
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

How Software Designers Interact with
Sketches at the Whiteboard

Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek

Abstract—Whiteboard sketches play a crucial role in software development, helping to support groups of designers in
reasoning about a software design problem at hand. However, little is known about these sketches and how they support design
‘in the moment’, particularly in terms of the relationships among sketches, visual syntactic elements within sketches, and
reasoning activities. To address this gap, we analyzed 14 hours of design activity by 8 pairs of professional software designers,
manually coding over 4000 events capturing the introduction of visual syntactic elements into sketches, focus transitions
between sketches, and reasoning activities. Our findings indicate that sketches serve as a rich medium for supporting design
conversations. Designers often use general-purpose notations. Designers introduce new syntactic elements to record aspects of
the design, or re-purpose sketches as the design develops. Designers constantly shift focus between sketches, using groups of
sketches together that contain complementary information. Finally, sketches play an important role in supporting several types
of reasoning activities (mental simulation, review of progress, consideration of alternatives). But these activities often leave no
trace and rarely lead to sketch creation. We discuss the implications of these and other findings for the practice of software
design at the whiteboard and for the creation of new electronic software design sketching tools.

Index Terms— Interaction styles, systems analysis and design, user-centered design

—————————— u ——————————

1 INTRODUCTION
ketches play an important role in any design process.
They serve as an extension of a designer’s own

memory [37], help them reason through complex tasks
[54], and support them in picturing and evolving hypo-
thetical ideas and abstract concepts [17]. Since sketches
are explicit and externalized representations [28], they
assist designers in such tasks as brainstorming [51], eval-
uating ideas [7], and collaborating with others [8, 58].

Unsurprisingly, sketches play an important role in the
software design process as well. A typical software pro-
ject results in numerous, diverse sketches [8, 41]. Figure 1
presents two representative images taken from two soft-
ware companies: a whiteboard containing a sketch of a
potential solution to a design problem (left) and a white-
board wall containing the collective sketches from many
design meetings (right).

These kinds of whiteboard sketches, and the design
processes that they support, have seen an increase in in-
terest from the software engineering research community
in the past several years. Building upon work that looks
at software designers ‘in action’ more generally (e.g., [13,
19, 21, 41, 60]), the design work of software designers at
the whiteboard has been examined from a range of per-

spectives, including idea generation [2], design notations
[6, 33, 42, 56], decision making [59-60], epistemic uncer-
tainty [4], and collaboration [32].

While these previous studies make important contribu-
tions, our understanding of how software design sketches
are actually produced, and used, at the whiteboard is still
limited. We have a sense of the kinds of sketches software
designers produce and, at a high level, the types of activi-
ties the sketches support (e.g., understanding code, idea
externalization, design review, comparison of alterna-
tives). We do not know, however, precisely how the
sketches come about and evolve, nor how they support
designers in navigating their design problems.

To address this gap, we conducted the first study to
examine how sketches evolve and support reasoning ac-
tivities on a moment-to-moment basis. Drawing on data
from design sessions from 8 pairs of professional software
designers, we coded 14 hours of videos for 4238 events
across 155 sketches, capturing moment-to-moment data
of how designers introduced types of visual syntactic el-
ements, shifted their focus between sketches, and used
sketches to support reasoning activities. We then ana-
lyzed this data to answer several research questions:

• Types of Sketches. What types of sketches do de-
signers create? Do the sketches created vary in re-
lation to the approach to design taken? How syn-
tactically complex are sketches? How do sketches
evolve?

• Focus. How long do designers focus on individual
sketches? How do designers make reference to
sketches? How do designers shift their attention
between sketches?

• Reasoning. How do designers use sketches to under-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

S

————————————————
• N. Mangano is the co-founder of Molimur, 27562 Escuna, Mission Viejo,

CA 92692. Email: nick@molimur.com
• T. D. LaToza, and A. van der Hoek are with the Department of Informat-

ics, Donald Bren School Information and Computer Sciences, University
of California, Irvine, Irvine, CA 92697 E-mail: {tlatoza, andre}@
ics.uci.edu

• M. Petre is with the Faculty of Mathematics and Computing, The Open
University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.
Email: m.petre@open.ac.uk.

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

stand and advance the state of the design at hand?
Which types of reasoning activities do the sketches
support? Are the outcomes of design discussions al-
ways recorded in the sketches supporting these dis-
cussions?

The result of our analysis is a rich account of the nature
of sketching at the whiteboard, revealing the relationship
between sketching and the design process it supports.
While we report on many results that help shed light on
how software designers work, several findings stand out.
First, we found that, while all designers created domain,
requirements, and systems sketches, the number of
sketches they created depended strongly on the approach
to design taken. Second, we found that designers rapidly
shifted their focus over small groups of sketches, with
each sketch playing an important and distinct role within
the design conversation. As a result, designers rarely
worked with only a single sketch for more than 30 se-
conds. Third, we found that sketches served an important
role in helping designers discuss alternatives, review their
progress, and perform mental simulations. Over 80% of
the reasoning activities we identified made use of sketch-
es.

The remainder of this paper is organized as follows:
Section 2 presents background material on sketching,
both generally and as studied in software development.
Section 3 introduces our study design and Section 4 the
coding scheme used in our data anlysis. Section 5 pre-
sents our observations and results. Sections 6 and 7 dis-
cuss our threats to validity and findings, respectively, and
section 8 provides a brief conclusion.

2 BACKGROUND
Designers at work, with their tendency to sketch, have
received a great amount of attention over the years. Early
work focused on characterizing the activity of design. For
non-routine, ill-structured problems, Simon and Newell
characterized design as a process leading to a good
enough solution to the problem in the context at hand [37,
48]. Some models of design attempted to make design

repeatable by delineating the solution space in which al-
ternative solutions are weighed and explored [49]. Other
work demonstrated that software design is a learning
activity, and that exploring the problem is as important as
exploring the solution [11]. Later research found that
software designers approach design using an opportunis-
tic strategy, in which designers work with designs differ-
ent levels of abstraction simultaneously, and dive selec-
tively into detailed design when it suits them [21], while
showing a relative absence of alternatives. Another study
found that designers explore solutions both vertically, by
moving between levels of abstraction, and laterally, by
utilizing different strategies to solve the same problem
[17].

Other work has examined the role of sketching in the
design process and the types of sketches that designers
produce. Ferguson categorized the sketches that design-
ers produce as thinking, talking, and communication sketch-
es [15]. Suwa found that sketches serve to help thinking
activities by rapidly externalizing thoughts onto paper
[52]. Schön described the process of reviewing and think-
ing over the sketches that a person has created as having
a “reflective conversation” with the material [45]. Gero
and Suwa found that such reflective conversations over
the visual details in one’s sketch led to “unexpected dis-
coveries” which stemmed from unintended details when
drawn [51]. Goldschmidt called the process of reinterpret-
ing sketches beyond their original intended depiction as
“seeing as”, and noted that professionals are more adept
at the act of reinterpretation [18].

Software design, in particular, has seen a similar ex-
ploration of design and sketching. Several studies have
found that informal sketched prototypes receive more
feedback than formal prototypes [23, 46, 57]. Mynatt
demonstrated that office workers can identify chunks of
categorized contents in their own writing on the white-
board [35]. Damm et al. found that software developers
begin with informal sketches and refine them into more
formal notations [12]. Newman et al. observed that web-
site developers switch between levels of abstraction in
designing websites [38].

Recently, there have been an increasing number of

Figure 1. Two examples of software design sketches on whiteboards.

AUTHOR ET AL.: TITLE 3

studies investigating software design. LaToza et al. found
that professional software developers consider white-
boards and paper the most effective means of designing
[29]. Cherubini et al. found that whiteboards frequently
serve as the medium of choice for working through im-
portant design decisions, but also that most drawn
sketches are transient and often discarded [8]. Dekel and
Herbsleb found that the knowledge contained in sketches
is highly dependent on the designer’s ability to recon-
struct the meaning of sketches, and that notations such as
UML serve as idioms and are not followed strictly [14].
Petre found that designers juxtapose sketches and delib-
erately change formalisms to highlight different aspects
of a problem, and use provisionality to allow a dialog
with incomplete ideas [41]. Yatani et al. found that, while
there were important barriers to using diagrams in a dis-
tributed development team, diagrams still played an im-
portant role in ad-hoc meetings, designing, onboarding,
project awareness, and documentation [58].

Recent work examined reasoning and decision-making
qualities used over sketches. Ball and Christensen
demonstrated that mental simulations allow designers to
discuss incomplete ideas and reduce uncertainty [3].
Baker and van der Hoek showed that designers often ex-
amine two ideas simultaneously, and rotate between
pairs of ideas [1]. Zannier and Maurer found that design-
ers are more critical of designs when evaluating them all
at once, and less critical when evaluating ideas serially
[60]. Tang et al. observed that software designers often
make a decision without justifying it and move forward
[53]. Christiaans and Almendra noted that software de-
sign is more complex than product design, because deci-
sions in software must involve knowledge of the user
interface and structure, and thus decisions are chained
[9].

Using data from three of the eight design sessions re-
ported in this paper, attendees of the Studying Profes-
sional Software Design workshop derived a variety of
models of the design process [55]. Petre analyzed sketch-
ing at the whiteboard from the perspective of ‘cognitive
dimensions of notations’ and highlighted both the im-
portance of gesture in whiteboard sessions and how, as
the role of a sketch changed over the course of a design
discussion, the type of representation evolved [43]. Ossher
et al. found that designers used multiple representations
of concerns which became increasingly detailed and for-
mal through the design conversations [40]. Nakakoji and
Yamamoto found that designers used ‘designing’ and
‘drawing’ as synonyms, used drawings to establish
shared understanding, used a variety of notations, reap-
propriated sketches for new purposes, redrew sketches,
and sometimes did not write down important concepts
[36].

Based on these studies of design, many tools have been
produced for supporting design. These tools range from
generic whiteboard sketching tools, such as Flatland [34],
DENIM [38], Post-Brainstorm [16], Designer’s OutPost
[26], and Range [25], to tools more closely tied to software

design, such as SILK [27], Knight [12], SUMLOW [20],
InkKit [10], and Calico [30]. A comprehensive summary is
presented by Johnson et al. [24]. Based on an extensive
review of the literature, Moody proposes a set of princi-
ples for designing software design notations for cognitive
effectiveness [33].

Our study builds on this work – focusing specifically
on how sketching at the whiteboard supports informal
software design – by collecting and analyzing moment-to-
moment data on the introduction of new types of visual
syntactic elements, focus transitions between sketches,
and reasoning activities.

3 METHOD
To investigate software design sketching at the white-
board, we conducted an observational study of profes-
sional software designers. To recruit participants, we ap-
proached alumni of UC Irvine with a request for access to
professional software designers who excelled at software
design. This request led to contacts at a number of differ-
ent organizations, which, through discussions and follow-
up, resulted in recruitment of the eighteen professional
software designers who participated in the study. The
professionals came from seven different organizations. As
design at the whiteboard often occurs in collaborative
settings involving multiple designers [8, 30], such as ad-
hoc meetings, we organized participants into pairs. Each
pair belonged to the same organization (two organiza-
tions provided two pairs of designers).

We administered a uniform design prompt to all pairs,
videotaped each pair at work during their design session,
interviewed the participants afterward, and, once all vid-
eos were collected, analyzed the whole set of videos. We
excluded one video from the analysis due to periodically
obstructed views and poor audio quality, yielding a total
of eight pairs that formed the basis of the results present-
ed here.

The task instructions, coding guide, and raw data from
our study are publicly available.1

Participants. All those recruited were viewed as expert
designers by their peers. Designers’ expertise ranged
across a variety of domains (including health care, docu-
ment workflow, and photo imaging software) and profes-
sional specializations (including system analyst, software
architecture, UI development, and software develop-
ment). All worked directly with software and reported
that they employ whiteboards in their work. Members of
each pair were familiar with each other, although they
did not necessarily work together in their organizations at
the time of the study. The professional experience of the
participants ranged from 2 years to 26 years. Most de-
signers had a number of years of experience, with an av-
erage of 16.5 years. While we were initially surprised that
a professional with only 2 years of experience would be
viewed as an expert, a subsequent conversation with his
peers confirmed that he was. 15 of the participants were

1 http://sdcl.ics.uci.edu/study-materials-and-data/

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

male and 1 was female. Table 1 lists each designer’s pair,
professional experience, and specialization.

