
A Vision of Crowd Development
Thomas D. LaToza and André van der Hoek

Department of Informatics
University of California, Irvine; Irvine, CA, USA

{tlatoza, andre}@ics.uci.edu

Abstract—Crowdsourcing has had extraordinary success in
solving a diverse set of problems, ranging from digitization of
libraries and translation of the Internet, to scientific challenges
such as classifying elements in the galaxy or determining the 3D
shape of an enzyme. By leveraging the power of the masses, it is
feasible to complete tasks in mere days and sometimes even
hours, and to take on tasks that were previously impossible be-
cause of their sheer scale. Underlying the success of crowdsourc-
ing is a common theme — the microtask. By breaking down the
overall task at hand into microtasks providing short, self-con-
tained pieces of work, work can be performed independently,
quickly, and in parallel — enabling numerous and often un-
trained participants to chip in. This paper puts forth a research
agenda, examining the question of whether the same kinds of
successes that microtask crowdsourcing is having in revolutioniz-
ing other domains can be brought to software development. That
is, we ask whether it is possible to push well beyond the open
source paradigm, which still relies on traditional, coarse-grained
tasks, to a model in which programming proceeds through micro-
tasks performed by vast numbers of crowd developers.

Index Terms—Crowdsourcing, collaborative software devel-
opment, open source software development

I. INTRODUCTION
Crowdsourcing has demonstrated a wide range of successes

in enabling large, challenging tasks to be performed quickly by
massive crowds of untrained, casual workers. In 2011, players
of the game Foldit produced an accurate 3D model of an en-
zyme in just 10 days, a problem that had stumped researchers
for 15 years [10]. Over 10 million people use Duolingo to learn
a language by translating small snippets of text; aggregating
these translations produces translations of websites and other
documents [2]. Building on the broad use of Amazon Mechani-
cal Turk, firms such as MobileWorks and CrowdFlower pro1 2 -
vide a managed environment to enable clients to complete of-
ten urgent work with a crowd [14].

Underlying this success is a common theme — the micro-
task. Microtasks are short and self-contained, exploiting the
“long tail” of casual contributors to enable numerous and often
untrained participants to quickly chip in. Microtasks enable
parallelism, allowing large and complex tasks to be completed
through massive numbers of small contributions — done in
parallel — that are aggregated into a conclusive result. Micro-
tasks enable intelligence in the environment, leading to auto-
matic approaches that actively manage task generation and
assignment. This makes possible new workflows soliciting and
aggregating diverse ideas, assignment of workers to tasks based
on fine-grained expertise, and even the gamification of tasks
within larger workflows.

What if this model could be applied to software develop-
ment? There are many important and high impact situations in
which there is a clear and compelling need for software to be
built rapidly: when responding to a disaster, or fixing suddenly-
apparent deficiencies in a key software system, perhaps in cas-
es of an escalated cyber conflict. A common response is “all
hands on deck”, mobilizing developers across an organization
or community to contribute until the issue is resolved. But tra-
ditional development processes are not designed for this mobi-
lization and certainly not at scale, making it challenging to
support developers in making small contributions, identify use-
ful tasks, and coordinate the organized chaos of massive ad-hoc
work.

While open source development is crowdsourcing, it is not
microtasking, as development tasks remain large, workers must
be generalists, and participation is large-scale but not massive.
Traditional open source indeed imposes barriers to contribu-
tion, requiring developers to learn the codebase, identify and
install tool infrastructure, socialize into community conven-
tions for contributions, and identify work that might be accept-
ed [7][13]. These factors help dissuade casually committed
developers from contributing, leaving a potential “long tail” of
contributors untapped.

This paper puts forth a research agenda to explore the de-
composition of software development into microtasks, enabling
crowds of developers to immediately and effectively contribute
by generating, distributing, and coordinating software micro-
tasks. Underlying this agenda are three necessary considera-
tions — decomposition, coordination, and quality — each of
which influences and impacts how tools might enable building
software with a crowd. In this paper, we consider each of these
aspects, examining several challenges raised and potential ap-
proaches that might be taken.

