How can quality software be produced by workers that

come and go, are sometimes malicious, and are often mistaken?
A key approach is to design redundancy into the task decompo-
sition, so that multiple alternatives are generated and compared,
artifacts are checked against other artifacts, or artifacts are re-
viewed. But reviews may themselves be erroneous. In this case,
a worker might challenge a review, generating new independ-
ent reviews, which is ultimately aggregated into a new review.
Heavy emphasis on unit testing may also increase code quality.

C. What Incentivizes Good Behavior?
How can workers be motivated to work on an unpopular

microtask or invest extra effort to achieve long-term benefits?
To encourage workers to do challenging microtasks, points in
an incentive system should reflect its difficulty, as measured by
responses by other workers and similarity to other microtasks.
To encourage quality work, points should reflect the value cre-
ated both directly and indirectly, directly measuring quality and
quantity and attributing later value created (e.g., a function
reused) back to the responsible developers.

VI. MOTIVATING THE CROWD
What might motivate a worker to join and contribute to a
crowd development project? Studies of open source projects
suggest many potential motives: the desire to learn and develop
new skills, to share knowledge and skills, to improve F/OSS
products, and to participate in a new form of cooperation [4].
As in F/OSS projects, volunteers, paid employees of a firm, or
even contract programmers might constitute crowd develop-
ment projects. For employees, the incentive system might
provide a wealth of fine-grained information about an employ-
ee’s skills and contributions to be used in performance reviews.

As in games such as Foldit and Duolingo or more generally
in the gamification of work [2], crowd development might also
be organized as a game. Most games involve a task and

87

achievements. Microtasks provide a task; the assignment algo-
rithm attempts to create an optimal level of challenge. Gaining
points and reaching particular achievements might provide
internal and/or external reputational benefits, as well as access
to the most challenging and important microtasks. Games also
rely on conflict, competition, strategy, and the possibility of
failure to create interest and fun [14]. Workers might compete
to produce the best alternative, bet on the correctness of their
answer, or race the clock. Of course, workers may strategize to
exploit the system, and care is needed to ensure that the work-
er’s and system’s goals are aligned.

Microtasks might also provide educational value, transfer-
ring knowledge from experienced to the less experienced.
Some developers find it helpful to watch expert developers
work, as reflected in websites that webcast programming ses-
sions. Workers might similarly be allowed to observe, compete,
or collaborate by pairing with another developer.

VII. PRELIMINARY WORK
We are currently exploring the feasibility of crowd devel-

opment through the construction of a prototype system. Our
initial focus is in answering the central question of how soft-
ware development might be decomposed into microtasks. In
our prototype, a worker logs in to a web app, which fetches an
available microtask. Each microtask consists of a single page
containing any needed instructions, descriptions, editors, and
other artifacts required to complete the work. Decomposition
occurs through an iterative top-down programming methodolo-
gy, decomposing uses cases into entrypoints, function descrip-
tions, function implementations, and tests, which may each
iteratively recurse. Microtask completions transition the state of
each artifact, which may then cause new microtasks to be gen-
erated. By testing our prototype in practice, we will iteratively
improve its design from our experiences.

VIII. CONCLUSION
Crowd development envisions a software development pro-

cess optimized for sharing knowledge, distributing work effi-
ciently, motivating contributions, and ensuring quality. But
envisioning development structured as self-contained mi-
crotasks done by a transient crowd introduces a host of research
challenges. Crowd development may not be well-suited to all
domains, such as those that require large amounts of domain
expertise, safety critical systems, or those with sensitive busi-
ness information. And how crowd development compares to
other development processes ultimately depends on the success
of meeting these challenges. But many also reflect important,
fundamental questions about software engineering, whose
answers might lead to better empirical theories of the nature of
software engineering work and a better understanding of such
core concepts as modularity, expertise, task interdependencies,
and coordination. Many of these challenges are also related to
topics in social and organizational psychology, the study of
games, and other fields; this provides an opportunity to use
results from these fields to re-envision software engineering.
While efforts in crowdsourcing development tasks and social
software development have begun to explore some of these

issues, we believe there remains a large and important space to
explore to scale crowdsourced development tasks to
crowdsourced software development.

REFERENCES
[1] M. Csikszentmihalyi. Flow: The Psychology of Optimal

Experience. Harper and Row, 1990.
[2] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. “From game

design elements to gamefulness: defining gamification." In 15th
International Academic MindTrek Conference: Envisioning
Future Media Environments (MindTrek), 2011, pp. 9-15.

[3] “Duolingo,” duolingo.com, 11/2/12.
[4] R. A. Ghosh, "Understanding free software developers: findings

from the FLOSS study." Making Sense of the Bazaar:
Perspectives on Open Source and Free Software, J. Feller, B.
Fitzgerald, S. Hissam and K. Lakhani (eds.), MIT Press, 2005.

[5] M. Goldman, G. Little, and R. C. Miller, “Collabode:
collaborative coding in the browser.” Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), 2011.
pp. 65-68.

[6] J. Howe, Crowdsourcing: Why the Power of the Crowd Is
Driving the Future of Business. Crown Business, 2008.

[7] F. Khatib, S. Cooper, M. D. Tyka, K. Xu, I. Makedon, Z.
Popović, D. Baker, and Foldit Players, “Algorithm discovery by
protein folding game players,” Proceedings of the National
Academy of Sciences, vol. 108, 2011.

[8] R. E. Kraut, P. Resnick, with S. Kiesler, Y. Ren, Y. Chen, M.
Burke, N. Kittur, J. Riedl and J. Konstan. Building Successful
Online Communities: Evidence-Based Social Design. MIT Press,
2012.

[9] A. Kulkarni. “Next-generation crowdsourcing platforms.”
Pittsburgh, PA: Crowdsourcing Lunch, 24 October 2011.

[10] A. Kulkarni, M. Can, and B. Hartmann, “Collaboratively
crowdsourcing workflows with turkomatic.” Computer
Supported Cooperative Work (CSCW), 2012, pp. 1003-1012.

[11] T. D. LaToza, “Answering reachability questions.” Dissertation,
Carnegie Mellon University, 2012.

[12] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers,
“Program comprehension as fact finding.” In ESEC-FSE, 2007,
pp. 361-370.

[13] E. Law and L. von Ahn. Human Computation. Morgan &
Claypool Publishers, 2011.

[14] J. Lekevicius. “Game design – what makes games fun and
addictive.” Sept 2010, www.slideshare.net/flixic/game-design-
what-makes-games-fun-and-addictive.

[15] W. Li, S. A. Seshia, and S. Jha, “CrowdMine: towards
crowdsourced human-assisted verification.” Design Automation
Conference (DAC), 2012, pp. 1254-1255.

[16] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit:
human computation algorithms on mechanical turk.” In UIST,
2010, pp. 57-66.

[17] S. McConnel, “What does 10x mean? Measuring variations in
programmer productivity.” In Making Software, O’Reilly, 2011.

[16] S. E. Page, The Difference: How the Power of Diversity Creates
Better Groups, Firms, Schools, and Societies. Princeton
University Press, 2008.

[19] J. Surowiecki, The Wisdom of Crowds. Random House, Inc.,
2005.

[20] TopCoder. www.topcoder.com.

88