Task. Each pair was provided with a written prompt
asking them to design an educational traffic flow simula-
tion program to be used by a professor in a civil engineer-
ing course to teach students traffic light patterns. The
prompt, two pages in length, described a set of open-
ended goals and requirements, including offering stu-
dents the ability to: (1) create visual maps of roads, (2)
specify the behavior of lights at intersections, (3) simulate
traffic flow, and (4) change parameters of the simulation
(e.g., traffic density). Pairs were asked to produce a de-
sign at the level of detail necessary to present “to a group
of software developers who will be tasked with imple-
menting it”.

Setting. The study was conducted at participants’
places of work, with a constrained setup that was repli-
cated as closely as possible at each site. We asked each
pair to work at a whiteboard approximately 8ft wide by
4ft tall. Participants were asked not to write on the
prompt or other paper in order to capture as much of
their work as possible with the particular camera setup
we used.

All sessions lasted approximately two and a half
hours. This time was divided into four segments:

(1) approximately one hour and fifty minutes for the de-
sign activity itself (mean = 1 hour and 47 minutes,

min = 1 hour, max = 2 hours and 4 minutes),
(2) a ten minute break,
(3) ten minutes for a summary, and
(4) a twenty minute semi-structured exit interview.

At the start of the first segment, participants were giv-
en the design prompt and asked to work on a design that
addressed this prompt. After the break, they had ten
minutes to briefly recap, explain, and motivate their de-
sign. In the exit interview, we asked participants to sum-
marize how they went about their design, what their pro-
fessional background was, and whether they felt the de-
sign process they followed was different from how they
normally proceeded and, if so, how (see Section 6 for a
discussion of these differences and how they affect the
validity of our results).

All sessions were video recorded, with one camera di-
rected at the whiteboard and one positioned to capture a
broader view of the participants. Three of the videos are
available by request2. Our analysis focused primarily on
the design activity portion of the videos. A total of 14.26
hours of design at the whiteboard was studied and dis-
sected.

4 CODING SCHEME
We created three coding schemes focusing on three as-
pects of design at the whiteboard:

(1) What types of sketches and visual syntactic elements
do software designers use during design at the
whiteboard?

(2) How do software designers focus on and transition
among the sketches they produce?

(3) What reasoning activities do software designers use
their sketches to support?

Each coding scheme captured events that happened
and identified them as actions or activities. Some events
are self-contained actions that happen within a moment
(e.g., proposing a design alternative). Others describe
activities that occur over a period of time (e.g., a review of
progress). Hence activities are delineated by pairs of
events, identifying the beginning and end of the activity.
All events are labeled with information characterizing the
event and with appropriate timestamps.

The coding schemes were developed using an iterative,
inductive approach, comparable to open coding [50].
First, we chose three sessions that we viewed as repre-
sentative of the eight sessions. We then examined por-
tions of these sessions to determine how to segment the
sketches and activities meaningfully, as well as to identify
the relevant concepts and categories that emerged. We
operationalized this into coding schemes, articulating the
coding criteria in detail. After several iterations, we final-
ized the coding schemes. Two authors then independent-
ly coded a fourth session, yielding a Cohen’s kappa inter-
rater agreement of .7 and percentage agreements of

2 http://www.ics.uci.edu/design-workshop/videos.html

Designer Pair
Exp.

(years)
Professional specialization

1 A 26 UI development

2 A 20 Interaction design

3 B 15 Software architecture

4 B 11 Software architecture and UI
development

5 C 2 Software architecture

6 C 24 Software architecture

7 D 21 Project manager, software
architect

8 D 26 Software architecture

9 E 12 Software developer

10 E 10 System analyst

11 F 8 Software developer

12 F 6 Software developer

13 G 25 Software developer

14 G 25 Software developer

15 H 23 Software developer

16 H 10 Software developer

Table 1. For each designer who participated, the pair to
which they belonged, their years of professional experience,
and their professional specialization. Pairs C and D be-
longed to the same organization, as did pairs B and G.

AUTHOR ET AL.: TITLE 5

80.0%, 82.4%, and 78.6% for the sketches, focus fixations
and transitions, and reasoning activity categories, respec-
tively. This indicates an acceptable inter-rater reliability in
an analysis of 13% (1) of the design sessions. The remain-
ing seven sessions were then coded by a single author.

Figure 2 summarizes the coding schemes. In the re-
mainder of this section, we describe each coding scheme
in turn.

4.1 Sketches
Observations of designers have found that, rather than
viewing whiteboard content as a single entity, people
segment content on the whiteboard into distinct sketches
[34]. We define a sketch, for our purposes, as a segment of
the whiteboard containing content:

(1) related to a single, central topic (an “invariate” [5]),

with
(2) similar visual features,
(3) proximity,
(4) continuity, and
(5) a similar initial creation time.

Sketches may be primarily textual (e.g., a list), primarily
pictorial (e.g., a drawing), or contain elements of both
(e.g., a diagram).

The first coding scheme examined the sketches design-
ers created, identifying events in which sketches were
created or erased or new visual syntactic elements (see
below for a precise definition) were added. To segment
whiteboard content into sketches, we performed two
passes. In the first pass, we examined snapshots of the
video at 5-minute intervals, examining if new sketches
had been introduced. Each new sketch that appeared in

Sketches

sketch type – derived from (1) graphical symbols and compositional rules and (2) designers’ verbal references.
e.g., map, list, table, GUI, ER diagram

sketch domain – aspect of the design modeled

requirements – requirements repeating or extending the requirements provided in the prompt
domain – modeling of the problem described in the prompt
system – the architecture or implementation of the software system
user interface – the interface of the systems as the user sees and interacts with it

visual syntactic element types – derived from visual elements and compositional rules

e.g., arrows, text labels, title, rectangle, relationship

Focus fixations and transitions

type of momentary reference – focus on a sketch for than 3 seconds in which no edits were made
quick glance – gazing at a sketch without pointing
point – with finger
split focus - pointing and glancing at different sketches

relationship between origin & destination sketch

abstraction – sketches providing an overview or more detailed view of a portion of a sketch
alternative – sketches providing competing solutions
point-in-time – sketches depicting changes over time, phases, or conditions

Reasoning activities

type – cognitive processes evident through speech, gaze, or gesture with a specific purpose or goal
mental simulation – talking through a mental model to execute and advance to a new state
review of progress – review of the design to take stock of what has been done
suggested design alternative – presentation of a solution that competes with or replaces an existing solution

use of sketches
no sketches used – designers did not gaze at or physically reference the whiteboard
used existing sketches – gestured over existing sketches without drawing
edited existing sketches – drew on, annotated, or edited existing sketches
created new sketch

Figure 2. An overview of the coding schemes, listing the three aspects of the design process analyzed and the dimensions (italics)
and possible values for each dimension.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the snapshots was numbered from left-to-right, top-to-
bottom. In the second pass, we added to and revised our
set of sketches for each session by watching the videos,
and identifying sketches that shared a central topic in
conversation and visual focus by the designers. For ex-
ample, a sketch consisting of a user interface for creating
maps was revised into two different sketches when we
observed that the designers divided their attention be-
tween a map and its input panel (center left of Figure 3).

Sketch type. We labeled each sketch with a type based
on two factors:

(1) the set of graphical symbols and compositional rules
characterizing the sketch, and

(2) designers’ verbal references to the sketch.

The first factor draws heavily on Moody’s definition of
“visual syntax” [33], which he defines as the combination
of visual vocabulary (graphical symbols) and visual
grammar (compositional rules). Our usage differs in that
our sketch types emerged from the data and from existing
sketch types such as UML, rather than being taken from a
fixed and abstract set of graphical symbols and composi-
tional rules. In situations where the first factor alone left
the type of sketch ambiguous, we also considered how
the designers referred to the sketch. For example, to dif-
ferentiate sketches with both ER diagram and class dia-
gram visual syntactic elements, we relied on how design-
ers themselves referred to the sketch. In some situations,
sketches evolved in place from one sketch type to anoth-
er. In these cases, we used a combination of key visual
syntax elements and how designers referred to the sketch
to determine when the sketch type changed.

Sketch domain. Sketches also varied in terms of which
aspect of design each modeled (e.g., a list of requirements
vs. a list of software components). Through our iterative
analysis of sketch content, we arrived at four domains and
used these domains to categorize each sketch. These four
domains were:

(1) requirements repeating or extending the require-
ments provided in the prompt,

(2) the architecture or implementation of the software
system,

(3) the user interface of the system as the user sees and
interacts with it, and

(4) the problem domain modeling the problem de-
scribed in the prompt.

Visual syntactic element types. We identified each in-
stance in which a new type of visual syntactic element
(VSE) was first added to a sketch. A visual syntactic ele-
ment refers to a component of a sketch that is uniquely
identified through a combination of its visual elements
and its arrangement in relationship to other components
(i.e., compositional rules). VSEs included text, graphical
symbols (such as boxes or arrows), drawing elements
(such as shading), and drawn objects (such as cars). To
categorize visual elements of VSEs, we used Bertin’s six
retinal variables, a set of atomic building blocks for any
visual representation: shape, size, color, brightness, orienta-

tion, texture [5]. For example, a box-and-arrow sketch con-
tains two VSEs – boxes and arrows – differing in the
shape retinal variable, and a list title is distinct from a list
item because of differences in arrangement. In coding the
types of VSEs, we iteratively built a set of VSE types, re-
cording each new VSE type we identified during coding.
Each VSE type was recorded with a picture used to iden-
tify subsequent occurrences. To reduce the coding re-
quired, we did not record additional instances of the use
of a VSE within a sketch after recording its initial intro-
duction.

4.2 Focus fixations and transitions
The second coding scheme examined software designers’
focus and transitions between sketches. At each moment of
the design sessions, we tracked each pair’s focus point,
which we coded as a specific whiteboard sketch, the
prompt, or none. We determined the focus point based on
factors such as the person speaking, where their gaze was
directed (based on the two recorded camera angles), the
location of their pen, and the topic of the active discus-
sion. While both designers nearly always had the same
focus point, in situations in which they differed, we coded
the pair’s focus point as belonging to the designer who
was speaking, or, if neither was speaking, to the designer
who was writing. We ignored all activity conducted off-
camera (which was usually re-reading portions of the
prompt).

In our open coding, we observed that designers often
referred to adjacent sketches in short bursts, but did not
make any changes to that adjacent sketch. We define a
momentary reference as an instance in which a sketch has a
continuous focus duration shorter than 3 seconds, during
which no changes were made. We distinguished three
behaviours signalling designers’ reference to adjacent
sketches:

(1) quick glance,
(2) point with a finger, or
(3) split focus (pointing and glancing at different

Figure 3. Whiteboard content was segmented into
distinct sketches.

AUTHOR ET AL.: TITLE 7

sketches).
Intervals with no focus point—when the designers did

not gaze at the whiteboard or prompt for a period of 15
seconds or longer—were identified as inactive. Inactive
intervals could contain momentary references; only estab-
lishing a new focus point with a 3 second gaze or edit
ended inactive intervals. For example, if the designers
spent two minutes talking without using the whiteboard,
pointed at a sketch for a brief second, and then returned
to talking, this was coded as a single inactive interval
with a momentary reference to a sketch.

Whenever designers’ focus shifted between sketches
on the whiteboard, we noted the origin and destination
sketches, including their sketch type and domain (focus
transitions to or from focus points other than whiteboard
sketches were not labeled). In addition, we identified and
coded three additional dimensions of the relationship
between the source and destination sketches:

Abstraction. Sketches with an abstraction relationship
represented a concept at differing levels of abstraction,
either by providing a more detailed view of the entire
sketch (e.g., a class diagram with only class names vs. a
class diagram with class names, methods names, relation-
ships, cardinality) or by providing a more detailed view
of a portion of the sketch (e.g., a list and map, where the
map depicts a concrete realization of a list element).

Alternative. Sketches with an alternative relationship
described different potential solutions. We coded sketch-
es as alternatives if the designers explicitly referred to the
content in the sketches as competing solutions and used
the sketches to discuss and compare the solutions at least
once.

Point-in-time. Sketches with a point-in-time relation-
ship were visually similar sketches depicting changes
over time, phases, or conditions.

4.3 Reasoning activities
The third coding scheme examined the reasoning activities
supported by sketches. We define reasoning activities as
evident cognitive processes (as reflected by speech) with a
specific purpose or goal. To code reasoning activities, we
primarily used speech, but we also used gaze and gesture
when it helped to confirm or clarify designers’ intent. We
chose to focus on coding reasoning activities that:

(1) involved lower-level goals over short periods of
time,

(2) had well-defined boundaries, and
(3) could be consistently distinguished by both coders.