II. EXAMPLES
How might a developer participate in crowd development?

To provide a sense of the styles of work we envision and the
challenges these incur, we provide several vignettes of crowd
development in practice.

Bob is sitting on a train and feels like programming for a
few minutes. Logging in to a website, he sees a couple of inter-
esting projects. Being an avid cyclist, he immediately chooses
the one to build a web app for urban cycling maps. He then gets
a microtask — to sketch some pseudocode for a function. After
finishing, he decides he is in the mood for some testing and sets
his task selection preferences to “write test cases”. Seeing a
description and signature of a function and a list of typical is-

 www.mobileworks.com1

 www.crowdflower.com2

sues to test, he writes a list of test cases, labeling each with an
issue to describe its purpose. He realizes one of these repre-
sents a new issue that might be of interest to others, so he adds
it to the issue list. Each time he logs in over the next week, he
is excited to see others using his issue, adding to his points.

Julie is an experienced software architect who just received
an email. Recalling that she signed up to donate time to a crisis
response group, she sees that a disaster has just occurred and
that the group needs to respond rapidly and build a website
linking the local technical infrastructure of the first responders
to the disaster response needs as fast as possible. Logging in,
she sees some architectural questions other developers have
asked. After asking her own questions to track down related
decisions and getting some responses, she answers each ques-
tion. She then receives a microtask to moderate suggested an-
swers to another architectural decision. Reading each option,
she up or down votes each, adding a comment describing some
important caveats to one.

Ting is a freshmen biology student. After completing a few
Codecademy classes, he is eager to write code within a real
software project. Logging in, he picks an interesting looking
healthcare project. He first receives a debugging task. Seeing a
failing test and a function, he tries a few things he hopes might
make the test pass. But nothing works, so he skips to another
task. This time, Ting receives some pseudocode and works to
implement the function. But the pseudocode deals with a com-
plicated graph traversal algorithm, and he has never seen any-
thing quite like it, so he skips that too. The system then asks if
he would like to watch an expert work. Being a little lost, he
agrees. As he watches the expert work on several microtasks,
he follows the chat window on the side as several other work-
ers try to explain what the expert is doing. Even the expert
chimes in here and there with some explanations. After feeling
like he is ready to try writing some code again, he begins im-
plementing some pseudocode again. A little while later, he gets
a review back, explaining some things he did well and provid-
ing a few suggestions for improvement.

III. RESEARCH AGENDA
How can such a vision of crowd development be realized?

In our previous work, we surveyed several ideas for crowd-
sourcing software development [17] and developed a prototype
online IDE for microtasking simple programming tasks [16].
Yet, many challenges remain: decomposing a broad range of
software development work into microtasks, coordinating con-
tributions at the scale of crowds, and ensuring the quality of the
software produced by the crowd. In this section, we examine
these challenges and present an agenda articulating how these
challenges may be met.

A. Decomposition
How can developers contribute to a software project in

small, self-contained microtasks? What will these microtasks
ask developers to do, and how can this work be aggregated to
complete a larger task? What context is required to perform the
task, and how can this information be provided? What portions
of software development work can be decomposed and made
parallel, and which portions are inherently sequential? How do
different approaches to decomposition or choices of microtask
boundary affect the ways in which microtasks can be made

short, self-contained, and parallelizable, and how is this influ-
enced by the type of work to be done? A number of decomposi-
tion approaches might be possible, incorporating iterative or
hierarchic workflows in different ways. A key aspect is one of
granularity: smaller microtasks enable greater parallelism, re-
ducing clock time, but may increase communication overhead.

One way in which tasks might be decomposed is through
artifacts, creating microtasks which each ask workers to per-
form a single task on a single artifact. Artifacts encompass
natural boundaries in software work; of course, there are im-
portant considerations in choosing between granularities such
as a functions and tests and more coarse-grained decomposi-
tions such as classes or modules. Microtasking some tasks may
require the invention of new artifact boundaries. For example,
when determining how to reuse an external library, developers
must read documentation, find examples, customize and exper-
iment, and arrive at a solution. As a fleeting understanding,
much of this work may not be captured in the function itself
and this knowledge of the library may in any case be valuable
for interactions with the library across many artifacts. Reifying
this interaction into a new, synthetic artifact — an example and
explanation of the use of an API for a specific task — allows
discovery of information about the API to be scheduled as sep-
arate work, dependencies on artifacts using the library estab-
lished, and a dedicated micro task interface for library use to be
created.

