
Course Overview and
Study Design

CS 695 / SWE 699, Fall 2023
Programming Tools

LaToza Mason CS 695 / SWE 699, Fall 2023

Exercise: A Programming Tool

• What is a feature offered by a development
environment?

• How does this help a developer work more
effectively?

2

LaToza Mason CS 695 / SWE 699, Fall 2023

Examples of programming tools

• Syntax highlighting
• Errors and warnings
• Autocomplete
• Code templates
• Breakpoint debugger
• Logging statements
• Edit and continue
• GUI builder
• Version control
• Refactoring

3

LaToza Mason CS 695 / SWE 699, Fall 2023

Programming Tool

4

• Software that enables software developers to
accomplish a software engineering activity.

• Key concepts:
• Software engineering activity
• Task
• Challenge
• Support

LaToza Mason CS 695 / SWE 699, Fall 2023

Why study programming tools?
• Programming tools can have important impact on

productivity
• e.g., debugging through console.log vs

breakpoint debugger
• By understanding real challenges developers face,

help to understand where new tools might help
developers work more quickly

• Gather evidence to assess if a tool is helping
• Will adopting new IDE plugin x help you { debug,

reuse code, edit code, navigate, … } faster?

5

LaToza Mason CS 695 / SWE 699, Fall 2023

Course Goals

• Offer comprehensive overview of research on
programming tools
• Will not go into technical details of approaches
• Focus on insights into software development

work
• Gain experience with HCI & SE methods for

designing programming tools
• Gain experience reading & critically assessing

research papers

6

LaToza Mason CS 695 / SWE 699, Fall 2023

Topics
1. Developer-Centered Design

1. Overview & study design
2. Design process
3. Problem solving

2. Editing Code
1. Structured editors: writing code, without the syntax errors
2. Program transformation: editing code with GUI commands
3. GUI builders & No Code: generating code with GUI commands
4. Program synthesis: transforming text into code

3. Understanding Code
1. Live Programming: working with immediate, real time feedback
2. Computational Notebooks: seeing a computation, step by step
3. Reusing code - external APIs
4. Navigating code - getting around and reading internal code
5. Software visualization - diagrams and pictures that explain code

4. Fixing Code
1. Detecting defects
2. Debugging

7

LaToza Mason CS 695 / SWE 699, Fall 2023

Class format

• Part 1: Lecture: Survey of a type of programming
tool

• Part 2: In-Class Activity
• Part 3: Tech Talks

8

LaToza GMU SWE 432 Fall 2019

Course Staff

• Prof. Thomas LaToza

• Office hour: ENGR 4431
Wed 3:00 - 4:30pm or by appointment

• Areas of research: software engineering, human-
computer interaction, programming tools

• 15 years experience designing programming
tools

9

LaToza GMU SWE 432 Fall 2019

TA: Emad Aghayi

10

LaToza Mason CS 695 / SWE 699, Fall 2023

Course Readings

• Will have 2 readings a week
• Responsible for reading both readings and

responding to a prompt on Piazza.

11

LaToza Mason CS 695 / SWE 699, Fall 2023

Project
• The homework in this course will be in the form of a

project. All project work will occur in groups of up
to four people.

• HW0: Project Proposal (20 points)
• HW1: Review of Literature (100 points)
• HW2: Study of Current Practice (200 points)
• HW3: Tool Sketch (130 points)
• HW4: Tool Prototype (250 points)

12

LaToza Mason CS 695 / SWE 699, Fall 2023

HW0: Project Proposal

13

LaToza Mason CS 695 / SWE 699, Fall 2023

Tech Talk

14

LaToza Mason CS 695 / SWE 699, Fall 2023

Grades

• Responses to readings: 20%
• Tech Talk: 10%
• Project: 70%

15

Example: Developing
a programming tool

LaToza Mason CS 695 / SWE 699, Fall 2023

Observations of developers in the field

17

Par$cipants Tasks
~90	minutes	

picked	one	of	their	own	coding	
tasks	involving	unfamiliar	code17	professional	developers

Transcripts

(386	pages)

Interes@ng.	This	looks	like,	this	looks	like	the	code	is	approximately	the	same	but	it’s	refactored.	But	the	
other	code	is.		

Changed	what	flags	it’s	???	

He	added	a	new	flag	that	I	don’t	care	about.	He	just	renamed	a	couple	things.	

Well.	

So	the	change	seemed	to	have	changed	some	of	the	way	these	things	are	registered,		

but	I	didn’t	see	anything	that	talked	at	all	about	whether	the	app	is	running	or	whether	the	app	is	booted.	
So	it	seems	like,	this	was	useless	to	me.	

(annotated	with	observer	notes	about	goals	and	ac@ons)

Acvies

LaToza Mason CS 695 / SWE 699, Fall 2023

Longest activities related to control flow questions

18

4	out	of	the	5	longest	invesgaon	acvies

5	out	of	the	5	longest	debugging	acvies

Primary question Time
(mins) Related control flow question

How is this data structure being mutated in this
code? 83 Search downstream for writes to data

structure
“Where [is] the code assuming that the tables
are already there?” 53 Compare behaviors when tables are or are

not loaded
How [does] application state change when m
is called denoting startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be
non-zero?” 11

Find statements through which values flow
into status

Where is method m generating an error? 66 Search downstream from m for error text
What resources are being acquired to cause
this deadlock? 51 Search downstream for acquire method

calls
“When they have this attribute, they must use it
somewhere to generate the content, so where
is it?”

35 Search downstream for reads of attribute

“What [is] the test doing which is different from
what my app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread
pools

LaToza Mason CS 695 / SWE 699, Fall 2023

Longest debugging activity

19

Rapidly	found	method	m	implemen@ng	command	
Unsure	where	it	generated	error	

	
Sta@cally	traversed	calls	looking	for	something	that	
would	generate	error	

Tried	debugger	

	
Did	string	search	for	error,	found	it,	but	many	callers	

Stepped	in	debugger	to	find	something	relevant	

Sta@cally	traversed	calls	to	explore	

Went	back	to	stepping	debugger	to	inspect	values	
Found	the	answer

(66	minutes)

Where	is	method	m	genera$ng	an	error?