Thus, we did not include designing as a reasoning activity,
as it spanned much of the session and did not have well-
defined boundaries. This yielded three reasoning activi-
ties:

Mental simulation. A mental simulation refers to in-
stances in which the designers talk through an execution
of a mental model for the purpose of evaluating a design
idea, allowing designers to turn “uncertainly into approx-
imate answers” by performing thought experiments [3].
We build on the definition used by Ball and Christensen

[3] in which the key feature is that the talk-through in-
volves a simulation ‘run’ that alters the designer’s mental
representation to a new state. Similar to Olson et al.’s def-
inition of “walkthrough” [39], we include instances such
as simulating the intended user interacting with the de-
sign, following the movement of data within the system,
or tracing state changes within the system.

Review of progress. A review of progress includes all
moments when the designers review their design for the
purpose of taking stock of what they have done. Our def-
inition builds on what Olson et al. call “summary” [39], in
which the designers momentarily take a step back from
the design to consider the progress they have made, the
goals they have yet to meet, or the tasks they have yet to
complete [27].

Suggested design alternative. A suggested design alter-
native includes instances in which a designer presents a
solution that competes with or replaces an existing solu-
tion. Unlike prior work that examined the structure of
design rationale in detail [39], we did not build a compre-
hensive design rationale graph, but rather recorded in-
stances where designers verbally presented a new design
alternative that contrasted an existing design idea. We
recorded an event whenever an alternative was first men-
tioned; when designers quickly mentioned alternatives in
rapid succession, these were coded as separate alterna-
tives.

Mental simulation and review of progress were coded
as a pair of events, signifying the beginning and end of
the activity. As we found that the discussion of distinct
alternatives often overlapped and was difficult to distin-
guish, we tracked only the moment in which a design
alternative was introduced, and we coded these as a sin-
gle event. For each instantaneous event or event signify-
ing the beginning of an activity, we noted both the type of
reasoning activity and the role sketches served in sup-
porting the activity:

(1) No sketches were used – designers did not gaze at or
physically reference the whiteboard.

(2) Designers gestured over existing sketches without
drawing.

(3) Designers drew on, annotated, or edited existing
sketches.

Figure 4. The fraction of session time each pair spent
examining the design prompt, working with sketches of each
domain, or not working at the whiteboard.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

(4) Designers created a new sketch.

5 RESULTS
We first report our results on the sketches that designers
produced. We then report how designers focused on and
moved their attention among sketches. Finally, we report
on the reasoning activities of the designers and how
sketches supported these activities. Throughout, we re-
port both quantitiatve data from our coding scheme and
qualitative observations explaining this data. Numbers
characterizing the behavior of designers are reported as
an average across all pairs with a standard deviation (e.g.,
23 ± 7%).

5.1 Sketches
In the following sections, we first examine how designers’
choice of approach to design influenced the types of
sketches they drew. We then examine the types of sketch-
es designers created and the types of visual syntactic ele-
ments used within these sketches. Finally, we examine
how designers annotated sketches and how sketches
evolved through the design sessions.

5.1.1 Approaches to Design
While most pairs addressed the requirements, system,
and user interface of the design, pairs tended to focus
their efforts on a single aspect, using it to drive the design
of the other aspects. This choice of focus led to three ap-
proaches to design that we observed, each of which was
reflected in the time designers spent with sketches of the
corresponding domains (Figure 4, Figure 9):
• user interface-driven: pairs A, C, G, and H (user inter-

face sketches: 42 ± 13%),
• system-driven: pairs B, D, and F (system sketches: 42 ±

8%), and
• requirements-driven: pair E (requirements sketches:

33%).
These patterns were also evident in the quantity of
sketches designers produced (Table 2). Each pair’s ap-
proach to design was partially influenced by the design-
ers’ job descriptions: the only pair with a software analyst
(E) was the only pair to focus on requirements, and the
only pair with an interaction designer (A) focused on user
interface design. Pairs with software architects and soft-
ware developers were split between focusing on the user
interface and the system.

User-interface-driven User-interface-driven pairs (A,
C, G, H) generally asked themselves: “How can users use
our system to accomplish their goals?”, focusing on front-
end sketches and discerning how to get input from the
user and display a result. These pairs relied heavily on
user interface sketches to structure and organize their
work (Figure 3, Figure 5a).

Reflecting the traffic simulator problem domain, the
user-interface-driven pairs made frequent use of maps (30
± 6% of session time) to brainstorm user interactions and
support discussion of the problem. Maps also served as a

hub: pairs frequently shifted attention to a map before
shifting to a sketch of a different sketch type.

Lists were the second most common sketch type for
user-interface-driven pairs (19 ± 9% of session time). Lists
helped designers to record potential classes they discov-

Figure 5. Each pair focused their efforts on a specific
aspect of the design.

(a) User interface-driven (pair H)

(b) System-driven (pair B)

(c) Requirements-driven (pair E)

AUTHOR ET AL.: TITLE 9

ered while designing the user interface. Lists also served
an important role in recording requirements, which the
designers periodically referenced to verify that they were
being met. Toward the end of the sessions, three of the UI
pairs finally considered the software architecture in de-
tail, either by creating an ER diagram (A and H) or by
making lists (C) describing the structure of a map class.
They stated that they did this to satisfy the prompt’s re-
quirements that they describe the system in sufficient
detail for software developers to implement it.

System-driven In contrast to user-interface-driven
pairs, system-driven pairs (B, D, F) focused first on the
system design, designing classes and their interactions.
In general, these pairs asked themselves: “How does the
system work?” As seen in Figure 5b, these pairs split
their time between using software sketches to document
and discuss the classes in their system design (as in the
left of Figure 5b) and using problem sketches to discuss
and understand how their system worked (e.g., the map
in the center of Figure 5b).

All three system-driven pairs created sketches listing
nouns and sketches representing a map with an intersec-
tion symbol. The left side of Figure 5b presents an
evolved representation of two examples of these sketch-
es, where the list of nouns became the software architec-
ture alongside the intersection sketch. Beyond this basic
setup, system-driven pairs proceeded with their own
variations. One pair (B) picked a class from their design,
defining it in detail. Late in the session, two of the pairs
(B, D) drew a second class diagram in order to define
classes and their relationships in much greater detail.

While working with system sketches, designers point-
ed to classes, marked up elements with annotations and
arrows, and explained classes verbally to their partner.
Lists were sometimes used to document design deci-
sions, such as explicit instructions on how a particular
component behaved (far right of Figure 5b), or to record
user stories (center of Figure 5b). As these designers dug
more deeply into the system design, they created sketch-
es allowing them to explore the system and problem in
more detail, such as line graphs and code. These sketches
helped them explore ‘proofs of concept’ of their proposed
solutions.

Requirements-driven The requirements-driven pair
(E) focused first on listing requirements, posing the ques-
tion: “What is it that we need the system to do?” They
intentionally avoided designing the system through much
of the session, later reporting that “we wanted to be clear
about what we’re building, not how we’re going to build it”,
only considering the system and user interface late in the
session.

Lists played a central role, helping the pair to direct
their thinking within the design session, reason about
parts of the system, and document design decisions. After
looking at the prompt, they began with a list of require-
ments (upper left corner of Figure 5c), and then broke
each out into separate, more detailed lists of require-
ments, maintaining a one-to-one relationship between

items in the initial list and the title of each new list. They
then laid out a set of use cases (right side of Figure 5c),
creating a map to help them generate use cases by enu-
merating ways in which the user would interact with the
map. As they went through the use cases, they annotated
each requirement, identifying how it mapped to use cas-
es. As they addressed requirements, they checked off the
corresponding requirements. At the end of the session,
they erased a large section of the board to create an ER
diagram.

5.1.2 Types of Sketches and Visual Syntactic
Elements

Across all sessions, designers used a total of 11 sketch
types (listed in Table 2). Designers often created ad-hoc
sketch types reflecting the domain, including the most
frequent sketch type – maps. Designers also created sys-
tem diagrams with defined notations (e.g., class diagram,
ER diagram), sketches with ad-hoc notations (e.g., array

Number of sketches (by pair)

 Avg.
VSE
types

 A B C D E F G H Avg.

(by sketch type)

map 3 9 6 3 7 19 5 6 7.3 5.3

list 5 3 6 3 15 7 2 5 5.8 4.0

table 11 - - - - - 4 1 2.0 3.7

GUI 2 1 1 - 2 5 - 2 1.6 4.5

ER diagram 1 - - 1 1 - - 3 0.8 6.7

class diagram - 2 1 - - - - - 0.4 11.8

code - 1 - - - 2 - - 0.4 5.0

drawing 1 - - - - - - - 0.1 1.0

traffic signal - - - - - - 2 1 0.4 4.8

line graph - 1 - - 1 - - - 0.3 4.5

array structure - 1 - - - - - - 0.1 3.0

 (by domain)

problem 3 6 1 3 5 23 5 6 6.6

user interface 16 5 6 0 5 3 6 4 5.5

system 2 6 5 3 1 9 2 5 4.3

requirements 2 1 2 1 15 1 0 3 3.3

 Total sketches 23 18 14 7 26 36 13 18 19.4

Table 2. The sketches designers drew by sketch type and by
domain and their average number of distinct types of visual
syntactic elements (not listed for domains, as the number of
VSEs varied greatly by sketch type).

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

structure, GUI), and general-purpose sketches (lists, ta-
bles, line graphs, drawings). Designers created an average
of 19.4 (± 8.9) sketches per session, each with an average
of 4.8 types of visual syntactic elements. Table 3 lists the
most frequent types of visual syntactic elements for the
most frequent types of sketches.

Despite the traditional focus on software design nota-
tions for describing system structure, most of the sketches
did not concern the design of the system. Categorising
sketches by domain, pairs created an average of 6.5 (± 6.9)
problem sketches, 6.4 (± 4.4) user interface sketches, 4.1 (±
2.6) system sketches, and 3.6 (± 5.1) requirements sketch-
es. Even when using system sketches, designers more
often chose to sketch using the syntactically simple lists
over more elaborate and complete notations such as ER
diagrams (0.8 ± 1.0 per pair) or class diagrams (0.4 ± 0.7
per pair). For example, designers often simply made lists
of classes and methods rather than use boxes with a title
to denote classes as in class diagrams.

Reflecting the traffic problem domain, maps were the
most common type of sketch created (7.3 ± 5.4 per pair)
and were used by all pairs. Designers used maps to rea-
son about traffic in two different ways: understanding
how intersections work, and designing user interfaces.
Software-driven pairs often used problem domain maps
to figure out how cars moved through intersections. They
asked questions such as how does a car decide to make a
left turn, do cars instantaneously move from one intersec-
tion to the next, and what component of the system con-
trols a behavior. To answer these questions, designers
sometimes went to a very low level of abstraction, draw-
ing individual cars in their depictions of maps (Figure
5b).

In contrast, user-interface-driven pairs instead used
maps depicting the user interface. These pairs generally
reasoned about traffic at the level of traffic flows, consid-
ering scenarios such as that on Mondays and Wednes-
days people went out to lunch, changing the traffic densi-
ty. As a result, the maps these designers drew were often
at a higher level (Figure 3, Figure 5a).

In supporting these uses, the VSE types designers used
varied between road-level views and map-level views.
Road-level views often used either lines demarcating the
edges of roads (parallel lines – 33% of maps, 7 pairs) or
intersecting roads (intersection – 30%, 5 pairs), and repre-
sented traffic with indicated individual cars, intersections,
and traffic patterns with rectangles (37%, 7 pairs), circles
(28%, 6 pairs), or dotted lines (17%, 5 pairs). Map-level
views used lines to represent individual roads (single line
– 30%, 6 pairs) or sets of roads (grid – 14%, 5 pairs), indi-
cating flows of traffic with arrows with lines (47%, 7
pairs).

Lists were the second most common sketch type (5.9 ±
4.1 sketches per pair) and were used by all pairs. Design-
ers used lists to record requirements, components, use
cases, and component behavior. Most lists were syntacti-
cally simple and contained few types of VSEs (average 3.7
± 1.6), most commonly first-order elements (92%, 8 pairs)

and titles (76%, 8 pairs). Designers often did not expand
items in a list: only 36% contained second-order elements.
Instead, designers created new lists. Parentheses were
sometimes used to express provisional information, often
next to titles or first order elements. Designers very rarely
reordered or rearranged lists. Most were not numerically
numbered, and for those that were, the order served only
to make items quickly referenceable or to provide a count
of items. This suggests that designers rarely worked with
lists that encoded meaning in their order. Lists often de-
pended implicitly on other sketches, but designers rarely
made these dependencies explicit; only 20% contained
arrows explicitly showing relationships from elements in
the list to other sketches. Few lists referenced sketches by
name.