B. Coordination
In opening software development to contributions by the

crowd, new challenges emerge in coordinating at scale. How
can workers be matched to microtasks, most efficiently allocat-
ing the knowledge workers bring to bear to the work to be
done? Which aspects of software work benefit most from ex-
pertise, and how can this expertise best be leveraged? How can
a system track the work to be done, and automatically generate
microtasks to perform next? How can the work of many micro-
tasks, each concurrently potentially changing the artifacts, be
coordinated? How are dependencies between work detected
and managed? What aspects of software engineering work can
be done with only local information, and what aspects require a
larger global view?

Inherent in software work are concerns that crosscut the
artifact structure, leading to their scattered implementation in
diverse artifacts across a codebase [11]. Much of system design
has this character, as higher-level decisions as to how require-
ments are achieved ultimately influence lower level decisions
across a codebase. Our studies of program comprehension sug-
gest that developers working at a code level perceive design as
a network of decisions, as they explicitly reverse engineer deci-
sions in code and attempt to understand dependencies on these
decisions that act as constraints [15]. In higher-level design,
theorists of socio-technical systems have conceptualized soft-
ware architecture as a network of decisions [3][5], embodied in
notations such as a design structure matrix [19]. This suggests a
tantalizing question: can a singular design with conceptual in-
tegrity be created — in parallel — as individual decisions that
are coordinated through their dependencies?

This idea brings several challenges, drawing on fundamen-
tal questions about the nature of design in software. First, how
can dependencies be identified; how can a worker editing code

discover relevant decisions? One approach might be to enable
workers to ask a question to find information they need (e.g.,
what is the right way to serialize data into the data store?),
which is then matched against existing decisions, generating a
new decision to be made if none is found. Yet developers are
unlikely to always realize what they are doing is relevant to a
decision. Another approach might be to review code for its
conformance to decisions, tasking a worker to review a func-
tion for conformance with a short checklist of related decisions.
Enabling workers to specialize in these reviews (as with any
microtask) might allow them to be performed quickly, perhaps
even by allowing workers to routinize their inspection steps
through the use of automated scripts (e.g., calls to serialization
methods), generating suspicious methods to be inspected. Spe-
cialization and contributor-written scripts to automate certain
microtasks is common in existing crowdsourcing communities
such as Wikipedia and Foldit.

Also necessary are mechanisms for generating ideas, identi-
fying dependencies on existing decisions, understanding con-
straints, debating tradeoffs, and ultimately producing a deci-
sion. Interestingly, Q&A sites such as StackOverflow have 3

much of this character, as a question is posed, answers are
crowdsourced, votes are cast, and the requestor picks a winning
answer. Could this model be used to make important design
decisions? Quirky and Assembly seem to demonstrate that it 4 5

can, at least in the context of product design.

C. Quality
A fundamental challenge in crowdsourcing systems lies in

the use of contributions from the masses to produce quality
work. Workers may do too little, act maliciously, or even be
“eager beavers” who do more than the system intended [4]. In
response, crowdsourcing systems have explored the use of ex-
plicit reviews by requesters (e.g., Mechanical Turk) and tech-
niques for aggregating redundant work (e.g., games with a pur-
pose [1], the map/reduce paradigm [12]). Underlying these
approaches is a fundamental insight: through the “wisdom of
the crowd”, a large group’s independent, redundant solutions
can be as good as, and often better than, those of any individual
member [20]. How can redundancy be effectively utilized in
software development work to promote quality? What aspects
of software engineering work are most important, and might
benefit most from the high quality — but expensive — work
done by large-scale redundancy? How can small-scale redun-
dancy — tasks done by a few — be automatically aggregated
to produce higher quality work? In what situations is redundan-
cy a more effective way to achieve quality than through re-
views? An important issue arises in how work is assessed: as
work is evaluated at small scale, how can the longer-term im-
plications of work also be evaluated and incentivized?