debugger

sta@c	call	traversal

grep

debugger

sta@c	call	traversal

debugger

3	So	we’ll	go	there	and	we’ll	just	crawl	through	this	code	and	we’ll	try	to	understand	that.	So	this	code	has	some	other	options	in	it.		
So,	I’m	just	scanning	through	to	just	understand	what	this	is	doing.	Typically	these	functions	look	for	subcommands	for	the	main	command.	So	u	has	
[looking	case	statement	looking	at	character	entered	by	the	user	to	dispatch	on	what	command	to	execute]	
one	functionality.	And	ub	has	another,	and	uf	has	another.	So	that’s	what	this	code	is	actually	doing,	hence	parse.		
4	And	the	guy	that	wrote	most	of	this	code	was	pretty	consistent	with	his	code	patterns	for	how	he	does	stuff.	So,	again	the	function	names	are	idicative	of	what	is	going	on.	And	he	makes	heavy	use	of	Elags	passing	around.	So	more	precisely,	what	I’m	looking	for,	I’m	looking	for	who	is	actually	returning	this	memory	access	string.	So	I	don’t	see	anything	just	scrolling	through	this	function,	clearly	it’s	not	this	function,	but	this	function	calls	a	bunch	of	other	functions,	so	I	could	walk	through	all	of	the	calls	to	try	to	isolate	that,	but	I’m	going	to	see	Eirst	if	I	can	get	lucky	and	narrow	it	down	from	the	other	end	and	look	at	where	the	output	is	coming	from.	
5	Searching	the	entire	project	and	we’re	just	going	to	do	a	string	search	for	all	of	the	project	and	see	if	that	comes	up	with	any,	with	basically	where	that	output	comes	from.		
[doing	source	insight	search]	
So,	luckily	this	doesn’t	seem	to	be	a	piece	of	output	that	gets	spewed	everywhere	which	is	nice,	but	it	seems	pretty	sparse.	And	in	fact	searching	the	project	didn’t	actually	Eind	that	at	all.	So	I’m	really	not	going	to	be	able	to	work	backwards	from	the	error	string.	
6	So	we’ll	go	back	to	the	source	Eile	itself,	so	we’ll	go	back	to	the	original	parse	Eile,	so	we	have	no	options.	No	modes,	so	we’re	in	the	default	mode,	so	we’re	going	into	this		instruction,	this	is	just	Elags.	I’m	just	trying	to	get	a	feel	for	the	parameters	that	we	are	dragging	along	here.		
I	don’t	know	if	you	want	editorial	comment	on	code	or	code	tools	while	I’m	walking	through	this.	
“Ah,	whatever,	it’s	mostly	just	whatever	you’re	thinking	about	while	your	working	on	the	task,	if	that’s	what	you’re	thinking	about	that’s	Eine.”	
7	[laughing]	Yeah,	it	would	be	nice	if	looking	at	this	function	on	the	parameters	themselves	were	overlaid	with	the	type.	So	this	has	a	mouse	over	that	is	something,	but	it	doesn’t	actually	tell	me	what	the	type	is.	So	again	looking	at	the	function	declaration	again	???	So	what	I	really	want	to	know	is	which	one	is	the	address	that	I’m	actually	going	to	disassemble	and	be	on	that.	So	
So	right	now	I’m	mostly	just	reading	the	code	and	trying	to	understand	stuff.	But	a	few	things	I	do	noticie	is	a	lot	of	the	lack	of	the	initialization.	So	some	of	that	I	might	change	is	I	ultimately	do	edit	this	function.	
[looking	at	the	method	that	is	called	from	dispatch	and	that	does	the	actual	work	for	the	subcommand	of	interest]	
8	Just	because	it’s	annoying.		
So	scanning	thorugh	here,	I’m	just	looking	for	the	calls	are	and	where	we	go	next,	or	where	the	output	is,		because	again	I’m	interested	in	who	is	putting	that	output	in	there.	So	here	is	this	function	call,	machine	disassemble.	Here’s	a	place	where	source	insight	falls	short,	it’s	showing	me	the	wrong	preview	for	the	dissasmeble	function.	
[little	preview	window	in	bottom	of	source	insight	window	for	callee]	
I	know	that	because	this	is	a	member	function	and	this	one	is	not.	This	is	the	wrong	number	of	parameters,	blah,	blah,	blah.	So	again	we	have	to	go	back	to	browse	the	project	symbols	for	the	disassemble	function.		
9	So	again,	lots	of	different	ones,	but	I	have	which	object	this	is.	So	if	I	go	back	here,	we	are	looking	at	the	machine	is	our	object	here,	and	it	is	a	machine	info	struct,	so	we	can	go	back	here	to	
[Eiguring	out	type	of	object	to	reason	about	dynamic	dispatch	for	manually	going	to	callee]	
go	to	the	machine	info	version	of	disassemble.	So	this	is	interesting	because,	now	we’re	outside	of	what	the	debugger	itself	is	doing	and	we’re	now	in	the	debugger	APIs.	So	that	makes	the	risk	of	a	change	higher.	There’s	more	of	a	regression	risk,	because	it’s	not	just	the	debugger	that’s	using	it,	
10	it’s	all	the	debugger	including	ones	that	are	not	ours.	So	I’m	just	scanning	through,	typically	looking	at	stuff	like	this	I’m	just	interested	in	how	big	the	function	is,	how	many	different	branches	it	could	take,	how	complex	it	is	going	to	be	to	Eind	out	where	we	are	going,	just	from	reading	the	code.	Of	course	I	can	attach	the	debugger	to	the	debugger	and	walk	through	that	which	is	probably	what	I’m	going	to	do	here	in	a	minute.	
11	Yeah,	so	this	will	be	a	little	easier	to	understand	if	I	actually	walk	through	the	code.	So	I’ll	just	open	another	debugger	session	and	attach	it	to	this	Eirst	one.	
[starts	a	second	windbg]	
So	we	started	with	parse	unassemble,	which	is	going	to	be	in	dbg	eng.		
12	Might	have	to	line	up	symbols	for	this.	So	we’ll	wait	on	that,	we’ll	go	back	here.	[to	source	insight]	
Decode.	
So	just	scrolling	through	the	function	and	looking	at	the	Eirst	actual	function	call	that	we	will	make	goes	to	this	decode	function.	And	again	I’m	just	looking	for	where	that	output	comes	from	or	if	we	would	set	a	different	set	of	brnaches.	The	comments	are,	this	is	nicely	commented	code	which	is	rare	to	say	the	least,	so	it’s	actually	a	little	easier	to	try	and	throw	out	pieces	of	code	that	are	probably	not	related	to	what	I’m	looking	for.	Because	I	have	some	innate	knowledge	as	to	what	I’m	looking	for,	and	this	error	
[again	thinking	about	reading	source	code	as	a	Eiltering	/	search	task]	
is	actually	most	likely	coming	from,	we’re	reading	an	address	that	is	not	in	the	dump	Eile.	So	I’m	looking	speciEically	for	read	memory	or	read	pointer	or	stuff	like	that.	
[he’s	right	–	it	does	end	up	being	from	one	of	these	calls]	
But	since	this	entire	codebase	calls,	so	I	know	that	that	is	going	to	be	something	like	read	ptr	or	read	virtual,	but	I	also	know	that	there’s	a	bazillion	calls	to	that	function,	and	it’s	not	very	easy	to	narrow	it	down	that	way,	so	I	can’t	go	about	it	that	way.	
[wants	do	string	search	of	callee	tree	identiEiers]	
14	So	the	debugger	over	here	came	back,	so	now	I	can	go	get	symbols	for	this	version.		
So	I	can	pick	the	symbol	path	in	the	debugger	so	that	I	can	walk	through	the	code,	and	again	we	wait	a	little	bit	so	we’ll	go	back	over	here.	[to	source	insight]	
15	This	part	of	the	code	is	actually	taking	apart	the	instructions,	so	by	this	point	we	already	have	the	data,	so	the	read	data	would	have	already	occurred,	and	we	would	have	failed	by	the	point	that	we	got	to	this	code.		
So	we’ll	go	back	here,	we	need	to	go	back	to	the	write	disassemble,	I	believe	this	is	the	right	one.	
[source	insight	symbol	browser	for	it]	
16	So	we’ll	assume	that	decode	failed,	but	if	we	do	that,	if	it	fails	totally	then	we	would	just	exit,	which	doesn’t	seem	to	be	what’s	happening.	
Because	otherwise	this	function	wouldn’t	have	this	text	output	that	we’re	interested	in.	
17	So	the	other	things	that	I	noticed	when	I	was	looking	at	the	deEintions	for	unsassemble	when	we	called	disassemble,	there’s	a	bunch	of	machine	speciEic	implementations	of	disassemble.	So	it	could	be	that	we’re	not	actually	calling	the	machine	info,	there	could	be	an	x86	one	that	we	are	actually	calling	since	this	is	debugging	x86	code.	So	my	ia64	version,	which	apparently	I	don’t	have	code	for	or	maybe	it	was	removed	from	the	project,	same	thing,	so	there’s	clearly,	so	there	might	be	something	wrong	with	my	project	which	is	why	there’s	so	many	deEinitions	ffor	this.		