Tables were most often used to represent aspects of
the user interface, typically as a mechanism for inputting
data (e.g., Figure 3). Tables varied in the ways in which
designers created them. Some tables were created bottom-
up, beginning with values in the table, and only later (if
ever) annotated with row headers. For example, when
designing traffic intersections, designers wrote down row
values into the table, and later added the headers for the-
se values. Other tables were created top-down; designers
drew the row headers first and then typically included
additional syntactic elements such as column headers and
grid lines.

GUIs were often created after interface maps, helping
designers to determine how the map content might be
manipulated by a user. For example, designers would
mimic moving sliders, then imagine how the map
interface would update as a result. GUIs most often con-
tained a bounding box (53%, 5 pairs), check box (46%, 3
pairs), and title (39%, 3 pairs).

Entity-relationship (ER) and class diagrams contained
a larger set of core notations shared by most sketches
(Table 3); this likely reflects ER and class diagram’s status
as well-known notations with conventions on how to
draw them. Relationships between entities were ubiqui-
tous, and designers often explicitly differentiated the type
of relationship they denoted. For example, in ER dia-
grams, designers used relationships with no head or tail
(83%, 3 pairs), relationships with triangle heads (67%, 4
pairs), and solid dots (50%, 3 pairs). Once made, decisions
on relationship type were never changed. Designers also
tended to use ER notations (e.g., dots and hollow circles
to represent containment and referencing), even when
working with class diagrams, which have a different for-
mal representation defined in the UML (e.g., dashed ar-
rows and diamond heads).

Designers sometimes explicitly avoided notations they
considered to be too detailed for their purposes. For ex-
ample, upon noticing that their partner had created a se-
cond-order item in an ER diagram, one designer (E) inter-
rupted, noting that: “we don’t have time to go into that
level of detail”. Class diagrams were used by only two
pairs (B, C). To explain the run-time behavior of compo-
nents, designers used class diagrams rather than sequence

AUTHOR ET AL.: TITLE 11

diagrams. It is interesting to observe that this allowed
them to explore many distinct scenarios instead of just
one. However, in the exit interviews of three of the soft-
ware pairs (B, D, F), they stated that they would normally
create sequence diagrams as the “next steps”.

5.1.3 Annotating sketches
Designers often annotated their sketches, using visual
syntactic elements to guide attention, support decision-
making, record provisional information, or reference oth-
er sketches. As designers moved between sketches, they
sometimes annotated sketches for emphasis or to guide
attention. For example, one designer (H) walking through
an explanation said “especially this” and underlined an
element. Emphasis marks did not reflect any observable
pattern: designers used a broad range of VSE types, in-
cluding an underline, a circle, a star, a large “X”, embold-
ened dots, and vertical bars. Once made, these marks
were not subsequently used or referenced but persisted
for the life of the sketch. Designers sometimes used VSEs
to explicitly refer to other sketches, typically with declara-
tive labels referencing other sketches or with arrows.

Annotations helped to support decision-making. Sev-
eral pairs used check marks on lists, maps, class diagrams
and ER diagrams. One pair (H) discussed a requirement
that involved many parts of the system. To address this
issue, they drew question marks next to all event objects,
and systematically visited the question marks and placed
either a check mark or large “X” to signify whether the
object did or did not address a requirement. Another pair
(E) checked off requirements in a list as they verified that
they were addressed.

Designers also annotated sketches to record provision-
al information. For example, designers who could not
settle on a name for a list wrote a second name in paren-
theses next to the official title. This behavior occurred
across many pairs (A, B, C, E, F) and several representa-
tion types, especially ER and class diagrams. Other pairs
used slashes in lists to indicate alternative names.

5.1.4 Evolving sketches
Designers continually invented new types of visual syn-
tactic elements to capture and externalize concepts they
discussed while designing. Figure 6 plots the growth of

Map
(8 pairs)
7.3 per pair

List
(8 pairs)
5.8 per pair

Table
(3 pairs)
2.0 per pair

GUI
(6 pairs)
1.6 per pair

ER diagram
(4 pairs)
0.8 per pair

Class diagram
(2 pairs)
0.4 per pair

1. Arrows
(47%, pairs=7)
2. Text labels
(38%, pairs=6)
3. Rectangle
(37%, pairs=7)
4. Parallel lines
(33%, pairs=7)
5. Single line
(30%, pairs=6)
6. Intersection
(30%, pairs=5)
7. Bounding box
(30%, pairs=6)
8. Circle
(28%, pairs=6)
9. Notch on line
(18%, pairs=5)
10. Dotted line
(17%, pairs=5)

1. First-order
element
(92%, pairs=8)
2. Title
(76%,pairs=8)
3. Second-order
element
(36%, pairs=7)
4. Item circled
(24%, pairs=5)
5. Arrow
(20%, pairs=5)
6. Parenthesis
annotation (18%,
pairs=3)
7. Floating ele-
ment
(9%, pairs=3)
8. Underline
(8%, pairs=2)
9. Question
mark
(4%, pairs=2)
10. Star symbol
(4%, pairs=2)

1. Row header
(88%, pairs=3)
2. Bounding box
(50%, pairs=3)
3. Column header
(50%, pairs=2)
4. Grid lines
(50%, pairs=2)
5. Title
(50%, pairs=1)
6. Cell items
(25%, pairs=2)
7. “etc.” symbol
(25%, pairs=2)
8. “X” mark in
cell
(13%, pairs=1)
9. Cell highlight
with different color
(13%, pairs=1)
10. Free-floating
label
(13%, pairs=1)

1. Bounding box
(53%, pairs=5)
2. Check box
(46%, pairs=3)
3. Title
(39%, pairs=3)
4. Slider
(39%, pairs=4)
5. Squiggly line
representing etc.
(23%, pairs=2)
6. Timeline black
and white
(17%, pairs=2)
7. Timeline colored
sections
(13%, pairs=1)
8. Rectangular
button (8%, pairs=2)
9. Triangular button
(8%, pairs=1)
10. Red/green/yello
w circles combo
(8%, pair=2)

1. Element name
(100%, pairs=4)
2. Bounding box
(83%, pairs=3)
3. Relationship
(no head or tail)
(83%, pairs=3)
4. Relationship
(triangle head)
(67%, pairs=4)
5. Relationship
(solid dot)
(50%, pairs=3)
6. Member items
(50%, pairs=3)
7. Cardinality
(33%, pairs=2)
8. Title box
(33%, pairs=2)
9. Dotted line
(33%, pairs=2)
10. Bounding
circle (33%,
pairs=1)

1. Bounding box
(100%, pairs=2)
2. Freeform text de-
scr. (100%, pairs=2)
3. Relationship (“v”
arrowhead)
(100%, pairs=2)
4. Cardinality
(67%, pairs=1)
5. Class name
(67%, pairs=2)
6. Relationship (solid
dot head)
(67%, pairs=1)
7. Explicit function
arguments
(67%, pairs=1)
8. Informal function
parameters
(67%, pairs=2)
9. Field names using
code syntax
(67%, pairs=1)
10. Title box
(67%, pairs=1)

Table 3. The six most frequent sketch types and their ten most frequent VSEs (the remaining sketch types were used too infrequent-
ly to identify recurring visual syntactic elements). Each sketch type is listed with an example image (above), the average number of
sketches per pair (n), and the number of pairs that used the sketch type. Each VSE is listed with the percentage of sketches that used
it and the number of pairs which used it.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

VSE types in sketches over time. For example, one pair (B)
wished to determine how users were interacting with
maps and drew a UI map sketch (right side of Figure 5b).
They first drew a box representing the whole area and
then drew lines to represent the user adding streets to the
map. They then proposed: ‘what if every time two streets
intersected would create an intersection?’, and drew an
intersection VSE where two lines met (mark where lines
meet in Figure 3b). Next, they decided that cars would be
generated and enter from off the map – represented as an
“arrow” VSE – and be terminated when they exited the
map – represented as a solid dot VSE. Overall, the longer
designers spent at a sketch, the more VSE types they cre-
ated (r = .62 ± .36).

As designs progressed and designers had more con-
cepts to describe, designers sometimes externalized con-
cepts on the whiteboard by borrowing syntactic elements
from other notations. For example, designers often began
sketches as a list, perhaps reflecting their simplicity. As
the discussion continued, designers sometimes borrowed
syntactic elements from other types of sketches. For ex-
ample, lists that represented software entities sometimes
began to borrow syntax from class and ER diagrams such
as arrows, cardinality, and bounding boxes (Figure 7a
and 7b; Figure 8a and 8b). Lists representing require-
ments documents gained labels on first order elements or
gained arrows to represent dependencies between re-
quirements. As a result, some lists began to evolve into
sketches of another type (e.g. Figures 7 and 8).

In some situations, designers chose to evolve their
sketches, often in situations where aesthetic presentation
was not a priority. In other cases, sketches began their
transition in place before being redrawn (Figure 7b and
7c; Figure 8b and 8c). Redrawing sketches was often trig-
gered by a shift from using a sketch to help think through
the design to using a sketch to document the design. In

Map

List

Table

Pair
cumulative focus time (minutes)

nu
m

be
r o

f V
SE

 ty
pe

s

Class diagram

ER diagram

Dialog

nu
m

be
r o

f V
SE

 ty
pe

s
nu

m
be

r o
f V

SE
 ty

pe
s

nu
m

be
r o

f V
SE

 ty
pe

s
nu

m
be

r o
f V

SE
 ty

pe
s

nu
m

be
r o

f V
SE

 ty
pe

s

Figure 6. The number of VSE types in a sketch as a function of
time. Each data point depicts the number of VSE types in an
individual sketch when it has had focus for the corresponding time.

Figure 7. Content (a) initially created as a list (b) evolved in
place to a class diagram, and (c) later was redrawn as a new
class diagram (pair B).

Figure 8. Content (a) initially created as a list (b) evolved by
borrowing syntactic elements, and (c) later was redrawn as
a new ER diagram (pair D).

(a) (b) (c)

(a) (b) (c)

AUTHOR ET AL.: TITLE 13

some cases designers also left the prior sketch. For exam-
ple, toward the end of the session, when designers
wished to record more of the design knowledge in their
heads, pairs B and H redrew the sketch from scratch in
much greater detail. As they drew the new sketch, they
left the old sketch intact, allowing them to refer to the old
sketch as they drew the new one.

Pairs varied greatly in how often they erased existing
sketches, ranging from erasing 0% to 81% of their sketch-
es. Overall, pairs erased 41 ± 31% of their sketches. Pairs
that created more sketches erased more, as they needed
the space to create the additional setkches.

5.2 Focus and transitions
Throughout the design sessions, pairs shifted their focus
among sketches on the whiteboard. Figure 9 depicts the
focus periods of all sketches. Designers sometimes had a
single, core sketch that dominated their design session.
For example, pair B spent much of their session interact-
ing with a class diagram (top red line in Figure 9B) and
pair H interacted extensively with a map (top blue line in
Figure 9H). But, designers more often worked with
groups of related sketches; and even pairs B and H used a
wide range of additional sketches in support of their core
sketch.

Designers often rapidly shifted between related
sketches that each served a separate purpose in support-
ing the current design activity. For example, when enu-
merating items in a list, pairs shifted their focus to a map
to discuss how cars moved, to a table to understand how
different categories of elements in the map interacted
with each other, and finally to a class diagram to record
new aspects of the design. Overall, transitions between
sketches were very frequent, leading to short focus peri-
ods in which pairs worked with a single sketch (Figures 9
and 10). Designers rarely (12 ± 5% of total focus periods)
focused for more than 30 seconds at a single sketch, and
they often spent less than 10 seconds at a sketch (66 ± 9%).

As designers worked with a group of sketches, they
often shifted back to a sketch with which they had recent-
ly worked (Figure 11). In some cases, pairs ‘ping-ponged’
back and forth between a single pair of sketches (e.g., top
two sketches of pairs B and D in Figure 9). Average focus
periods were short across all sketch types – there were no
types of sketches that designers did not use in close col-
laboration with other sketches (Figure 9).

To examine the typical size of the groups of sketches
with which designers worked, we counted the number of
sketches which received the designers’ focus within win-
dows of 30 seconds, 1 minute, and 5 minutes (averaged
across all windows in 1 second increments; e.g., windows
of 0 – 30, 1 – 31, etc.). Overall, pairs used an average of 1.5
(± .9) sketches every 30 seconds, 2.0 (± 1.2) sketches every
minute, and 3.9 (± 2.0) sketches every 5 minutes (Figure
12).

Focus transitions were often to sketches of different
types (53 ± 17%) or domains (43 ± 16%) and sometimes
crossed levels of abstraction (27 ± 13%). For example, sys

Figure 10. Mean focus period length by sketch type
(averaged across pairs).