Many traditional solutions — such as voting on indepen-
dent redundant solutions — are unlikely to be applicable, due
to the greater diversity of valid responses possible in software
work. Thus, new approaches to achieving quality must be
found or adapted to microtasking software work. One approach
to quality is to use outcome-based incentives, measuring posi-
tive events (e.g., a test catching a bug) and apportioning some

of the value created back to its producers through individual-
ized incentivizes. As events occur in the system — tests leading
to bug fixes, functions being reused, a worker beginning to
produce higher quality work — credit is apportioned back to
workers responsible for creating this value — a worker that
wrote a test, a well defined function interface, constructive
feedback provided in a review. Incentives may then be translat-
ed into appropriate rewards, depending on the context, such as
small payments, public displays of reputation such as badges
and points, and access to more interesting and prestigious
work. The key challenge underlying this approach is in finding
appropriate measures to value work.

Another approach to ensuring quality is through workflows
that incorporate redundancy or reviews. There are a range of
applicable approaches, each with important tradeoffs. Soliciting
a single contribution and review for each microtask is simplest,
but may not result in a particularly high quality output. Inde-
pendently soliciting many redundant contributions and select-
ing the best provides a potentially higher quality solution at a
greater invested effort. Sequentially soliciting iterative contri-
butions to an artifact — e.g., generating new microtasks to edit
a function until all the pseudocode has been implemented —
may make effective use of worker’s varied expertise and ability
to contribute, but requires effective ways to value each edit to
prevent social loafing. Each of these approaches can be com-
bined and nested to create more complex workflows, potential-
ly exposing tradeoffs between cost and quality which can be
used to ground informed decisions about system design. For
example, implementing a function might involve first starting
with five independent solutions, each of which are iteratively
evolved, and then compared to select the best. In these situa-
tions, it is important to gauge the relative importance of a work
product before it is created, to understand how much effort it
may be appropriate to invest in its creation. Microtasks that
have a strong influence on the subsequent work to be done are
important to invest in. For example, a microtask to implement a
function at the root of a large algorithm particularly effectively
might reduce the amount of other functions that must be creat-
ed. But how can importance be predicted? Workers requesting
work (e.g., writing a pseudocall requesting a function) might be
asked to rate its importance; or microtasks that workers have
chosen to skip might be inferred to be challenging.

IV. KEY CHALLENGES
Many issues inherent to crowd development crosscut con-

sideration of decomposition, coordination, and quality. Chief
among them are two central considerations: the tradeoffs be-
tween microtasks and context and between modularity and co-
ordination.

Microtasks enable transient workers to contribute in small
ways by being short, enabling vast parallelism and speed
through small contributions. Yet, workers must still have
enough context and background to get the work done. This
requires careful attention to microtask design, balancing the
need for making microtasks small against the need for them to
be self-contained. Where this balance lies for different software

 www.stackoverflow.com3

 www.quirky.com4

 assembly.com5

development tasks is a fundamental question, and likely will
only be understood through experimentation and trial and error.

A similar issue is at play in coordinating software work.
More visibility of ongoing work may make it easier to
coordinate and manage dependencies amongst microtasks. But
the more developers must understand and relate their microtask
to other ongoing work, the less microtasks remain self-
contained. The key question is, again, how to balance this
tradeoff in designing microtasks.

Thus, a core consideration in microtasking software
development work is one of information needs: exactly what
information do developers need to do software development
tasks in-the-moment, and how can work be decomposed and
organized into microtasks, supported by the environment, that
reflect the natural structure of information needs in software
development work?

V. RELATED WORK
Beyond open source software development, there are a

number of ways in which crowdsourcing has begun to be ap-
plied to software development. TopCoder enables program6 -
mers to participate in competitions over the course of hours or
days, competing to implement features, build a UML diagram,
or find bugs. HelpMeOut [9] lets novice programmers share
their fixes to common programming bugs. Learn-to-program
sites such as Codecademy scaffold learning through a manually
curuated series of microtasks. Even StackOverflow’s basic
model is one microtasking: developers ask questions, other
developers answer them, and yet other developers evaluate the
quality of the answers. Micro-outsourcing enables a developer
to request small tasks to be done by the crowd [8]. Non-pro-
grammers are increasingly being brought to work on software
projects. While beta testers have long provided feedback, sites
such as uTest and trymyUI make the process more systematic 7 8

and explicit, enabling users to be recruited to rapidly provide
feedback on specific issues. Other work has sought to trans-
form software development tasks into games for non-pro-
grammers [18][6], such as Pipe Jam [6], which transforms au-
thoring formal specifications into a puzzle game.