18	Ok,	so	the	debugger	over	here	came	back	so	I	can	just	set	a	breakpoint	on	parse	unassemble	and	then	walk	back	through	the	code,	oh	we	actually	don’t	that	one	bececause	that	one	is	going	to	succeed,	we	want	the	failure	case	which	is	this	one.	
[demonstrated	some	behavior	and	got	a	call	into	it	twice]	
Ok,	so	we	are	at	parse	unassembled,	so	we’ll	make	the	debugger	look	at	the	same	source	code	that	we	are	looking	at	in	source	insight	over	here.		
And	the	debugger	should,	if	it	can	Eind	the	code,	maybe	it	doesn’t	like	this	code	path.	That	will	deEinitely	make	it	harder	to	walk	through	the	code.	
19	So	we’ll	go	back	into	disassemble	here,	since	there’s	not	really	a	better	implementation	that	is	able	to	do	it,	we’ll	go	back	to	the	machine	info	one.		
What	would	really	be	helpful	here	is	to	know	what	code	paths	are	most	common,	like	the	metadata	that	preEix	provides,	or	some	tracing	tools.	If	that	was	somehow	overlaid	with	the	source	code,	then	you	could	see	what	code		
20	was	dead	effectively,	or	what	code	gets	run	in	certain	environments,	we’ll	just	put	that	in	the	pipe	dream	pile.	
“So	you	just	want	to	see	what’s	always	executed?”	
So	it	would	be	nice	to	see,	so	like	preEix	only	does	a	set	number	of	paths,	but	like	Ben	Liblit	has	a	project,	you’re	familiar	with	him?	
“He’s	from	wisonsin”	
Yeah,	he’s	a	researcher	from	Wisconsin,	his	statistical	debugging	is	his	thing,	and	he	has	all	this	tracing	stuff	that	comes	up	and	back	and	forth.	So	that,	the	thing	about	looking	at	failure	data,	because	we	have	failure	data	too,	we	can	see	what	code	path	executes	when	things	fault,	what	code	executes	commonly	when	stuff	works,	so	if	we	had	some	way	to	say	in	the	source	code,	because	I	can	do	it	from	the	debugger,		
21	but	I	had	some	way	to	say	in	the	source	code,	ok,	if	I	give	you	these	values,	what	paths	will	execute.	Which	I	guess	is	effectively	debugging	the	code.	
“So	you’d	want	to	specify	those	values	at	function	entry	rather	than	just	randomly	end	up	with	the	values	from	playing	with	the	UI?”	
I	think	what	I’m	saying	is	that,	given	a	function	deEintion,	I	Eill	in	a	set	of	values,	so	what	happens	if	this	guy	is	null,	and	this	guy	is	also	null,		
[writing	asserts	on	params]	
“Make	a	bunch	of	asserts	essentially”	
Yeah,	it	would	basically	highlight	in	the	code	which	paths	are	going	to	execute,	something	like	that.	
“What	would	you	use	that	information	for,	how	would	that	change	how	you	are	looking	at	this	method,	it	would	help	you	rule	out	pieces?”	
22	Yeah,	it	would	help	me	rule	out	which	paths	were	going	to	execute,	so	commonly	when	I’m	looking	at	code,	either	code	that	I’m	familiar	with	in	the	project	that	I	worked	on	commonly	or	because	my	job	is	partially	to	debug	everybody	else’s	code,	so	a	lot	of	the	time	I	have	crash	dumps	that	say	what	the	state	at	the	time	of	the	failure	was,	and	I	have	the	source	code,	but	I	have	to	do	a	lot	of	either	qualiEication	of	values	in	the	debugger	itself	or	a	bunch	of	guessing	whatever	in	my	head	to	try	and	Eigure	out	which	paths,	because	we’re	looking	at	a	static	point	of	time	in	the	debgugger	and	a	static	piece	of	code.	And	the	2	won’t,	you	can	overly	the	two,	but	you	won’t	necessarily	know	which	paths	executed,	so	you	have	to	kind	of	walk	through	backwards.	So,	but	I	do	have,	in	general	I	do	have	the	parameters,	this	is	null,	this	is	not	null,	this	is	this	static	value,	this	is	static	value.	
23	So	if	I	could	overlay	with	the	source,	so	that	might,	for	some	of	these	signiEicantly	longer	functions,	it	would	help	me	understand	what’s	going	on	there.		
The	other	thing	that	I	do	a	lot	when	I	look	at	code	that	I	own,	I’m	typically	looking	for	places	that,	this	is	for	stuff	that	I	much	more	familiar	with,	I’m	always	interested	in	what	sort	of	things	could	be	refactored.	Where	I	could	I	make	a	function	smaller,	where	could	I	reduce	the	number	of	parameters.	So	having	a	refactoring	mode	in	the	source	editor	would	be	helpful.	Slickedit	has	some	interesting	things	where	you	can	highlight	a	section	of	code	and	slickedit	will,	if	you’re	going	to	refactor	this,	then	you	also	need	to	drag	along	these	locals	and	these	parameters,	and	they	have	to	be	passed,	and	it	makes	your	function	deEinition	for	you.	
24	So	that’s	very	interesting.		
So,	anyway,	we’re	back	to	this.	It	doesn’t	like	my	source	path,	oh	because	I’m	giving	it	the	wrong	one.	
[still	trying	to	load	symbols	in	debugger]	
25	[waiting	on	it	to	try	to	load	symbols	again,	back	to	source	insight]	
Ok,	again	the	comments	are	helpful,	because	I	can	basically	ignore	this	branch	because	I’m	pretty	sure	that	the	decoder	didn’t	fail	and	I	don’t	see	this	output.	[reasoning	about	what	branches	were	taken	based	on	output	behavior]	
But	this	is	interesting	to	see	this	output	in	the	context	of	that,	I	was	looking	for	a	piece	of	output,	because	this	output	is	split	across	2	source	lines	as	if	someone	had	a	signiEicantly	more	narrow	source	editor	view.	So	that	might	mean	that	one	of	the	reasons	that	I	couldn’t	Eind	the	string	I	was	looking	for	before	was	because	it	was	wrapped.	So	maybe	if	I	go	back	to	my	search,	I	was	searching	for	the	entire	string	“memory		
26	space	access	space	error”	so	maybe	if	I	just	make	it	memory	access	and	let	it	search	along,	and	that	Einds	signiEicantly	more	entires,	including	one	in	utils	dot	cpp,	in	a	table	of	error	strings.	
[goes	to	that	reference]	
So	wherever	that	guy	was,	there	you	go.	So	this	is	like	an	interesting	search	problem	in	general.	Actually,	I	don’t	think	google	or	live	search	do	this,	but	if	you	give	a	set	of	4	individual	search	terms,	usually	you	get	all	or	nothing	from	a	search	engine.	So	you	get	the	set	of	results	that	get	all	4	terms,	or	in	this	case	all	3	terms,	or	no	terms.		
27	But	you	don’t	typically	get	a	treed	set	of	terms,	here	are	the	set	of	results	that	have	all	of	your	terms,	here	is	the	set	of	results	that	have	all	minus	1,	all	minus	2,	all	the	way	down	to	0.	But	in	that	case,	this	would	have	been	very	helpful,	this	would	have	potentially	saved	me	a	good	bit	of	time.	
So	I’m	looking	for	a	call	to	error	string	with	the	error	value	memory.	
[wants	the	caller	to	this	method	with	a	particular	parameter	–	the	enum	that	forces	the	case	where	it	prints	the	string]	
So	we	can	see	how	many	callers	there	are	here,	ok,	so	there’s	a	pretty	large	number	of	callers	of	this.	Maybe	we	can	look	at	where	those	callers	are	and	narrow	that	down	based	on	what	we	know.	
So	there	are	a	lot	in	typed	data,	a	lot	in	system.	
28	SpeciEically	we’re	looking	for	calling	error	string	with	the	Eirst	parameter	of	memory,	but	this	is	another	case	where	search	generally	fails	in	general	because	of	spacing.	So	this	is	error	string	open	paren,	and	then	the	word	in	all	caps	memory	[(MEMORY)].	
But	there’s	all	sorts	of	permutations	of	how	that	could	be	spaced	and	still	be	legitamite	compilable	code,	so	we’ll	start	with	this	one	and	see	if	we	get	anything.	Which	we	don’t.	So	we’ll	go	back	here	
29	a	lot	of	spaces,	error	space,	open	paren	space,	and	the	word	memory,	and	we’ll	search	for	that.		
[still	nothing]	
So	I’m	done	trying	to	do	that.	So	let’s	look	at	callers	of	error	string.	
[back	to	other	strategy	of	looking	through	callers]	
So	maybe	if	we	just	parse	through	here,	or	step	through	here,	we	can	see	which	ones	are	calling	with	the	parameter	of	memory.	
But	unfortunately,	many	of	these	are	calling	with	the	Eirst	parameter	as	a	variable.	So	that	would	mean	that	what	we	were	looking	at	before	is	not	a	search	problem,	it’s	a	variable	interpretation	problem.		
30	So,	I’m	just	kind	of	stepping	through	these	values,	and	in	my	head,	I’m	just	trying	to	remember	which	ones	are	legitimate	and	which	ones	might	not	be.	So	it	would	be	nice	if	I	could	just	take	this	whole	list	of	result	values	and	select	them	all	out	of	this	combobox,	and	then	paste	them	into	notepad,	so	I	could	then	remove	them	from	my	list.	So	I	wouldn’t	have	to	just	worry	about	remembering	them.		