Figure 12. The number of sketches receiving the focus
within windows of 30 sec, 1 min, and 5 min.

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

100"

0" 2" 4" 6" 8" 10" 12" 14"

%
"o
f"f
oc
us
"tr
an

si
-o

ns
"

#"of"focus"transi-ons"since"last"occurence"of"des-na-on"sketch"

A"
B"
C"
D"
E"
F"
G"
H"

Figure 11. The number of focus transitions since the
sketch last had focus, as a percentage of total focus
transitions (reported by pair).

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

B

A

C

E

D

F

G

H

0 10 20 30 40 50 60 70 80 90 100 110

List Map Dialog Table ER diagram Class diagram

Figure 9. Sketch focus during the design sessions, depicted for each 10 second interval (focus periods shorter than 10
seconds are rounded up to 10 seconds). The time shown begins when pairs were first given the design prompt and ends
with the end of the design task. Each horizontal row corresponds to a single sketch or reasoning activity (bottom three
rows). Sketches are listed in the order in which they were created.

minute
Other sketch type

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110

discussion of alternative mental simulation review of progress

0 10 20 30 40 50 60 70 80 90 100 110

120

AUTHOR ET AL.: TITLE 15

tem-driven pairs (B, C, E) relied heavily on problem do-
main sketches to support reasoning about components
within their system design sketches.

 All system-driven pairs frequently moved between a
map that they marked up with circles to represent cars to
the equivalent entity in a system sketch. Often, the de-
signers did not write on either sketch, but instead inter-
nalized the insights of their discussion. In other cases,
designers did edit sketches. For example, several pairs (B,
C, G) mentally simulated the movement of cars through
intersections using a map. They rapidly switched back
and forth between the map and the class diagram to de-
sign the data model, drawing relationships between dif-
ferent classes to capture necessary control and data flow.
As designers very rarely drew separate sketches to repre-
sent alternatives or separate points in time (see Sections
5.3.3 and 5.3.1, respectively), designers very rarely shifted
between sketches representing alternatives (1 ± 1%) or
points in time (1 ± 3%).

In 25% (± 6%) of the total focus periods, designers
quickly referred to a sketch for less than 3 seconds with-
out editing it as a momentary reference. We categorized
each momentary reference as a quick glance, point, or split
focus. Quick glances (43 ± 14% of momentary references)
allowed designers to gather information or seek confirma-
tion. Pointing (37 ± 14% of momentary references) helped
guide the attention of the other designer in the pair to
explain, review progress, or mentally walk through the
design. Split focus (20 ± 10% of momentary references)
allowed designers to reason about how a design might
work, using the knowledge gained from one sketch to
help identify omissions, mistakes, and inconsistencies.
For example, the designer on the left in Figure 13
simultaneously pointed at a data model and a map to
understand how a car object is passed between
components as it travels through an intersection. Mental
simulations were often mentally intensive, requiring
extensive attention. Split focus enabled designers to
externalize the sketches relevant to the discussion,
reducing the cognitive overhead of recalling where
sketches were located and allowing more cognitive
resources to be used on the reasoning activity at hand.
This is consistent with distributed cognition and the
concept of computation offloading [44].

5.2.1 Transitions between levels of abstraction
Shifting to a sketch at a different level of abstraction ena-
bled designers to focus on a particular aspect of the de-
sign by omitting non-relevant details. For example, six of
the eight pairs shifted at least once from a map of inter-
secting roads to a sketch of a single road, which helped
them focus on the mechanics of individual cars while ig-
noring details of the rest of the map. Designers did not
shift between sketches at different levels of abstraction
until their design had become sufficiently complex. De-
signers began shifting between sketches at different levels
of abstraction, on average, 33 (± 17) minutes into the ses-
sion. After this point, abstraction shifts were frequent,

occurring once every 49 (± 25) seconds. Overall, 26% (±
13%) of each pairs’ transitions shifted between abstraction
levels.

The designers frequently shifted to lists in order to dis-
cuss components at a high level of abstraction; lists were
the target sketch type in 39% (± 15%) of abstraction transi-
tions. These lists were often lists of system components or
requirements. All designers created a list of software clas-
ses, allowing them to defer discussion of details until later
in the session and carry on conversations at a high level of
abstraction. As the design session progressed, some pairs
(B, D, F) fleshed out classes with more detailed designs,
often expressed in ER diagrams. But the more abstract
lists continued to play an important role, helping design-
ers to keep track of where they were in the design process
by checking off, erasing, and pointing at the lists.

Maps were a frequent target of abstraction transitions
as well (35 ± 19%), helping to support less abstract discus-
sions. Designers shifted to map sketches from software
and lists sketch types in order to better understand the
problem domain. For example, designers moved between
sketches of an entire map to a single intersection, allow-
ing them to explore traffic configurations at an intersec-
tion without the clutter of a larger map. In turn, focusing
at a lower level of abstraction led to a large variety of vis-
ual syntactic elements, such as elements for single lanes,
many lanes, lights, traffic configurations, and car queues.

5.3 Reasoning activities
Sketches played an important role in supporting at least
three distinct types of reasoning activities: mental simula-
tion, review of progress, and suggesting design alternatives
(Table 6). Pairs averaged 17.9 (± 8.4) mental simulations,
11.8 (± 4.6) reviews of progress, and 14.4 (± 7.4) discus-
sions of alternatives per session (Table 7). Pairs varied
greatly in the frequency of these types of reasoning activi-
ties: mental simulation (5 to 30), review of progress (5 to
17), and discussion of alternatives (5 to 27). Sketches
played an important role in supporting reasoning activi-
ties: 81% (± 13%) of reasoning activities used sketches,
with 53% (± 8%) of reasoning activities gesturing over
existing sketches without editing, 22% (± 11%) editing an

Figure 13. An example of a split focus between two sketches.

10

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

existing sketch, and 6% (± 5%) creating a new sketch. In
the following sections, we examine each reasoning activi-
ty in turn.

5.3.1 Mental simulations
Mental simulations allowed designers to walk through
the behavior of their design. As in other reasoning activi-
ties, mental simulation was often supported by sketches
(83 ± 17%). Mental simulation sometimes involved edits
(30 ± 30%) or a creating a new sketch specifically to sup-
port the mental simulation (9 ± 11%). When designing
user interfaces, designers sometimes mimicked using
their design by talking and gesturing over sketches, using
the experience to demonstrate a nonfunctional require-
ment that the system should satisfy. For example, one
designer (A) simulated a user creating roads by dragging
the mouse across the map and stated that in her proposed
interaction “you can create something very quickly with-
out fussing with it”. Mental simulation helped designers
not only to imagine using their design, but to put them-
selves in the mindset of the end-user.

When designing with system and problem sketches,
mental simulation enabled designers to “expose the guts”
of their design in order for it to be scrutinized. For exam-
ple, one pair (D) declared that they were “putting [their]
foot into the dirty details” before initiating a mental simu-
lation. All system-driven pairs used mental simulations to
explain how data and control was passed between soft-
ware classes or how the state of the model was changed
over time. Mental simulation was typically not strictly
sequential from start to finish: designers instead backed
up in their explanations, paused to explain pieces, and
abandoned simulations when they became distracted.

Surprisingly, designers almost never supported mental
simulation by creating separate sketches representing
different conditions or points in time. In the single in-
stance in which this did occur, pair B reasoned about the
system by drawing two adjacent intersection sketches
labeled T and T + 1. They then simulated the movement
of cars through an intersection by shifting between the
before and after diagram.

Overall, mental simulations served several purposes:
Propose new design ideas. As designers simulated

and walked through the behavior of aspects of the design
with a temporal component, such as the behavior of end-
users or code, they sometimes generated design ideas. For
instance, while walking through the end-user experience,
designers (A, G, H) created new interface components ‘on

the fly’ to continue the simulation. As another example,
while walking through control or data flow, some design-
ers (B, D, F) created the needed class diagram elements in
a similar manner.

Clarify and refine. Mental simulations helped to bring
fragmented assumptions about the system together into a
cohesive story. For example, after one designer (G) be-
came lost in the details of their design, the other designer
clarified the design by mentally simulating its steps.

Reflect and evaluate. Mental simulations brought out
details of the design, allowing them to be evaluated. For
example, after stepping through data flow between soft-
ware components, one pair (B) discovered a potential
problem in their design: “well that may end up with spa-
ghetti code... so what about a traverser pattern”. In an-
other case, a designer in pair F changed a design decision
and retreated to a previously-rejected design idea. After
performing a mental simulation, he stated: “I didn’t be-
fore, but now I think [showing individual cars] is im-
portant”. When a designer walked through a simulation,
the partner would sometimes jump in and ask: “What
about X happening?” Mental simulations often spurred
partners to propose situations and corner cases that could
lead to problems in the design.

Reveal implications. Mental simulations helped to re-
veal implications of the design that were not immediately
obvious. For example, one pair (D) had determined that
cars must go through an intersection. But after one de-
signer simulated this behavior with an explanation of
how this occurs, the other designer asked: “But how does
the intersection know where to send it?”, prompting a
new discussion.

5.3.2 Review of progress
Reviewing progress was a central part of designers’ activ-
ities at the whiteboard, allowing designers to take stock of
where they were and evaluate the design as it existed. On
average, designers stopped to review progress every 9.3
(± 2.5) minutes for 49 (± 11) seconds, and all 8 pairs re-
viewed their progress. When reviewing progress, design-

Reasoning Activity Example
Mental simulation “So the cop looks at the intersections [and] says, okay it's a green light on these roads. This road has some number of cars

in it. If the light’s green one tick, [it] means we pop, and we do that queue and second picture. So from T0 to T1, that's
how we've gone through two.”

Review of progress “Okay. Maybe we should start talking about the view. We've got kind of a rough sketch of the base class of the model
and kind of a rough idea of the controller, which is a combination of this cop with the visitor...”

Suggestion of design
alternative

“Or you could say, well the queue—let's go back to the model for a second—so instead of just a straight queue you could
have like a… Well, we have for interior road[s], we have a maximum number of slots, so let's say this is the head.”

Table 6. An example of each reasoning activity.

 A B C D E F G H Avg

Men. Sim. 30 20 19 14 5 24 8 23 17.9

Rev. Prog. 17 7 8 5 15 12 13 17 11.8

Disc. Alt. 22 12 17 5 7 12 13 27 14.4

Table 7. Number of reasoning activities (by pair).

AUTHOR ET AL.: TITLE 17

ers often consulted whiteboard sketches they had drawn
(88 ± 13%). These consultations only occasionally led to
edits (24 ± 19% of instances reviewing progress). Reviews
of progress almost always involved reviewing require-
ment sketches (86 ± 13%). Designers reviewed lists of re-
quirements, which were then cross-referenced with other
sketches to determine if the current design satisfied the
requirements as the designers understood them.

Pairs varied in how they tracked requirements, which
in turn influenced how they reviewed their progress.
Some pairs (D, F, G) did not list requirements. Pairs D
and F were system-driven pairs that visited mainly sys-
tem and problem domain sketches. Pair D performed
their reviews of progress to check their work over soft-
ware components. Pair F, in contrast, performed their
reviews of progress by role-playing the designer and im-
plementer roles; one designer told the other to: “pretend
I’m the developer, describe the system to me”. Pair G, a
user-interface-driven pair, used sketches primarily to
summarize their progress.

Other pairs (A, C, and H – all user-interface-driven
pairs) maintained one or two lists of high-level require-
ments throughout the design session (e.g., Figure 5a).
Designers varied in terms of when the requirements were
authored: two pairs (A, H) created their entire list of re-
quirements in a short period of time, later using the list to
check that requirements were satisfied but making very
few edits; the other pair (C) made many edits and addi-
tions to their requirements throughout the design session.

Reviewing progress served several functions:
Verify coverage of requirements. Designers reviewed

requirements one at a time, ensuring that each was satis-
fied by the design by cross-referencing sketches. This
sometimes led pairs to return to deferred issues, spawn-
ing new discussions to address them. Designers used
check marks and other symbols to check off completed
requirements.

Identify assumptions. Designers reviewed their
sketches to check that the design was logically sound,
helping to uncover assumptions and portions of the de-
sign that were incomplete. For example, some pairs real-
ized that cars could travel between multiple intersections,
spawning a discussion to expand the design for these cas-
es.

Plan what to address next. After reviewing a set of
sketches, designers sometimes discussed the sketches
they needed next, pointing at existing sketches to estab-
lish what they had missed. For example, pair B looked
over what they had created, checked it against the re-
quirements, remarked that they had 30 minutes, and
agreed that they should redraw everything to communi-
cate the design to the developers who would implement
it.