VI. CONCLUSIONS
Crowd development envisions a new way in which to build

software, encompassing transient, fluid workforces automati-
cally arranged by the environment to perform microtasks with-
in a workflow. As in any potentially disruptive idea, it is far
from clear in what contexts, if any, it may ultimately prove its
value. But in exploring questions such as what context and
information is required by developers in microtasks, the explo-
ration itself may create important new scientific knowledge
about the nature of software development work, which may be
broadly valuable in many ways.

ACKNOWLEDGMENTS
This paper is a summary of the NSF grant CCF-1414197,

by which it is also partially supported.

REFERENCES
[1] L. von Ahn and L. Dabbish, “Designing games with a purpose,”

CACM, 51(8), 2008, pp. 58-67.
[2] L. von Ahn, “Duolingo: learn a language for free while helping to

translate the web,” IUI 2013, pp. 1-2.
[3] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of

Modularity. MIT Press, Cambridge, MA, 1999.
[4] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S.

Ackerman, D. R. Karger, D. Crowell, and K. Panovich,
“Soylent: a word processor with a crowd inside,” UIST 2010.
pp. 313-322.

[5] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb,
“Software dependencies, work dependencies, and their impact
on failures,” TSE, 35(6), 2009, pp. 864-878.

[6] W. Dietl, S. Dietzel, M. D. Ernst, Nathaniel Mote, Brian Walker,
Seth Cooper, Timothy Pavlik, and Zoran Popović, “Verification
games: making verification fun,” Workshop on Formal
Techniques for Java-like Programs, 2012, pp, 42-49.

[7] N. Ducheneaut, “Socialization in an open source software
community: a socio-technical analysis,” CSCW, 14(4), 2005, pp.
323-368.

[8] M. Goldman, G. Little, and R. C. Miller, “Collabode:
collaborative coding in the browser,” CHASE 20111, pp. 65-68.

[9] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer,
“What would other programmers do: suggesting solutions to
error messages,” CHI 2010, pp. 1019-1028.

[10] F. Khatib, S. Cooper, M. D. Tyka, K. Xu, I. Makedon, Z.
Popović, D. Baker, and Foldit players, “Algorithm discovery by
protein folding game players,” PNAS 2011. . ????

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, J. Irwin, “Aspect-oriented programming,” ECOOP
1997, pp. 220-242.

[12] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “CrowdForge:
crowdsourcing complex work,” UIST 2011, pp. 43-52.

[13] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community,
joining, and specialization in open source software innovation: a
case study,” Research Policy, 32(7), 2003, pp. 1217-1241.

[14] A. Kulkarni, P. Gutheim, P. Narula, D. Rolnitzky, T. Parikh, and
B. Hartmann, “MobileWorks: designing for quality in a managed
crowdsourcing architecture,” Internet Computing, 16(5), 2012,
pp. 28-35.

[15] T. D. LaToza, D. Garlan, J. D. Herbsleb, B. A. Myers, “Program
comprehension as fact finding,” ESEC/FSE 2007, pp. 361-370.

[16] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der
Hoek, “Microtask programming: building software with a
crowd,” UIST 2014, pp. 43-54.

[17] T. D. LaToza, W. B. Towne, A. van der Hoek, and J. D.
Herbsleb, “Crowd development,” CHASE 2013, pp. 85-88.

[18] W. Li, S. A. Seshia, and S. Jha, “Towards crowdsourced human-
assisted verification,” DAC 2012, pp. 1254-1255

[19] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The
structure and value of modularity in software design,” ESEC/
FSE 2001, pp. 99-108.

[20] J. Surowiecki, The Wisdom of Crowds. Random House, 2005.

 www.topcoder.com6

 www.utest.com7

 www.trymyUI.com8