31	I	think	that’s	something	that	I	tend	to	do	a	lot	when	debugging	as	well	as	reading	code,	is	that	I	end	up	with	lots	of	clipboard	items,	but	not	clipboard	in	the	sense	of	you’re	sharing	text	between	applications,	but	clipboard	in	the	sense	of	these	are	little	hints	on	which	paths	I	went	down	and	which	paths	I	didn’t.	
“So	you	want	to	make	sure	you’re	not	repeating	paths,	and	that	you’re	pursuing	all	the	paths	that	you	might	want	to	reasonably	pursue?”	
And	more	what	I	was	thinking	at	the	time	when	I	omitted	a	path	or	considered	a	path.	So	sometimes	when	I	am	actually	editing	the	code,	I	will	go	through	an	output	not	likely	to	be	the	path	because	of	this,	and	then	a	lot	of	those	comments	I	would	then	clip	out	before	the	code	gets	submitted	because	they	are	mostly	just	code	reviewer	comments.	And	typically,	that’s	something	that	we	see	in	collaborative	word	docs.	
32	It’s	pretty	typical	that	you’ll	collaborate	on	a	word	doc,	and	people	will	put	comments	in	line	with	stuff,	but	it’s	a	little	less	typical	for	source	code,	source	code	comments	tend	to	be	missing	in	total	or	the	comment	by	the	actual	developer	or	the	maintainer.	There’s	not	really	a	place	for	comments	for	readers.	This	may	have	been	perfectly	clear	for	the	developer	who	wrote	it,	the	source	code	maintainer	might	understand	it,	but	the	thousands	of	other	people	who	are	going	to	read	it	for	debugging,	for	customers,	for	the	developers	themselves,	there’s	really	no	place	for	them	to	put	comments,	and	maybe	there	should	be.	
“What	stops	people	like	from	just	checking	the	comment	into	the	source	depot?	There’s	just	too	much	overhead	and	you	don’t’	have	the	authority	to	do	that,	or	you	don’t	own	that	code?”	
33	I	think	it’s	not	necessarily	authority,	it’s	respect	for	one.	Because	this	is	somebody	else’s	code,	so	unless	you	are	going	to	make	a	net	positive	change,	I	wouldn’t	effect	a	piece	of	code.	And	I	wouldn’t	consider	comments	to	be	a	net	positive	change,	although	maybe	I	should.	Usually	it’s	not	permissions,	its	usually	this	change	doesn’t	need	to	be	persisted.	Or	in	my	opinion,	it	doesn’t	need	to	be	persisted.		
You	could	end	up	with	a	very	interesting	source	tree	if	you	just	opened	it	up	to	ad	hoc	comments	by	any	reviewer.		
34	First	you’d	have	to	assume	that	people	do	it.	But	then	you	get	into	a	tool	such	as	a	compiler	that	will	decide	if	you	are	correct	or	not.	So	if	you	put	a	comment	in	there	that	says	that	this	is	going	to	do	this	in	this	case	and	you’re	wrong,	there’s	no	checking	for	that.		
“You	need	some	sort	of	authority	about	who	this	person	is	who	is	making	the	comment”	
Maybe	that	would	help.	Or	maybe,	just	like	you	do	for	changes,	that	change	is	effectively	a	suggestion	that	you	send	for	review	to	the	code	owner.	Maybe	we	do	that	with	comments	to.	But	then	that	puts	an	additional	constraint	on	the	developers	which	is	already	an	overused	resource,	or	a	busy	resource	if	we’re	expecting	developers	to	do	this.	So,	
35	none	of	these	are	clearly	what’s	not	going	on	here.	A	lot	of	these	are	clearly	unrelated,	but	very	generic.	So	this	error	here	is	being	used	by	a	lot	of	very	generic	functions.	Which,	I	guess	is	pretty	typical	for	c++	code.	I	guess	any	object	based	code,	because	you	see	it	in	C#	and	see	it	in	jave	as	well,	so	you	have	lots	of	classes	and	members	that	overriding	???,	so	you	end	up	with	lots	of	wrappers,	around	wrappers,	around	other	wrappers.	And	it’s	a	puzzle	in	itself	to	Eigure	out	which	one	is	actually	of	interest.	
36	So	we’ll	go	back	to	the	debugger	to	see	if	I	can	actually	walk	through	some	of	this	code.	
So	it	looks	like	I’m	not	actually	going	to	get	source	in	here,	which	is	unfortunate.	So	we’ll	just	have	to,	we’ll	have	to	kind	of	guess	what	is	going	on	here.	
[looking	through	assembly	to	see	function	calls	amidst	lots	of	other	assembly]	
So	some	of	these	functions	I	don’t	remember	seeing	in	the	parse	function	where	we	started,	so	I’m	going	to	go	look	for	those.		
37	So	there’s	get	range.		
So	the	other	thing	that	I	know	about	this	is	that	I’m	relatively	certain	that	the	output	will	come	from	one	of	two	functions.	So	we’ll	set	a	breakpoint	on	those,	and	we’ll	see	who	the	caller	of	those	is,	but	clearly	I’m	wrong,	because	we	didn’t	call	either	of	those	functions,	so	we’re	going	through	some	other	output	routine.		
38	So	again,	back	to	the	original	function,	let’s	walk	through	this	a	little	more	carefully.	
[back	to	source	insight]	
So	that’s	going	to	be	true,	that	is	false,	that	is	false,	so	is	that,	as	well	as	that.	[picking	guards	and	paths	to	follow]	
That’s	where	that	annoying	error	comes	from.	
39	That	one	is	false	and	so	is	this	one.	So	we’re	just	going	to	go	in	here,	so	the	Eirst	one	that	we’ll	do	is	call	get	range,	and	set	???	to	false,	so	now.		
So	maybe	we’re	not	making	it	as	far	as	the	unassembled	itself,	maybe	we’re	stuck	in	this	get	range	function.	So	here’s	another	case	where	the	editor	is	providing	me	what	it	think	could	be	the	implementation	that	I’m	calling,	but	I’m	second	guessing	that	based	on	experience.	So	we’ll	look	for	other	ones.	
[browsing	list	of	source	insight	symbols	for	that	method]	
But	that’s	probably	the	correct	one,	so	let’s	go	into	get	range	and	walk.	
40	Ok,	so	this	one	goes,	skips	that	next	character,	and	that’s	not	going	to	do	anything	in	there	[reasoning	about	call	–	won’t	have	this	effect	in	it	–	based	on	identifer	and	domain	knowledge]	and	then	were	going	to	call	get	???	address	most	likely.	
No,	we’re	going	to	call	evaluate	address	and	here	the	source	code	editor	doesn’t	give	me	a	preview	of	which	one	it	is.	So	we’ll	see	if	we	even	have	this	at	all,	so	now	we	have	to	guess	which	of	these	implementations	we	are	actually	going	to	call.		
41	The	c++	one	or	the	masm	one,	or	these	are	all	prototypes.	But	it	may	be	that	we	only	want	this	one.	
So	we’ll	go	into	that	one	and	see	if	we	see.		
Another	fucniton	calling	a	function	where	we	don’t	see	this	at	all.	Now	the	source	code	editor	is	telling	me	that	this	is	a	macro,	but	it	doesn’t	seem	to	be	able	to	Eind	the	macro	deEinition.		
42	So,	we’ll	just	ignore	that	for	the	time	being.	Here’s	another	one	that	looks	like	a	macro,	but	it	doesn’t	seem	to	like	that,	so	we’ll	go	over	here	and	search	for	it	in	a	different	way,	because	that	Einally	Einished.		
So	now	I’m	in	a	razzle	window	trying	to	search	for	the	same	thing,	since	my	source	code	editor	is	failing,	I	‘ll	go	look,	I’ll	go	lower.	
[Eixed	a	typo	in	search]	
43	Well	that’s	iterating,	it’s	not	Einding	anything.		
I	always	Eind	macros	very	difEicult	to	deal	with	and	I’m	unsure	if	that	is	just	general	unfamiliarity	or	the	lack	of	good	tools	or	something	else	I	don’t		know.	But	it	always	seem	that	when	looking	at	code	in	a	source	code	editor,	it	would	be	helpful	to	have	an	instance	macro	expander	inline,	so	it	would	just	show	you	what		
44	is	actually	going	to	happen.	Because	macros	are	there	for	the	code	writer,	and	makes	it	difEicult	for	everything	else.		
So	while	this	is	searching	and	we’re	spending	a	whole	lot	of	time	walking	through	this	code	with	minimal	results.	
45	So	we’ll	go	back	here	to	the	debugger.	And	what	are	we	looking	for,	we’re	looking	for	that	function,	whatever	that	function	was.	Yeah,	probably	get	address	expression.		
So,	we’ll	set	a	breakpoint	there,	and	sure	enough	we	call	that	guy.		
So	in	some	ways	this	is	cheating	because	I	can	basically	repro	what	I’m	doing.		[can	repro	and	step	through	code	rather	than	just	getting	static	snapshot]	