5.3.3 Discussion of alternatives
Designers often discussed alternatives; overall, pairs dis-
cussed an alternative once every 8.7 (± 4.4) minutes. Dis-
cussing alternatives included both situations where alter-

natives were considered seriously, and those where
‘straw man’ alternatives were used to clarify an existing
design idea without any intention of following them
through. When unable to choose definitively between
alternatives, designers often made a provisional decision,
resolving to re-evaluate the decision later, as: “it’s more
expensive to get stuck on an idea; [we] need to move on!”
(A). For example, 6 of the 8 pairs considered alternative
designs for left turn signals. Several chose one approach
early on or deferred the decision, revisiting the decision
later with in-depth discussion when reviewing progress
or mentally simulating the situation.

When considering alternatives, designers often (74 ±
17%) made use of whiteboard sketches, either by point-
ing, editing, or creating new sketches. Discussing alterna-
tives was most often supported by simply pointing or
glancing at existing sketches. In 76% (± 15%) of cases, no
trace of discussed alternatives remained on the white-
board. Only 18% (± 17%) of instances of discussing alter-
natives involved editing an existing sketch and only 6%
(± 5%) involved creating new sketches. Even when creat-
ing new sketches, designers rarely made comparisons
between them by switching between alternatives in com-
peting sketches. Instead, they discussed the alternatives.
Designers almost never (2 sketches) discussed competing
alternatives by explicitly representing each alternative in
a separate sketch.

While sketches played a crucial role in helping design-
ers to work through the ramifications of their choices,
sketches often did not accurately reflect the current alter-
native under discussion. Nonetheless, designers dis-
cussed them as if they represented the most up-to-date
state of the design. For example, one pair (C) discussed
user interactions for creating roads, sketching alternatives
in which roads were represented by either connected
square blocks or by straight lines with notches. After de-
ciding on the latter, they subsequently gestured at the
first sketch, speaking as if it had lines with notches repre-
senting roads. In some cases, designers even pointed and
gestured at imaginary sketches. For example, one design-
er (H) pointed at areas in a blank square and explained a
design as if there were sketched content.

6 THREATS TO VALIDITY
There are three major threats to the validity of our re-

sults: the selection of participants, the choice of the design
task, and the context in which the design task occurred.

First, our selection of participants may threaten the
generalizabiliy of the results if our eight pairs are not rep-
resentative of the general population of software design-
ers. It is possible that the results might differ for designers
with different backgrounds or specializations or who are
familiar with other design approaches such as model-
driven design or agile design. However, we mitigated this
issue by recruiting participants with extensive experience
in design from a variety of backgrounds. We recruited 16
designers from 7 different companies, each with its own

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

culture and design methodologies. Participants had a
median of 17.5 years of experience as professional design-
ers. Of course, as the designers were experienced, the re-
sults might not generalize to less experienced designers.

The second threat to validity is the choice of design
task. Designers approach tasks based on their existing
experience, including their knowledge in the domain.
Individuals with extensive experience in a domain may
already know which design alternatives are optimal or
should be avoided, or use their intuition based on their
experience to design more efficiently. In order to place
designers on an ‘even playing field’, we chose a design
task in a domain that most participants were likely to
have encountered in their lives but were unlikely to have
worked on professionally. This may have influenced how
the designers worked. However, a previous study which
used the same task [31] compared the overall design pro-
cess to that of Olson et al. [37], who in turn compared the
process to that used in practice, and found a great amount
of similarity in practices.

The scope of the design task is also a factor. An overly-
specific task might not allow designers sufficient creativi-
ty, artificially constraining the ways in which designers
might naturally engage in a design process. Conversely,
an overly-generic task might lead designers to approach-
es and solutions so divergent as to be incomparable. To
mitigate this issue, we asked for a specific set of delivera-
bles – a verbal summary of the design and an architecture
to provide to a team of developers – but allowed the de-
signers complete freedom through the design session in
how they arrived at those deliverables. At the same time,
we recognize that our task was still relatively small, com-
pared to real-world design projects.

The third threat to validity is the context in which the
design task was performed, including the time available
for the design session and the environment in which the
design work occurred. Design took place amongst pairs
of designers, with equal responsibilities and knowledge
of the task. In practice, design may involve groups larger
than pairs and may sometimes involve designers with
unequal knowledge, leading to participant behavior with-
in sessions that is less balanced. Participants were in-
structed to write exclusively on the whiteboard rather
than use other media such as paper; while designers in
practice may design primarily using the whiteboard, this
may be supplemented by use of mediums such as paper
to record and make note of the design. Participants were
limited to a single two-hour time span and had no access
to other people or resources. In practice, design typically
occurs over longer periods of time and involves many
different stakeholders, with whom the designers may
work and from whom they may obtain feedback during
the design process. Design in practice may also occur dur-
ing a wide variety of software lifecycle phases, often forc-
ing designers to consider the existing design and the con-
straints that it imposes on the design task at hand. In con-
trast, our participants approached a new design task.

Despite these potential issues, the designers generally

found their experiences during the study to be repre-
sentative of their experiences in real world design. During
the interview at the conclusion of the design session,
some designers stated that the design discussions within
the session matched those that they have in their own
meetings. “This sort of discussion is very much what the
engineers do … within the team working with project
management and UI design cross-functionally.” Howev-
er, a few designers also reported that they adjusted the
way they approached the design problem due to the lim-
ited amount of time. For example, one designer stated: “it
was, I think, predictable and expected that we spend a lot
of time on early discussion and progressively get quicker
at making decisions and moving along and putting to-
gether the data model at the end.”

7 DISCUSSION
Our results reveal that sketches play a crucial role in sup-
porting design conversations. In turn, variations in these
conversations, both from designers’ approach to the de-
sign problem and the evolution of their conversations
themselves, influence the types of sketches designers
draw and the visual syntactic elements within these
sketches. We found that design conversations span small
groups of sketches, with each sketch playing a distinct
role in supporting the design conversation.

In the remainder of this section, we first list our main
findings and then discuss these findings and their impli-
cations for tool design. Where our findings corroborate
other reported studies, we provide a citation.

7.1 Main findings

7.1.1 Types of sketches
What types of sketches do designers create?
Designers create lists, tables, GUIs, ER diagrams, class
diagrams, code, drawings, and domain specific sketches
[8, 55]. Designers prefer general-purpose sketches that
support the discussion of many scenarios over sketches
specialized for an individual scenario. While designers
sometimes use ER and class diagrams to design the sys-
tem, domain sketches are crucial to system design [40].

Do the sketches created vary with respect to the ap-
proach to design taken?
Designers may approach a design problem from the per-
spective of the user interface, the system, or requirements,
leading them to work with different types of sketches.
Nevertheless, all designers made use of a common core of
sketch types, as their design process moved beyond their
initial focus to other aspects of their design.

How syntactically complex are sketches?
Overall, the average number of distinct visual syntactic
elements in sketches ranged from 4.0 for lists to 11.8 for
class diagrams. Designers very rarely reordered or rear-
ranged lists, suggesting that order was either unim-
portant or was clear without exploration or external rep-

AUTHOR ET AL.: TITLE 19

resentation.

How do sketches evolve?
Sketches increase in syntactic complexity as design con-
versations progress and designers introduce new syntac-
tic elements to record aspects of the design [39]. Design-
ers sometimes borrowed syntactic elements from other
notations [14, 40]. As lists accumulated additional syntac-
tic elements, they sometimes evolved into class and ER
diagrams [14, 39].

7.1.2 Focus and transitions
How do designers shift their attention between sketch-
es?
During design dialogues and periods of review, designers
often transfer their focus repeatedly among a small group
of sketches. These groups of sketches typically provide
alternative views on some aspect of the design, for exam-
ple sketches of different types or domains, sometimes
across levels of abstraction (cf. [40]). Focus transitions
most often to a sketch with which a designer has worked
recently. They are rarely between sketches representing
distinct alternatives or points in time.

How long do designers focus on individual sketches?
Designers move rapidly between sketches. Designers
rarely (12 ± 5% of total focus periods) focused for more
than 30 seconds on a single sketch, and often spent less
than 10 seconds on a sketch (66 ± 9%).

How do designers make reference to sketches?
We observed that designers often referred to adjacent
sketches in short bursts, even when they do not edit or
add to them. Designers use momentary references to
gather information, guide the attention of other designers
by pointing, and combine information from sketches by
dividing their focus.

7.1.3 Reasoning activities
How do designers use sketches to understand and ad-
vance the state of the design at hand?
Sketches play an important role in supporting reasoning
activities: 81% of reasoning activities used sketches.
Sketches most often support reasoning activities simply
by providing information and something to gesture at.
Only 22% of reasoning activities resulted in an edit to a
sketch, and only 6% resulted in the creation of a new
sketch.

Which types of reasoning activities do the sketches
support?
Sketches support mental simulations, helping designers
to propose new ideas, clarify and refine, and reveal im-
plciations. Sketches support designers in reviewing their
progress, helping designers to check the coverage of re-
quirements, identify assumptions, and plan what to ad-
dress next. Finally, sketches support the discussion of
alternatives, most often through the use of existing

sketches rather than through editing (18%) or creating
sketches (5%).

Are the outcomes of design discussions always recorded
in the sketches supporting these discussions?
Sketches did not represent the entirety of the design or
even, for the parts described, its current state. Designers
decided on solutions without writing them down and
reused sketches from rejected alternatives to support rea-
soning about different design alternatives.

7.2 Sketches support design conversations
Designers made constant use of sketches throughout their
design process, using the whiteboard to discuss design
alternatives, tracing paths across the whiteboard to men-
tally simulate the behavior of the systems they designed,
and examining sketches to review their progress. Yet,
while sketches were central to designers’ work, they did
not represent the entirety of the design or even, for the
parts described, the current state of the design. Instead,
the design existed only in the minds of the designers and
in the conversations in which they engaged. Designers
decided on alternatives without writing them down, re-
ferred to sketches as if they were up to date, and gestured
in space at imaginary sketches. As the design evolved
through designers’ conversations, sketches helped sup-
port these conversations, even when the evolution of the
sketches did not keep pace with the evolution of the de-
sign.

Designers often worked with sketches that were gen-
eral-purpose, enabling them to quickly simulate a wide
range of scenarios by pointing to and annotating a gen-
eral-purpose sketch, rather than drawing each scenario in
a separate sketch. Much as a schematic of a car design
might support a discussion of a maintenance issue, or a
timeline might support a discussion of scheduling, gen-
eral-purpose sketches at a higher level of abstraction sup-
ported the designers in diving into the discussion of
many alternatives and many issues. In contrast to other
normative and descriptive accounts of design at the
whiteboard which emphasize the use of separate sketches
of alternatives to compare, weigh tradeoffs, and synthe-
size [7, 58], designers almost never explored alternatives
by creating separate sketches for each alternative. Rather,
they pointed at existing sketches, even pretending that
they matched the design that existed only in their minds.
One potential explanation comes from the context of our
study: designers performed early exploration of a design.
This kind of design task may allow designers to be more
creative and less constrained.

Designers’ preference for general-purpose sketches al-
so shaped the types of sketches designers used. Rather
than sketching individual scenarios separately using se-
quence diagrams, designers used class and ER diagrams
which afforded the flexibility to point at and rapidly flesh
out multiple scenarios within a single sketch. Even when
simulating the behavior of a design over time, designers
evidently found it easier to point at and reason about el-

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ements within a class diagram than to repeatedly draw
sequence diagrams. Similarly, designers working with
user interfaces built general-purpose mockups, simulat-
ing scenarios through pointing and annotating rather
than sketching each state in a storyboard. This preference
may reflect the demands of early, informal design in
which many designs are considered in quick succession;
designers did, for example, report that they would typi-
cally create sequence diagrams later in the design process.
And designers did choose to externalize more in situa-
tions in which the design conversation became complex.
For example, in designing a class as part of a larger class
diagram, one pair (B) provided more detail by making a
list.
Implications. These findings have important implications
for the design of both fully interactive whiteboard sys-
tems and capture technologies such as electronic pens for
physical whiteboards. First and foremost, such tools must
deal with the discrepancy between design as it exists in
designers’ minds and as designers record it on a white-
board: informal sketches provide support for discussing a
design, rather than a record of the design. This has
fundemental implications for tools intended to capture an
accurate record of a design. Rather than simply record a
static view of a sketch, finding ways to record the design
process itself, including the reasoning activities enabled
by sketching, is crucially important, as the design does
not exist in the sketches but in the conversations and in-
teractions they enable. For example, to capture a sketch
used in a mental simulation, it may be more helpful to
record the strokes designers draw, moment by moment,
and designers’ corresponding discussion, allowing de-
signers to later play back a video capturing the entire
walkthrough of an aspect of a system that took place in
the mental simulation.

Second, tools automatically capturing sketches for
long-term usage – such as in design documents, wikis,
and issue trackers – must take into account that a single
sketch may be used to discuss a range of topics. Given
sufficient context, it may be possible for the original de-
signer to identify the rationale of a decision from a sketch.
But, as sketches are used for multiple purposes, it may be
insufficient to simply record a sketch in one place. Thus, it
again may be more effective for such tools to consider
recording not simply sketches but the reasoning activities
that occur with sketches, including the scenarios and al-
ternatives annotated on top of sketches. And even out-of-
date sketches may serve an important role in capturing
the discussion of newer scenarios.

7.3 The approach to design influences the
sketches designers draw

While all designers were provided with the same materi-
als and were given the same prompt, three distinct ap-
proaches to design emerged, which in turn influenced the
sketches designers drew. Some designers chose to focus
on the behavior of the system, leading them to create sys-
tem sketches. Others focused on the user interface, creat-

ing sketches describing user interactions. Others still de-
signed from requirements, creating list sketches to work
toward their designs. Yet all designers made use of a
common core of sketch types, as their design process
moved beyond their initial focus to other aspects of their
design.

Previous work has identified the types of sketches
produced during design activities [22, 47, 56]. Our find-
ings extend these results, identifying the frequency of
individual visual syntactic elements within several types
of sketches.

Designers only infrequently made use of traditional
notations for software design; of the 155 sketches design-
ers created, 9 of them used a traditional notation, either a
class or ER diagram. Instead, much of the design process
took place in lists, used domain-specific sketch types to
model the problem domain, or worked with user inter-
face mockups. Even when designing the system, design-
ers often did so while working with domain sketches,
using them to work through scenarios and generate is-
sues that the design should address. Design sketches are
simply not limited to traditional notations such as UML,
and informal representations are used throughout design
exploration.

Designers used sketches to capture decisions as they
were made, managing the level of detail in their sketches
to be consistent with their current stage of the design pro-
cess. This finding is consistent with existing work, such as
Shipman’s finding that forcing developers into a notation
can degrade task performance by introducing overhead
[47]. For example, designers sometimes enumerated the
components in a system with lists, allowing decisions on
component relationships to be deferred. Or, when work-
ing with large map sketches, the designers did not con-
cern themselves with the movement of individual cars.

Implications. For sketching tools that seek to provide a
fluid experience by avoiding unneeded formalism and
supporting a minimal set of syntactic elements, our re-
sults begin to identify what those elements might be,
identifying the most frequently used types of VSEs within
sketches. For example, rather than necessarily provide the
full expressiveness of the UML class diagram formalism,
our results suggest that an early stage tool for supporting
informal design might initially let designers sketch more
simply with a subset of these elements. Moreover, our
results also illustrate the importance of sketch types be-
yond traditional system notations, including lists, tables,
and representations of the domain. These, too, should be
equally supported by electronic design tools. And, as de-
sign often takes place across multiple sketches, it is cru-
cially important for tools to support the juxtaposition of
sketches of multiple types.

These results also suggest that it is crucially important
for sketching tools to consider, in detail, exactly what in-
formation notations ask designers to provide and how
this matches the information designers are ready to ex-
press at various points in the design process. Our results
also suggest that tools should provide a gradual way of

AUTHOR ET AL.: TITLE 21

conforming to a notation, as designers borrow from mul-
tiple sketch types, use impromptu notations, and use
formal notations informally. Designers evolve sketches
Our results reveal that designers continue to add new
types of visual syntactic elements as they work with a
sketch. As the focus of designers’ conversations evolved
through the design process, so the sketches that designers
used to support these conversations evolved as well. For
example, designers often began sketches as a list, typical-
ly containing only first-order elements and a title. As de-
sign conversations progressed and designers wished to
express more details about the design, these lists often
evolved, adding additional syntactic elements such as
second-order elements and titles. Designers rarely reor-
dered or rearranged lists and rarely attempted to encode
information in the order of lists. Confirming existing find-
ings [45], the designers sometimes reappropriated sketch-
es, for example adding boxes and arrows as they evolved
lists into class diagrams; in some cases designers redrew
these sketches. Beginning these sketches as lists enabled
the designers to defer discussion of aspects of the design
such as relationships between elements until later in the
design session.

Depending on the situation, designers may choose ei-
ther to redraw a sketch or to develop it in place. Redraw-
ing forces a commitment to a decision, as it replaces a
provisional hastily drawn sketch with a more complete
representation and removes any annotations that may be
present. Redrawing creates space for more detail, ena-
bling decisions to be made about aspects of the design for
which there may previously have been no space (e.g.,
fields in a class diagram). In contrast, evolving sketches
supports design thinking ‘in-the-moment’, as designers
can spontaneously record decisions in their sketches.

Our results also highlight the support for provisional
and informal design as afforded by the nature of the me-
dium of whiteboards [39]. A previous study of informal
software design using poster boards and markers found
that sketches did not evolve in place, as designers instead
redrew sketches [14, 41]. Our results suggest that redraw-
ing, rather than evolving, might make it more challenging
for designers to record decisions in the moment and may
force designers to commit to decisions earlier. Of course,
other differences between media might also have an effect
on the design process. Writing on large sheets of paper
that can be torn off and posted to a wall affords more
space than a whiteboard, allowing more alternatives to be
sketched and old sketches to be retained rather than
erased.
Implications. Understanding the differences between the
roles of redrawing, reappropriating, and evolving sketch-
es – and understanding the effect of the drawing medium
on these different activities – is particularly important for
interactive sketching tools, as the facilitative characteris-
tics of a particular medium should be preserved in an
electronic tool. It is thus important for future work to bet-
ter understand the effect of the medium on the design
process.

The results reaffirm that a key aspect of the whiteboard
experience is its fluidity in enabling sketches to evolve,
and sketching tools that wish to maintain this fluidity
must provide support for evolving sketches. The fluidity
of notations has profound implications for sketch tool
(and metatool, e.g., [20]) developers. Premature commit-
ment to a notation should be avoided, with where and
when sketches get interpreted and turned into more pre-
cise notations through reconition determined by the us-
ers. Sketching tools should allow designers to begin with
simple, reduced notations (used informally) and then add
additional elements as needed. For example, a UML tool
might allow designers to first list names of classes and
then support the development of the list of class names
into a class diagram.

Sketching tools can also enable designers to evolve
sketches more easily by, for example, helping them to
rapidly ‘make space’, enabling ideas to be rapidly devel-
oped in the moment without forcing them to be redrawn.
Yet this might introduce other problems, as early sketches
may no longer be available for reference. Thus, tool sup-
port for recording and replaying the design history may
become more important.

Designers often annotated their sketches with VSEs
that had no inherent semantic meaning but instead served
to guide the attention of a sketcher’s audience during an
explanation. This finding has two implications for tools.
First, tools that attempt to interpret and assign meaning
to VSEs within sketches should be able to support VSEs
that do not have any fixed semantics. Second, given that
these VSEs arise when a designer is explaining a part of
their design, there is an opportunity to capture and pre-
serve information about the explanation, such as which
sketches designers step through, or to infer importance of
elements within a sketch based on how frequently they
are annotated.

7.4 Designers work with small groups of
sketches

Our results reveal that design conversations span groups
of sketches. Designers rarely stayed focused on a sketch
for a long period of time but instead rapidly shifted their
attention between sketches, frequently spending less than
10 seconds at a single sketch. While each sketch contained
specific information and supported specific types of rea-
soning, design conversations often cut across this struc-
ture, drawing together information from multiple sources
or using the information in one sketch to support the de-
sign activities in another. As a result, pairs often rapidly
moved back and forth between small groups of sketches:
over 60% of focus transitions were to return to the previ-
ously viewed sketch. A pair’s attention almost always
spanned a fraction of the total whiteboard sketches, in-
cluding an average of 2 sketches every minute and 3.9
sketches every 5 minutes. Designers worked with groups
of sketches in a variety of ways, each serving a unique
function: designers worked with sketches for periods of
time, gathered information through quick glances, point-

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ed to draw attention during conversations or to guide
review or simulation, and split their focus in order to rea-
son about the design using information from related
sketches.

An interesting question for future work is to better un-
derstand how these groups of sketches are structured.
How stable are groups, and how much do they evolve as
the design conversations evolve? Our results suggest that
some sketches were very related, as in several sketches
describing related aspects of a GUI. Other relationships
may depend more strongly on the design activity at hand,
as in a list that describes the behavior of a particular ele-
ment in an ER diagram, or sketches that are used together
only when using a requirements list to review progress.
Implications. These results highlight the importance of
designing support for working with groups of sketches
within interactive sketching systems. The medium of in-
teractive whiteboards introduces both challenges and
opportunities in this regard. On one hand, interactive
whiteboards may be physically smaller than large physi-
cal whiteboards and may force designers to draw larger
due to the difficulty of capturing fine movements [30].
This reduces the number of sketches a designer can draw
on a single whiteboard. On the other hand, interactive
whiteboards can allow designers to interact with many
virtual whiteboards, for example alternating among dif-
ferent virtual whiteboards, or juxtaposing reduced views
of related virtual whiteboards. As designers constantly
interact with groups of sketches, our results suggest this
is crucially important to support.

8 CONCLUSION
Sketching is a central and fundamental activity in the
process of software design (just as it is in other design
disciplines). Through the systematic study presented in
this paper, we examined the role of sketching within the
design process in detail, examining the types of sketches
designers create, how designers focus on sketches and
transfer their focus between sketches, and how sketches
support reasoning within design activities.

Our findings are rich, some confirming what is al-
ready reported in the literature (e.g., designers create a
variety of types of sketches; sketching helps in discussing
alternatives), others adding new knowledge (e.g., design-
ers generally work with multiple sketches at the same
time; designers opt to discuss alternatives over existing
sketches instead of representing these alternatives explic-
itly on the whiteboard). By the same token, some of our
findings align relatively well with how we think about
current software design tools (e.g., designers need tools
that allow them to evolve their sketches; designers reason
over their sketches in order to understand and advance
the design at hand), others conflict seriously with current
thinking and seem to demand the creation of new types
of tools (e.g., designers move very rapidly among sketch-
es; sketches rarely follow notational convention strictly;
designers sometimes reappropriate sketches and trans-

form them into a different sketch type). Together, our
findings paint a more complete and complex picture of
the relationship between the software design process and
sketches made at the whiteboard than has been portrayed
previously. The insights underpinning this picture have
important implications for the design of interactive
whiteboards that seek to reconceive this relationship,
suggesting attributes of physical whiteboards that should
be preserved and those that need to be re-envisioned.

Our future work will focus on two major research di-
rections. First, we would like to perform longitudinal stud-
ies of whiteboard use, as we suspect that there are behav-
iors that play out across software design meetings that
also need to be understood. Second, we will continue the
development of our Calico [29] software design sketching
tool to incorporate many of the lessons learned here and
to evaluate their impact empirically.

Acknowledgments
We thank all of the participants in our study and the par-
ticipants of the Studying Professional Software Design
Workshop. This work was supported in part by Microsoft
and by the National Science Foundation under grants
CCF-1118052 and IIS-1111446.

Nicolas Mangano received degrees in
psychology and information and computer
science from University of California, Irvine
in 2007 and a Ph.D. in information and
computer science from the University of
California, Irvine in 2013. His research
focused on understanding and supporting
informal software design at the whiteboard,
including in globablly distributed setting
and with electronic whiteboards. His dis-
sertation on Calico: An early-phase soft-

ware design tool won the 2014 ACM SISGSOFT Outstanding Doc-
toral Dissertation Award. He serves as co-founder of Molimur, a
company whose mission is to create creative collaboration tools.

Thomas D. LaToza received degrees in
psychology and computer science at the
University of Illinois, Urbana-Champagin in
2004 and a Ph.D. in software engineering
at Carnegie Mellon University in 2012. He is
currently a postdoctoral research associate
at the University of California, Irvine. His
research focuses on human aspects of
software development, including supporting
information needs in software development,
software design at the whiteboard, and
crowdsourcing software engineering. He

has served on several program committees and is currently an or-
ganizer of the Workshop on Crowdsourcing in Software Engineering.