46	But	debugging	postmortem	failures,	I	don’t	get	a	chance	to	do	that,	so	that’s	why	I	have	this	dichotomy	of	what	the	tools	should	do,	because	on	the	one	hand	I’m	reading	the	code	and	maybe	editing	it,	and	on	the	other	hand	I	spend	as	much	time	if	not	more	reading	code	and	trying	to	understand	what	it’s	doing	without	necessarily	having	to	interact	with	it	at	all.		
Everyting	very	slow	today.	
[still	waiting	on	Eile	system	search	and	debugger]	
So	I’ll	switch	over	here	and	do	a	totally	unrelated	task	while	I’m	waiting.	
47	Ok,	so	the	debugger	came	back	so	I	can	walk	thorugh	here.	
Well,	it’s	got	to	be	this	call	here.	Yep.	So	here’s	what	I	was	loking	for	in	the	source	code	before,	and	I	didn’t	have	any	way	to	tell	other	than	walking	through	???,	but	here,	walking	through	the	debugger,		
48	I	can	clearly	see	that	the	implementation,	this	particular	eval	holder	local	variable,	what	type	it	is.	So	I	can	go,	basically	grab	this	and	go	back	to	the	code	and	Eind	the	masm	eval	expression	and	look	for	eval	address	in	there.	
But,	again,	my	handy	dandy	code	editor	is	not	very	helpful	today.		
Wait,	do	I	know?		
Ok.		
The	symbols	say	this	should	be	in	ee	masm,	and	there’s	ee	masm,	but	its	not	there.	So	that’s	odd,	maybe	there’s	something	wrong	with	the	project,	so.	
50	[trying	to	add	Eile	to	rpoject,	but	not	in	Eilesystem]	
So,	no	ee	masm.	So,	clearly	that	Eile	is	not	here.	
Well,	that’s	because	it’s	not	there.	My	client	view	is	messed	up.	
51	[edits	sd	client	conEig	Eile]	
Oh,	because	when	I	changed	that	before	I	broke	it.	So	in	doing	something	else	totally	different	today	I	basically	deleted	a	bunch	of	source	Eiles	from	my	machine.		
So,	we’ll	have	to	Eix	that.		
[adding	several	extra	directory	lines	to	his	sd	client	conEig	Eile	to	restore	it	to	normal	state]	
52	And	magically	all	the	Eiles	will	reappear,	which	probably	explains	why	my	source	debugging	wasn’t	working.	
[does	sd	sync	to	get	all	the	Eiles	he	didn’t	have	before]	[wasn’t	getting	symbols	in	debugger]	
53	Or	maybe	not,	but	alas,	maybe	I	have	the	Eile	I’m	looking	for	now,	and	low	and	behold	there	it	is.	[source	insight	scans	Eile	system	and	updates	index,	and	now	can	navigate	to	that	Eile]	
So	what	are	we	looking	for,	eval	address.		
54	So	if	I	would	have	to	edit	this	Eile,	I	would	probably	Eix	some	of	the	spacing	issues,	these	tabs	not	replaced	with	spaces	etc.	
But	I’m	also	missing	some	source	Eile,	let’s	see	if	searching	for	either	of	those	things	I	couldn’t	Eind	before	actually	yields	anything	now.	[repeats	source	insight	search,	still	nothing]	[illustrates	returning	to	an	old	path	when	information	about	paths	changes]	
So	where	are	we,	we’re	in	eval	address.		
55	[skimming	thorugh	a	block	of	several	methods	in	source	insight]	
So	this	function	calls	this	function.		
Push	context,	pop	context,	compute	???	address,	and	what	does	it	do?	
56	[goes	to	callee]	
So	let’s	just	test	this.	So	we	actually	make	it	back	to	get	address	expression.	And	we’re	in	get	address	expression.		
Ok,	so	it	seems	like	we	are	going	to	return	from	this	guy	without	doing	anything.	So	now	we’re	back	to	get	range.	
57	And	that’s	where	we	call	peek	char,	we	don’t.	And	a	case	where	the	parameters,	there’s	no	comments	here,	but	the	parameters	are	named	well,	so	I	can	make	some	assumptions	based	on	them.	So	if	not	has	???	address	expression,	address	ok,	so	we	go	down	there.		
[going	back	and	forth	between	debugger	and	source	insight	–	inspecting	code	in	source	insight,	loking	at	values	in	debugger]	
but	we	do	call	get	address	expression	again.	So	let’s		
58	we’ll	go,	but	we	didn’t	actually	call,	so	we’re	back	to	that	reset.		
So	we	only	call	get	address	expression	once,	and	that	call	is	from	get	range,	so	let’s	see.	So	there’s	1,	2.	So	we’re	not	going	to	do	any	of	this	if.		
[still	reasoning	about	what	paths	to	follow	in	source	insight]	
59	We’re	just	going	to	return?	
So	parse	and	assemble.	
So	we	do	return	from	get	length,	oh	has	length,	so	we	are	going	to	go	into	that	unassembled	instruction.	We’ll	check	that,	and	there	we	go,	we	go	into	the	unassembled	instruction.	
1:00	[checking	in	dubgger	which	method	gets	stepped	into,	then	back	to	source	insight	to	read	it]	
So	here’s	where	we	create	that,	???		
1:01	Address,	ok,	calls,	ok.		
So	we’ll	assume	that	it’s	related	to	this	call,	yep.	So	we	call	machine	code	assemble	??	ok	
1:02	So	I	was	right	in	terms	of	reading	the	code.	It’s	nice	to	have	this	to	conEirm.	So	it	seems	that	we	actually	make	it	to	this	decode	call.		
“You’re	basically	using	the	debugger	to	step”	
More	like	jump	around.	I’m	not	really	stepping	through	the	code	because	a	lot	of	these	functions	are	pretty	long.	So	I’m	basically	just	picking	a	point,	reading	code,	picking	a	point,	and	running	to	that	point	to	make	sure	we	actually	got	there,	so	just	testing	a	theory.	So	like	this	one,	
1:03	I	am	looking	for	where	we	call	decode	because	I	think	we’ll	make	it	at	least	that	far.	So	since	the	source	came	back	[can	Einally	link	to	source	in	debugger]	
I	can	actually	just	run	to	this	point.		
Since	the	source	code	of	the	debugger	wasn’t	working,	I	was	actually	switching	back	and	forth	between	source	code	debuggin	and	assembly	debugging.	There	are	different	things	that	are	easier	to	do.	Ok,	so	that’s	where	we	call	decode.	[wanted	to	know	caller	of	decode]	
1:04	So	now	I’m	just	going	to	step	a	little	bit	here.		
Ah,	I	bet	that’s	it.		
So	where	are	we	–	we’re	in	machine	dot	cpp.	
[saw	a	call	–	read	address	memory	=	that	he	thinks	triggers	error	string]	
And	we’re	in	decode.	[method	of	machine	dot	cpp]	
1:05	And	I	went	aha	because	I	saw	the	function	read	address	memory.	And	I’m	positing	that	that	is	where	our	error	is	coming	from,	and	this	is	what’s	calling	read	virtual.	
So	I	bet	read	virtual	is	failing,	so	we’ll	continue	to	step	through	here.	And	that’s	actually	what	I	want	to	change.	I	want	to	change	the	behavior	when	read	virtual	
[Einally	located	program	point	where	he	wants	to	make	a	change!	–	be	interesting	to	compare	to	how	long	it	takes	developers	in	other	cases]	
fails	so.	So	I	think	I	found	where	the	code	change	would	need	to	go,	but	I	need	to	conEirm	that	that’s	the	place	where	the	code	change	needs	to	go,	and	then	I	need	to	read	through	the	code	to	see	what	might	be	the	safest	way	to	make	this	change.		
1:06	So	we’ll	put	the	cursor	here	and	we’ll	run	to	this	point,	and	we’ll	step	into	read	instruction	memory.	And	I	think	all	of	this	is	largely,	wait,	that’s	not	right.	Here’s	where	we	call	read	virtual,	so	we’ll	walk	through	this	just	to	make	sure	we	don’t’,	but	I	think	we’re	just	going	to	hit,	yeah,	we	hit	that	branch,	and	then	we	go	into	that	branch,	yep.	
[veriEied	that	that	is	the	call	that	fails	by	just	seeing	how	the	return	from	failure	is	causing	it	to	step	into	other	branches	of	the	method	on	the	failure	path]	
Read	physical	is	going	to	be	false,	so	we’re	to	call	read	virtual,	yep	that’s	our	offset,	our	offset	is	our	origainl	parameter,	there’s	our	out	parameter,	let’s	see.	So	where	are	we,	we’re	in	dump	.cpp	
1:07	And	we’re	at	line	8958.		
[stepping,	inspecting	some	immediates]	
Oh,	that’s	not	right.	Cpp.	
So	we’ll	just	walk,	and	there	is	our	read	virtual	failure.	So	when	read	virtual	fails	with	something	other	than	s	ok,	we	go	to	done.		[stepping]	
Yep,	and	then		
1:08	Is	that	instruction	memory.		
Yeah,	so	that’s	null.		
What	is	this	on,	memory	bites.		
Yeah,	so	we	read	nothing	and	there’s	nothing	in	our	buffer.	
So	clear	that.	
1:09	What’s	our	status	at	this	point,	our	status	is	the	hresult,	ok.	[checking	in	immediate]	
Ok,	so,	ok	so	there’s	where	we	return	the	status.	And,	yep	we	failed,	so	we	return	that	back,	decode	returns	to	disassemble,		
So	that’s	interesting,	we	don’t	actually	check	the	status	here,	so	what	function	are	we	in	here,	machine	dot	cpp,	and	we’re	in	disassemble	[function	name]	

LaToza Mason CS 695 / SWE 699, Fall 2023

Why was this question so hard to answer?

20

Hard	to	pick	the	control	flow	path	that	leads	from	star@ng	point	to	target	
						Guess	and	check:	which	path	leads	to	the	target?

m

error

LaToza Mason CS 695 / SWE 699, Fall 2023

Reachability question: example

21

feasible	
paths

statements	matching	
search	criteria∩

Where	is	method	m	genera$ng	an	error?

m

e

A	search	along	feasible	
paths	downstream	or	
upstream	from	a	
statement	(m)	for	target	
statements	matching	
search	criteria	(calls	to		
method	e)

LaToza Mason CS 695 / SWE 699, Fall 2023

Longest activities related to reachability questions

22

4	out	of	the	5	longest	invesgaon	acvies

5	out	of	the	5	longest	debugging	acvies

Primary question Time
(mins) Related reachability question

How is this data structure being mutated in this
code? 83 Search downstream for writes to data

structure
“Where [is] the code assuming that the tables
are already there?” 53 Compare behaviors when tables are or are

not loaded
How [does] application state change when m
is called denoting startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be
non-zero?” 11

Find statements through which values flow
into status

Where is method m generating an error? 66 Search downstream from m for error text
What resources are being acquired to cause
this deadlock? 51 Search downstream for acquire method

calls
“When they have this attribute, they must use it
somewhere to generate the content, so where
is it?”

35 Search downstream for reads of attribute

“What [is] the test doing which is different from
what my app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread
pools

LaToza Mason CS 695 / SWE 699, Fall 2023

Overall findings
‣ Found	that	developers	can	construct	incorrect	mental	models	of	
control	flow,	leading	them	to	insert	defects	

‣ Found	that	the	longest	inves@ga@on	&	debugging	ac@vi@es	
involved	a	single	primary	ques@on	about	control	flow	

‣ Found	evidence	for	an	underlying	cause	of	these	difficul@es	
							Challenges	answering	reachability	ques$ons	

23

LaToza Mason CS 695 / SWE 699, Fall 2023 24

LaToza Mason CS 695 / SWE 699, Fall 2023

Paper prototype study
• Built mockups of interface for task from lab study
• Asked 1 participant to complete lab study task with

Eclipse & mockup of Reacher
• Paper overlay of Reacher commands on monitor
• Experimenter opened appropriate view

• Asked to think aloud, screen capture + audio
recording

25

LaToza Mason CS 695 / SWE 699, Fall 2023

Study results
• Used Reacher to explore code, unable to complete

task
• Barriers discovered

• Wanted to see methods before or after, not on
path to origin or destination

• Switching between downstream and upstream
confusing, particularly search cursor

• Found horizontal orientation confusing, as unlike
debugger call stacks

• Wanted to know when a path might execute

26

LaToza Mason CS 695 / SWE 699, Fall 2023

Examples of observed reachability questions Reacher supports Steps to use Reacher

What resources are being acquired to cause this deadlock? Search downstream for each method which might acquire a
resource, pinning results to keep them visible

When they have this attribute, they must use it somewhere to
generate the content, so where is it?

Search downstream for a field read of the attribute

How are these thread pools interacting? Search downstream for the thread pool class
How is data structure struct being mutated in this code (between o
and d)?

Search downstream for struct class, scoping search to
matching type names and searching for field writes.

How [does] application state change when m is called denoting
startup completion?

Search downstream from m for all field writes

Step 2: Find statements matching search criteria

27

LaToza Mason CS 695 / SWE 699, Fall 2023

Step 3: Help developers understand paths and stay oriented

28

Goal:	help	developers	reason	about	control	flow	by	summarizing	
statements	along	paths	in	compact	visualiza@on

Challenges:		
control	flow	paths	can	be														

													complex	

													long	

													repe@@ve	

developers	get	lost	and	disoriented	
naviga@ng	code

Approach:	

									
		visually	encode	proper@es	of	path

hide	paths	by	default

coalesce	similar	paths

use	visualiza@on	to	support	
naviga@on

LaToza Mason CS 695 / SWE 699, Fall 2023

Example

29

LaToza Mason CS 695 / SWE 699, Fall 2023

Evaluation

30

	

Method		
						12	developers																									15	minutes	to	answer	reachability	ques@on		x	6	
							
						Eclipse	only	on	3	tasks										Eclipse	w/	REACHER	on	3	tasks	

Tasks	

					Based	on	developer	ques@ons	in	lab	study.	

					Example:	

					When	a	new	view	is	created	in	jEdit.newView(View),	what	messages,	in			
					what	order,	may	be	sent	on	the	EditBus	(EditBus.send())?	

Does	REACHER	enable	developers	to	answer	reachability	
ques@ons	faster	or	more	successfully?

(order	counterbalanced)

LaToza Mason CS 695 / SWE 699, Fall 2023

Developers	with	REACHER	
were	5.6	@mes	more	
successful	than	those	
working	with	Eclipse	only.	

Results

31

Task	@me	includes	only	par@cipants	that	succeeded.	

(not	enough	successful	to	
compare	@me)	

LaToza Mason CS 695 / SWE 699, Fall 2023

REACHER helped developers stay oriented

32

When	not	using	REACHER,	par@cipants	ocen	reported	being	lost	and	confused.

Par@cipants	with	REACHER	used	it	to	jump	between	
methods.

“Where	am	I?	I’m	so	lost.”	
“These	call	stacks	are	horrible.”	
“There	was	a	 call	 to	 it	here	 somewhere,	
but	I	don’t	remember	the	path.”	
“I’m	just	too	lost.”

“It	seems	pretty	cool	 if	you	can	navigate	
your	way	around	a	complex	graph.”

“I	like	it	a	lot.	It	seems	like	an	easy	way	to	navigate	the	code.	And	the	view	
maps	to	more	of	how	I	think	of	the	call	hierarchy.”	
“Reacher	was	my	hero.	…	It’s	a	lot	more	fun	to	use	and	look	at.”	
“You	don’t	have	to	think	as	much.”

Par@cipants	reported	that	they	liked	working	with	REACHER.

LaToza Mason CS 695 / SWE 699, Fall 2023

Shorter Example: Active Code Completion

33

Cyrus Omar, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. 2012. Active code completion. International
Conference on Software Engineering, 859-869.

Studies of software
development

LaToza Mason CS 695 / SWE 699, Fall 2023

Why do studies?

• What tasks are most important (time consuming,
error prone, frequent, ...)?
 (exploratory studies) (potential usefulness of tool)

• Are these claimed productivity benefits real?
 (evaluation studies)

• Know the user!
 (You may or may not be a typical developer)

35

LaToza Mason CS 695 / SWE 699, Fall 2023

Build a tool, clearly it’s [not] useful!

• 80s SigChi bulletin: ~90% of evaluative studies
found no benefits of tool

• A study of 3 code exploration tools found no
benefits
 [de Alwis+ ICPC07]

• How do you convince real developers to adopt
tool?
 Studies can provide evidence!

36

LaToza Mason CS 695 / SWE 699, Fall 2023

Why not just ask developers?
• Estimates are biased (time, difficulty)
• More likely to remember very hardest problems

 They are hard, but not necessarily typical

• Example of data from study [Ko, Aung, Myers
ICSE05]

•

37

22% of time
developers
copied too

much or too
little code

LaToza Mason CS 695 / SWE 699, Fall 2023

Goal: Theories of developer activity

• A model describing the strategy by which
developers frequently do an activity that
describes problems that can be addressed
(“design implications”) through a better designed
tool, language, or process that more effectively
supports this strategy.