AUTHOR ET AL.: TITLE 23

Marian Petre is a Professor of Computing
at The Open University in the UK. Her
background includes a B.A. in Psycholin-
guistics from Swarthmore College and a
Ph.D. in Computer Science from University
College London. She received a Royal
Society Wolfson Research Merit Award in
recognition of her research on expert soft-
ware design behaviour and reasoning. She
also held an EPSRC Advanced Research
Fellowship, again researching expert rea-
soning and representation in software de-

sign. Her research earned the Design Studies Award (2004) and the
ACM SIGSOFT Distinguished Paper Award (at ICSE 2013) for ‘UML
in practice’. Her research is reflected in over 100 international refer-
eed publications, plus co-authored books including ‘Software De-
signers in Action’. She is a founding member of the Psychology of
Programming Interest Group.

André van der Hoek received joint B.S.
and M.S. degrees in business-oriented
computer science from the Erasmus Uni-
versity Rotterdam, The Netherlands, and a
Ph.D. degree in computer science from the
University of Colorado at Boulder. He
serves as chair of the Department of Infor-
matics at the University of California, Irvine.
He heads the Software Design and Collab-
oration Laboratory, which focuses on un-
derstanding and advancing the roles of
design, collaboration, and education in

software development. He has served on numerous international
program committees, is a member of the editorial board of ACM
Transactions on Software Engineering and Methodology, was pro-
gram chair of the 2010 ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, and is program co-chair of
the 2014 International Conference on Software Engineering. He was
recognized in 2013 as an ACM Distinguished Scientist, and in 2009
he was a recipient of the Premier Award for Excellence in Engineer-
ing Education Courseware. He is a member of the IEEE.

References
[1] A. Baker and A. v. d. Hoek, "The Design Process as Rotating Subject

Pairs," presented at the Studying Professional Software Design
Workshop, 2010.

[2] A. Baker and A. van der Hoek, "Ideas, subjects, and cycles as lenses
for understanding the software design process," Design Studies, vol.
31, pp. 590-613, 2010.

[3] L. J. Ball and B. T. Christensen, "Analogical reasoning and mental
simulation in design: two strategies linked to uncertainty resolution,"
Design Studies, vol. 30, pp. 169-186, 2009.

[4] L. J. Ball, B. Onarheim, and B. T. Christensen, "Design requirements,
epistemic uncertainty and solution development strategies in
software design," Design Studies, vol. 31, pp. 567-589, 2010.

[5] J. Bertin, Semiology of graphics: diagrams, networks, maps: University of
Wisconsin press, 1983.

[6] G. Booch, "Draw Me a Picture," IEEE Softw., vol. 28, pp. 6-7, 2011.
[7] W. Buxton, Sketching User Experiences: Getting the Design Right and the

Right Design: Morgan Kaufmann, 2007.
[8] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, "Let's go to the

whiteboard: how and why software developers use drawings," in
Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 557-566, 2007.

[9] H. Christiaans and R. A. Almendra, "Accessing decision-making in
software design," Design Studies, vol. 31, pp. 641-662, 2010.

[10] R. Chung, P. Mirica, and B. Plimmer, "InkKit: a generic design tool for
the tablet PC," In Proceedings of the 6th ACM SIGCHI New Zealand
chapter's international conference on Computer-human interaction: making
CHI natural (CHINZ '05), pp. 29-30, 2005.

[11] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software
design process for large systems," Communications of the ACM, vol. 31,
pp. 1268-1287, 1988.

[12] C. H. Damm, K. M. Hansen, and M. Thomsen, "Tool Support for
Cooperative Object-Oriented Design: Gesture Based Modelling on an
Electronic Whiteboard," Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 518-525, 2000.

[13] U. Dekel, "Supporting distributed software design meetings: what
can we learn from co-located meetings?," In Proceedings of the 2005
workshop on Human and social factors of software engineering (HSSE '05),
pp. 1-7, 2005.

[14] U. Dekel and J. D. Herbsleb, "Notation and representation in
collaborative object-oriented design: an observational study,"
SIGPLAN Not., vol. 42, pp. 261-280, 2007.

[15] E. Ferguson, Engineering and the Mind's Eye. Ma. and London:
Cambridge, 1992.

[16] F. Guimbretiere, M. Stone, and T. Winograd, "Fluid interaction with
high-resolution wall-size displays," In Proceedings of the 14th annual
ACM symposium on User interface software and technology (UIST '01), pp.
21-30, 2001.

[17] V. Goel, Sketches of Thought. Cambridge, Massachusetts: The MIT
Press, 1995.

[18] G. Goldschmidt, "The dialectics of sketching," Creativity Research
Journal, vol. 4, pp. 123-143, 1991.

[19] P. Grisham, H. Iida, and D. Perry, "Improving Design Intent Research
for Software Maintenance," in ATGSE 07: Accountability and
Traceability in Global Software Engineering, 2009.

[20] J. Grundy and J. Hosking, "Supporting Generic Sketching-Based
Input of Diagrams in a Domain-Specific Visual Language Meta-Tool,"
in Proceedings of the 29th International Conference on Software
Engineering (ICSE '07), pp. 282-291, 2007.

[21] R. Guindon, "Designing the design process: Exploiting opportunistic
thoughts," Human–Computer Interaction, vol. 5, pp. 305-344, 1990.

[22] D. Hendry, "ʺSketching with Conceptual Metaphors to Explain
Computational Processes,"ʺ in Visual Languages and Human-­‐‑Centric
Computing, Washington, DC, pp. 95-­‐‑102, 2006.

[23] C. D. Hundhausen, "ʺUsing end-­‐‑user visualization environments to
mediate conversations: a 'ʹCommunicative Dimensions'ʹ framework,"ʺ
Journal of Visusal Languages and Computing, vol. 16, pp. 153-­‐‑185, 2005.

[24] G. Johnson, M. D. Gross, J. Hong, and E. Y.-­‐‑L. Do, "ʺComputational
Support for Sketching in Design: A Review,"ʺ Foundations and Trends in
Human–Computer Interaction, vol. 2, pp. 1-­‐‑93, 2008.

[25] W. Ju, B. Lee, and S. Klemmer, "Range: exploring implicit interaction
through electronic whiteboard design," In Proceedings of the 2008 ACM
conference on Computer supported cooperative work (CSCW '08), pp. 17-
26, 2008.

[26] S. Klemmer, M. Newman, R. Farrell, M. Bilezikjian, and J. Landay,
"The designers' outpost: a tangible interface for collaborative web
site," In Proceedings of the 14th annual ACM symposium on User interface
software and technology (UIST '01), pp. 1-10, 2001.

[27] J. Landay, "SILK: sketching interfaces like krazy," In Conference
Companion on Human Factors in Computing Systems (CHI '96), pp. 399,
1996.

24 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[28] J. Larkin and H. Simon, "Why a Diagram is (Sometimes) Worth Ten
Thousand Words**," Cognitive science, vol. 11, pp. 65-100, 1987.

[29] T. D. LaToza, G. Venolia, and R. DeLine, "Maintaining mental
models: a study of developer work habits," In Proceedings of the 28th
international conference on Software engineering (ICSE '06), pp. 492-501,
2006.

[30] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek,
"Supporting Informal Design with Interactive Whiteboards," in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '14), 10 pages, 2014.

[31] J. McDonnell, "Accommodating disagreement: A study of effective
design collaboration," Design Studies, vol. 33, pp. 44-63, 2012.

[32] N. Mangano and A. van der Hoek, "The design and evaluation of a
tool to support software designers at the whiteboard," Automated
Software Engineering, vol. 19, pp. 381-421, 2012.

[33] D. Moody, "The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering," Software
Engineering, IEEE Transactions on, vol. 35, pp. 756-779, 2009.

[34] E. Mynatt, T. Igarashi, W. Edwards, and A. LaMarca, "Flatland: New
dimensions in office whiteboards," In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (CHI '99), pp. 346-
353, 1999.

[35] E. D. Mynatt, "The writing on the wall," in Proceedings of the 7th IFIP
Conference on Human-Computer Interaction, 1999.

[36] K. Nakakoji and Y. Yamamoto, "Conjectures on how designers
interact with representations in the early stages of software design,"
in Software Designers in Action: A Human-centric Look at Design Work,
ed: Chapman and Hall/CRC, pp. 381 - 399, 2014.

[37] A. Newell and H. Simon, Human problem solving vol. 104: Prentice-
Hall Englewood Cliffs, NJ, 1972.

[38] M. Newman, J. Lin, J. Hong, and J. Landay, "DENIM: An Informal
Web Site Design Tool Inspired by Observations of Practice," Human-
Computer Interaction, vol. 18, pp. 259-324, 2003.

[39] G. Olson, J. Olson, M. Carter, and M. Storrosten, "Small group design
meetings: An analysis of collaboration," Human–Computer Interaction,
vol. 7, pp. 347-374, 1992.

[40] H. Ossher, R. K. E. Bellamy, B. E. John, and M. Desmond, "Concern
development in software design discussions: implications for flexible
modeling," in Software Designers in Action: A Human-centric Look at
Design Work, ed: Chapman and Hall/CRC, 2014, pp. 295-313.

[41] M. Petre, "Insights from expert software design practice," in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pp. 233-242, 2009.

[42] M. Petre, "UML in practice," In Proceedings of the 2013 International
Conference on Software Engineering (ICSE '13), IEEE Press, pp. 722-731,
2013.

[43] M. Petre, "Reflections on representation: cognitive dimensions
analysis of whiteboard design notations," in Software Designers in
Action: A Human-centric Look at Design Work, ed: Chapman and
Hall/CRC, pp. 267-294, 2014.

[44] M. Scaife and Y. Rogers, "External cognition: how do graphical
representations work?," International Journal on Human-Computer
Studies, vol. 45, pp. 185-213, 1996.

[45] D. A. Schön, The reflective practitioner: How professionals think in action
vol. 5126: Basic Books, 1984.

[46] J. Schumann, T. Strothotte, S. Laser, and A. Raab, "Assessing the effect
of non-photorealistic rendered images in CAD," in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI '96),
Vancouver, British Columbia, Canada, pp. 35-51, 1996.

[47] F. Shipman and C. Marshall, "Formality considered harmful:
Experiences, emerging themes, and directions on the use of formal
representations in interactive systems," Computer Supported
Cooperative Work (CSCW), vol. 8, pp. 333-352, 1999.

[48] H. A. Simon, "The ill structure of ill-structured problems," Artificial
Intelligence, vol. 4, pp. 181-204, 1973.

[49] H. A. Simon, The Sciences of the Artificial, 3rd Ed.: MIT Press, 1996.
[50] A. Strauss and J. Corbin, Basics of qualitative research: Techniques and

procedures for developing grounded theory: Sage Publications,
Incorporated, 2007.

[51] M. Suwa, J. Gero, and T. Purcell, "Unexpected discoveries and S-
invention of design requirements: important vehicles for a design
process," Design Studies, vol. 21, pp. 539-567, 2000.

[52] M. Suwa and B. Tversky, "External Representations Contribute to the
Dynamic Construction of Ideas," In Proceedings of the Second
International Conference on Diagrammatic Representation and
Inference (DIAGRAMS '02), pp. 341-343, 2002.

[53] H. Tang, Y. Lee, and J. Gero, "Comparing collaborative co-located
and distributed design processes in digital and traditional sketching
environments: A protocol study using the function–behaviour–
structure coding scheme," Design Studies, vol. 32, pp. 1-29, 2011.

[54] B. Tversky, "What do Sketches say about Thinking," 2002.
[55] A. Van Der Hoek and M. Petre, Software Designers in Action: A

Human-centric Look at Design Work: Chapman and Hall/CRC, 2013.
[56] J. Walny, S. Carpendale, N. Henry Riche, G. Venolia, and P. Fawcett,

"Visual thinking in action: Visualizations as used on whiteboards,"
Visualization and Computer Graphics, IEEE Transactions on, vol. 17, pp.
2508-2517, 2011.

[57] Y. Y. Wong, "Rough and ready prototypes: lessons from graphic
design," presented at the Posters and short talks of the 1992 SIGCHI
conference on Human factors in computing systems, Monterey,
California, 1992.

[58] K. Yatani, E. Chung, C. Jensen, and K. N. Truong, "Understanding
how and why open source contributors use diagrams in the
development of Ubuntu," in Proceedings of the 27th international
Conference on Human Factors in Computing Systems, pp. 995-1004, 2009.

[59] C. Zannier, M. Chiasson, and F. Maurer, "A model of design decision
making based on empirical results of interviews with software
designers," Information and Software Technology, vol. 49, pp. 637-653,
2007.

[60] C. Zannier and F. Maurer, "Comparing Decision Making in Agile and
Non-agile Software Organizations," in Agile Processes in Software
Engineering and Extreme Programming, ed: Springer Berlin /
Heidelberg, 2007.