38

LaToza Mason CS 695 / SWE 699, Fall 2023

Exercise - How do developers debug?

39

LaToza Mason CS 695 / SWE 699, Fall 2023

Some debugging strategies
• by having the computer fix the bug for them.
• by inspecting values, stepping, and setting breakpoints in debugger
• by adding and inspecting logging statements
• by hypothesizing about what they did wrong and testing these hypotheses.
• by asking why and why didn’t questions.
• by following {static, dynamic, thin} slices.
• by searching along control flow for statements matching search criteria
• by using information scent to forage for relevant statements.
• by asking their teammates about the right way to do something.
• by checking documentation or forums to see if they correctly made API calls.
• by checking which unit tests failed and which passed.
• by writing type annotations and type checking (“well typed programs never go

wrong”)

40

LaToza Mason CS 695 / SWE 699, Fall 2023

Exercise - what would you like to know
about these theories?

41

LaToza Mason CS 695 / SWE 699, Fall 2023

Studies provide evidence for or against
theories

• Do developers actually do it?
 Or would developers do it given better tools?

• How frequently? In what situations?
• What factors influence use? How do these vary for

different developers, companies, domains, expertise
levels, tools, or languages?

• How long does it take?
• Are developers successful? What problems occur?
• What are the implications for design? How hard is it to

build a tool that solves the problems developers
experience? How frequently would it help?

42

LaToza Mason CS 695 / SWE 699, Fall 2023

A single study will not answer all these
questions

• But thinking about these questions helps to
 -set scope
 -describe limitations of study
 -pick population to recruit participants from
 -plan followup complementary studies

43

LaToza Mason CS 695 / SWE 699, Fall 2023

Analytical vs. empirical generalizability

Empirical: The angle of the incline significantly affects the
speed an object rolls down the incline!
-depends on similarity between situations
-need to sample lots of similar situations
-comes from purely quantitative measurements

Analytical: F = m * a
-depends on theory’s ability to predict in other situations
-describes a mechanism by which something happens
-building such models requires not just testing an effect,
but understanding situations where effect occurs (often
qualitative data)

44

LaToza Mason CS 695 / SWE 699, Fall 2023

Empirical vs. analytical generalizability in
HASD

• Empirical: developers using statically typed
languages are significantly more productive than
those using dynamically typed languages.

• Analytical: static type checking changes how
developers work by [...]

• Is the question, “Does Java, SML, or Perl lead to
better developer productivity even answerable?”

45

LaToza Mason CS 695 / SWE 699, Fall 2023

Types of studies

46

Exploratory studies Models

Generate tool
designs

Implement tool

scenarios
mockups

questions
information needs

use of time
....

survey
indirect observation
contextual inquiry

...

(Expensive)
evaluation studies

lab study
field deployment (Cheap)

evaluation studies
heuristic evaluation
paper prototypes

participatory design
...

LaToza Mason CS 695 / SWE 699, Fall 2023

(Some) types of exploratory studies

• Field observations / ethnography
 Observe developers at work in the field

• Natural programming
 Ask developers to naturally complete a task

• Contextual inquiry
 Ask questions while developers do work

• Surveys
 Ask many developers specific questions

• Interviews
 Ask a few developers open-ended questions

• Indirect observations (artifact studies)
 Study artifacts (e.g., code, code history, bugs, emails, ...)

47

LaToza Mason CS 695 / SWE 699, Fall 2023

Field observations / ethnography

• Find software developers
 Pick developers likely to be doing relevant work

• Watch developers do their work in their office
• Ask developers to think-aloud 

 Stream of consciousness: whatever they are thinking about
 Thoughts, ideas, questions, hypotheses, etc.

• Take notes, audio record, or video record
 More is more invasive, but permits detailed analysis
 Audio: can analyze tasks, questions, goals, timing
 Video: can analyze navigation, tool use, strategies
 Notes: high level view of task, interesting observations

48

LaToza Mason CS 695 / SWE 699, Fall 2023

Ko, DeLine, & Venolia ICSE07
• Observed 17 developers at Microsoft in 90 min

sessions
 Too intrusive to audio or video record
 Transcribed think-aloud during sessions

• Looked for questions developers asked
•

49

T: ëB'"()#J)"I*!"#$%&'()$"*+,,-.*

7H,*)"#$%&'()$"*",,-.*3,*H'5,*-).1B..,-*'%,*.B&&'E

%)\,-*)"*_)IB%,*V:*7H,**0#+-1)+%*-1+$,/?0%2K*1+$,/?*H,+&
U"+%/0+1=*1+$,/?*("*/(#+1K*'"-*1(",/+-H,+U"+%/0+1*'%,*
='.,-*$"*$B%*$=.,%5'()$"'0*-'(':*7H,*$B(1$&,.*)"10B-,*

3H,"*-,5,0$6,%.*$/U"0,+G*)"#$%&'()$"K*G+H+,,+G*'*.,'%1H*
3)(H*(H,*)"(,"(*$#*%,.B&)"I*)(K*$%*2$6+-")*3)(H*"$*)"(,"(*
$#*%,.B&)"I*)(y*'*#,3*.,'%1H,.*1$"()"B,-*=,J$"-*$B%*$=E

.,%5'()$".:*80.$K*)"* (3$*1'.,.K* '* ",,-*3'.*)")()'00J*-,E

#,%%,-K* (H,"* .'().#),-* '#(,%3'%-* =J* '* 1$3$%N,%L.* ,&')0*

%,.6$".,y*3,*1$-,-*(H,.,*'.*$/U"0,+G:*
7H,*&$.(*#%,SB,"(0J*.$BIH(*'"-*'1SB)%,-*)"#$%&'()$"*

)"10B-,.* 3H,(H,%* '"J* &).('N,.* X.J"('D* $%* $(H,%3).,[*

3,%,*&'-,*)"* 1$-,* '"-*3H'(* '* -,5,0$6,%.L* 1$3$%N,%.*

H'5,*=,,"*-$)"I:*7H,*&$.(*$#(,"*-,#,%%,-*)"#$%&'()$"*

3'.*(H,*1'B.,*$#*'*6'%()1B0'%*6%$I%'&*.('(,*'"-*(H,*.)(B'E

()$".*)"*3H)1H*'*#')0B%,*$11B%.:*4,5,0$6,%.*%'%,0J*I'5,*B6*

.,'%1H)"I:*7H,%,*3'.*"$*%,0'()$".H)6*=,(3,,"*-,#,%%)"I*'*

.,'%1H*'"-*3H,(H,%*(H,*.$B%1,*)"5$05,-*6,$60,*X=BI*%,E

6$%(.K*#'1,E($E#'1,K*YZK*,&')0[*X]mXc[í:}K*6*ì*:vu[:*
a'.,-* $"* &,-)'".K* (H,*)"#$%&'()$"* (H'(* ($$N* (H,*

0$"I,.(* ($* '1SB)%,*3'.* 3H,(H,%* 1$"5,"()$".*3,%,* #$0E

0$3,-*X1m[y*='.,-*$"*&'D)&B&.K*(H,*0$"I,.(*($*'1SB)%,*

3'.*N"$30,-I,*'=$B(*-,.)I"*XGmK*Gl[*'"-*=,H'5)$%*X"cK*
"l[:*+$*$",*.$B%1,*$#*)"#$%&'()$"*($$N*0$"I,%*($*'1SB)%,*

(H'"*'"$(H,%*X:XcdK*lmc[í:ulK*6ì:vu[K*"$%*3'.*(H,%,*'*-)#E
#,%,"1,*)"*.,'%1H*()&,.*=,(3,,"*.$B%1,.*)"5$05)"I*6,$60,*

'"-* .$B%1,.* (H'(* -)-* "$(* X:XcK* llw[í:vdK* 6ì:vu[:* 7H,.,*
()&,.* '%,*&).0,'-)"IK* H$3,5,%K* '.*&'"J* $#* (H,*&'D)E

&B&.* 3,%,* $"* -,#,%%,-* .,'%1H,.K* .$* (H,J* 3,%,* 0)N,0J*

0$"I,%*(H'"*.H$3"*H,%,:*_B%(H,%K*-,5,0$6,%.*I'5,*B6*$%*

-,#,%%,-* .,'%1H,.* =,1'B.,* (H,J* -,6,"-,-* $"* '* 6,%.$"*

N"$3"*($*=,*B"'5')0'=0,:*7H,J*3,%,*'0.$*,D6,%(*'(*'..,..E

)"I*(H,* 0)N,0)H$$-*$#*(H,*.,'%1H*.B11,,-)"I*'"-*3$B0-*

'='"-$"*'*.,'%1H*)#*(H,*)"#$%&'()$"*3'.*"$(*)&6$%('"(*

,"$BIH:*

T:A <'()"I* !"#$%&'()$"*+,,-.*

7H,*6,%1,"('I,.*)"*(H,*&)--0,*$#**1$&,*#%$&*'*.B%5,J*$#*

tm*-)##,%,"(*-,5,0$6,%.*X$#*uuv*1$"('1(,-[K*'.N)"I*(H,&*($*

%'(,*(H,)%*'I%,,&,"(*3)(H*.('(,&,"(.*'=$B(*,'1H*$#*(H,.,*

)"#$%&'()$"*(J6,.K*='.,-*$"*'*dE6$)"(*.1'0,*#%$&*.(%$"I0J*

-).'I%,,*($*.(%$"I0J*'I%,,:*7H,*='%.*%,6%,.,"(*(H,*6,%1,"(*

$#*-,5,0$6,%.*3H$*'I%,,-*$%*.(%$"I0J*'I%,,-*(H'(*(H,*)"E

#$%&'()$"*3'.*X#%$&*0,C*($*%)IH([*0#)(,*$%*-*(-#$D0%2-
),(2,+11K*"%$6$04$;4+-(,-G0HH0/"4*-*(-(;*$0%K*'"-*?$G-U"+1&
0(%$;4+-$//",$/7:

7H,*.B%5,J*%,.B0(.*%,5,'0*)"(,%,.()"I*(%,"-.:*7H,*&'E

G$%)(J*$#*-,5,0$6,%.*%'(,-*(H,*&$.(*#%,SB,"(0J*.$BIH(*)"E

#$%&'()$"*)"*$B%*$=.,%5'()$".*'.*&$%,*)&6$%('"(K*'"-*

(H,J*'0.$*%'(,-*#%,SB,"(0J*-,#,%%,-*)"#$%&'()$"*'.*&$%,*

B"'5')0'=0,:* U",* -).1%,6'"1J*).* (H'(* -,5,0$6,%.* %'(,-*

1$3$%N,%* '3'%,",..* X$m[* '.* %,0'()5,0J* B")&6$%('"(K*

3H)1H*1$"#0)1(.*3)(H*)(.*#%,SB,"1J*)"*$B%*$=.,%5'()$".:*!(*

&'J*=,*(H'(*1$3$%N,%*'3'%,",..*).*.$*#%,SB,"(*.$BIH(*

'"-*.B11,..#B00J*$=(')",-*(H'(*-,5,0$6,%.*-$*"$(*(H)"N*

'=$B(*)(:*^,*'0.$*$=.,%5,-*-,5,0$6,%.*.B11,..#B00J*$=(')"*

N"$30,-I,* '=$B(* (H,*)&60)1'()$".* $#* '* 1H'"I,* XGt[K*
3H,%,'.*-,5,0$6,%.*%'(,-*)(*%,0'()5,0J*-)##)1B0(*($*'1SB)%,:*

7H,*.B%5,J*'0.$*=,I)".*($*%,5,'0*3H)1H*)"#$%&'()$"*(J6,.*

H'5,* &$%,* SB,.()$"'=0,* '11B%'1JK* "'&,0J* N"$30,-I,*

'=$B(*-,.)I"*XGmK*Gt[K*=,H'5)$%*X"c[K*'"-*(%)'I,*X;cK*;m[:*

*

Figure 3. Types of information developers sought, with search times in minutes; perceptions of the information’s importance,
availability, and accuracy; frequencies and outcomes of searches; and sources, with the most common in boldface.

LaToza Mason CS 695 / SWE 699, Fall 2023

Natural programming
• Design a simple programming task for users
• Ask them to write solution naturally  

 make up language / APIs / notation of interest
• Analyze use of language in solutions

• Advantages:

 elicits the language developers expect to see
 open-ended - no need to pick particular designs
 lets developer design language

• Disadvantages:
 assumes the user’s notation is best
 lets developer design notation

50

LaToza Mason CS 695 / SWE 699, Fall 2023

Pane, Ratanamahatana, & Myers ‘01

51

Grade school students asked to describe in prose how PacMan
would work in each of several scenarios

LaToza Mason CS 695 / SWE 699, Fall 2023

Pane, Ratanamahatana, & Myers IJHCS01

• Grade school students asked to describe in prose
how PacMan would work in each of several
scenarios

52

LaToza Mason CS 695 / SWE 699, Fall 2023

Surveys

• Can reach many (100s, 1000s) developers
 Websites to run surveys (e.g., SurveyMonkey)

• Find participants (usually mailing lists)
• Prepare multiple choice & free response questions  

 Multiple choice: faster, standardized response
 Free response: more time, more detail, open-ended

• Background & demographics questions
 E.g., experience, time in team, state of project,

• Study questions
• Open comments

53

LaToza Mason CS 695 / SWE 699, Fall 2023

LaToza, Venolia, & DeLine ICSE06

• 104 respondents at Microsoft rated
 % of time on different activities
 Tool use frequency & effectiveness
 Severity of 13 “problems”

54

Tools for understanding code

LaToza Mason CS 695 / SWE 699, Fall 2023

Semi-structured interviews
• Develop a list of focus areas

 Sets of questions related to topics

• Prompt developer with question on focus areas
 Let developer talk at length
 Follow to lead discussion towards interesting
topics

• Manage time
 Move to next topic to ensure all topics covered

55

LaToza Mason CS 695 / SWE 699, Fall 2023

Contextual inquiry [Beyer & Holtzblatt]

• Interview while doing field observations
• Learn about environment, work, tasks, culture, breakdowns
• Principles of contextual inquiry

 Context - understand work in natural environment
 Ask to see current work being done
 Seek concrete data - ask to show work, not tell
 Bad: usually, generally Good: Here’s how I, Let me show you
 Partnership - close collaboration with user
 Not interviewer, interviewee! User is the expert.
 Not host / guest. Be nosy - ask questions.
 Interpretation - make sense of work activity
 Rephrase, ask for examples, question terms & concepts
 Focus - perspective that defines questions of interest

• Read Beyer & Holtzblatt book before attempting this study

56

LaToza Mason CS 695 / SWE 699, Fall 2023

Indirect observations

• Indirect record of developer activity
• Examples of artifacts (where to get it)

 Code (open source software (OSS) codebases)
 Code changes (CVS / subversion repositories)
 Bugs (bug tracking software)
 Emails (project mailing lists, help lists for APIs)

• Collect data from instrumented tool (e.g., code navigation)
• Advantages:

 Lots of data, easy to obtain
 Code, not developer activity

• Disadvantages:
 Can’t observe developer activity

57

LaToza Mason CS 695 / SWE 699, Fall 2023

Malayeri & Aldrich, ESOP09
• Gathering data for usefulness of language feature
• Structure of study

1. Make hypotheses about how code would benefit.
2. Use program analysis to measure frequency of idioms in
corpus of codebases.
3. Have evidence that code would be different with approach.
4. Argue that different code would make developers more
productive.

• Example of research questions / hypotheses
• 1. Does the body of a method only use subset of parameters?

 Structural types could make more general
 Are there common types used repeatedly?

• 2. How many methods throw unsupported operation exception?
 Structural supertypes would apply

58

LaToza Mason CS 695 / SWE 699, Fall 2023

Exercise: What study(s) would you use?

How would you use studies in these situations?

1. You’d like to design a tool to help web developers
more easily reuse code.
2. You’d like to help developers better prioritize which
bugs should be fixed.

59

LaToza Mason CS 695 / SWE 699, Fall 2023

(Some) types of exploratory studies

• Field observations / ethnography
 Observe developers at work in the field

• Surveys
 Ask many developers specific questions

• Interviews
 Ask a few developers open-ended questions

• Contextual inquiry
 Ask questions while developers do work

• Indirect observations (artifact studies)
 Study artifacts (e.g., code, code history, bugs,
emails, ...)

60

LaToza Mason CS 695 / SWE 699, Fall 2023

Activity: Identify Programming Challenges

• Form groups of 4
• Based on your past experience, brainstorm

programming challenges
• Try to be specific: what's the user's goal, and

what makes it hard?

61

LaToza Mason CS 695 / SWE 699, Fall 2023

Activity: Form Project Groups

62

Questions? Come talk to me!

