
Navigating Code
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today

• Part 1 Lecture(~60 mins)
• 10 min break

• Part 2: Tech Talks (30 mins)
• Two tech talks

• Part 3: In-Class Activity(40 mins)

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics

• HW 4 checkpoint due today
• HW 4 due 11/29

3

LaToza CS 695 / SWE 699 Fall 2023

Overview

• What is code navigation?
• What are concerns?
• Code navigation tools

4

LaToza GMU CS 695 / SWE 699 Fall 2023

Code navigation: examples

• A developer wants to find method that implements
x.

• A developer wants to find all of the methods
involved in feature x.

• A developer wants to understand what a method
does or when it is called.

• A developer wants to understand how to reuse a
function by finding examples of code snippets.

• A developer wants to switch back to a method they
were just editing.

5

LaToza GMU CS 695 / SWE 699 Fall 2023

Task context
• Could be

• Set of information
necessary to complete a
task

• Set of locations in code
that must be edited to
implement a change
(e.g., add feature, fix
bug)

• Which is it? Often used
interchangeably…

• Sometimes known as a
“working set”

6

LaToza GMU CS 695 / SWE 699 Fall 2023

How Effective Developers Investigate Source Code

• Unsuccessful subjects made all of their code modifications in one place even
if they should have been scattered to better align with the existing design.
• --> better support navigating across methods

• Program segments that were clearly relevant to the change task were not
acknowledged when displayed accidentally.
• --> suport intentional searches

• The successful subjects created a detailed and complete plan prior to the
change whereas the unsuccessful and average subjects did not.
• --> support building a change plan

• Successful subjects did not reinvestigate methods as frequently as
unsuccessful subjects.
• --> support understanding methods

• The successful subjects performed mostly structurally guided searches
(e.g., keyword and cross-reference searches), rather than searches based on
intuition (browsing) or aligned with the file decomposition of the system
(scrolling).
• --> support structural relationship traversal

7

Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. 2004. How Effective Developers Investigate Source Code: An Exploratory Study. IEEE Trans. Softw. Eng. 30, 12 (December 2004), 889-903. DOI=http://dx.doi.org/10.1109/TSE.2004.101

LaToza GMU CS 695 / SWE 699 Fall 2023

Structural Relationship Traversal

• Developer is currently viewing an element in code
• e.g,. class, method, statement, field reference

• Developers wishes to navigate to a related method
• By reference, call, data dependency, …

• How do developers make navigation decisions?

8

LaToza GMU CS 695 / SWE 699 Fall 2023

Information foraging
• Mathematical model describing navigation
• Analogy: animals foraging for food

• Can forage in different patches (locations)
• Goal is to maximize chances of finding prey while

minimizing time spent in hunt
• Information foraging: navigating through an

information space (patches) in order to maximize
chances of finding prey (information) in minimal
time

9

LaToza GMU CS 695 / SWE 699 Fall 2023

Information environment
• Information environment represented as topology

• Information patches connected by traversable
links

• For SE, usually modeled as call graphs
• methods are nodes and function invocations are

edges

10

LaToza GMU CS 695 / SWE 699 Fall 2023

Traversing links
• Links - connection between patch offered by the

information environment
• Cues - information features associated with

outgoing links from patch
• E.g., text label on a hyperlink

• User must choose which, of all possible links to
traverse, has best chance of reaching prey

11

LaToza GMU CS 695 / SWE 699 Fall 2023

Scent
• User interprets cues on links by likelihood they will

reach prey
• e.g., do I think that the “invoke” method is likely to

implement the functionality I’m looking for?

12

LaToza GMU CS 695 / SWE 699 Fall 2023

Simplified mathematical model
• Users make choices to maximize possibility of

reaching prey per cost of interaction
• Predators (idealized) choice = max [V / C]

• V - value of information gain, C - cost of
interaction

• Don’t usually know ground truth, have to estimate
• Predator’s desired choice = max [E[V] / E[C]]

13

LaToza GMU CS 695 / SWE 699 Fall 2023

What’s a concern?
Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one's subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study
it from that viewpoint only; we also know that it should be efficient and
we can study its efficiency on another day, so to speak. In another
mood we may ask ourselves whether, and if so: why, the program is
desirable. But nothing is gained —on the contrary!— by tackling
these various aspects simultaneously. It is what I sometimes
have called "the separation of concerns", which, even if not
perfectly possible, is yet the only available technique for effective
ordering of one's thoughts, that I know of. This is what I mean by
"focusing one's attention upon some aspect": it does not mean
ignoring the other aspects, it is just doing justice to the fact that
from this aspect's point of view, the other is irrelevant.

14

—Edsger W. Dijkstra. ”On the role of scientific thought”. 1974. EWD447.

LaToza GMU CS 695 / SWE 699 Fall 2023

Crosscutting concerns
• Ideal: one concern per module

• But, in practice modules exhibit
• Scattering — single concern implemented in

many modules
• Tangling —- single module containing many

concerns

15

LaToza GMU CS 695 / SWE 699 Fall 2023

Significant time spent navigating across
task context

16

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of corrective and perfective maintenance tasks. International
conference on Software engineering,126-135.

l Each instance of an interactive bottleneck cost
only a few seconds, but . . .

= 35% of uninterrupted work time!

Interactive Bottleneck Overall Cost
Navigating to fragment in same file (via scrolling) ~ 11 minutes
Navigating to fragment in different file
(via tabs and explorer) ~ 7 minutes
Recovering working set after returning to a task ~ 1 minute

Total Costs ~19 minutes

LaToza GMU CS 695 / SWE 699 Fall 2023

Switching tasks incurs startup cost
rebuilding task context

17

l Represented by explorer and file
tabs

l When changing tasks, working
sets were lost as tabs and nodes
changed

l “Including” code in the working set
by opening a file or expanding a
node made it more difficult to
navigate to other code in the
working set

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of corrective and perfective maintenance tasks. International
conference on Software engineering,126-135.

LaToza GMU CS 695 / SWE 699 Fall 2023

DeLine’s study of developers
• Confirmed Ko’s observation that:

• Navigating and “re-finding” areas of the code that
had already been visited was frequent, difficult and
distracting

• Textual searching and returning
• Tabs got problematic when many opened

• All subjects wanted better inline comments and
overview documentation.

• Wanted code annotations
• All subjects agreed that finding the entry point and

understanding the control flow was the most difficult
task

18

Robert DeLine, Amir Khella, Mary Czerwinski, and George Robertson. 2005. Towards understanding programs through wear-based filtering. Symposium on Software visualization (SoftVis ’05),
183-192.

LaToza GMU CS 695 / SWE 699 Fall 2023

Field study of developers at IBM

• 8 IBM developers doing their own tasks using
Eclipse for Java

• Interviews and 2-hour observations of actual use
• Experts do become disoriented

• Did use Eclipse’s advanced navigation tools, like
find-all-callers

• No trace of how got to the current file, or how to
get back

• Thrashing to view necessary context
• No support for switching tasks

19

Gail C. Murphy, Brian de Alwis, "Using Visual Momentum to Explain Disorientation in the Eclipse IDE", IEEE Symposium on Visual Languages
and Human-Centric Computing, p. 51-54, , 2006

LaToza GMU CS 695 / SWE 699 Fall 2023 20

task
started

task
complete

Find
Read

within file

Edit
Test

Form working set of
task-relevant code

Navigate dependencies in
working set

Modify code in
working set

4

Working with task context

Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting design requirements for maintenance-oriented IDEs: a detailed study of corrective and perfective maintenance tasks. International
conference on Software engineering,126-135.

LaToza GMU CS 695 / SWE 699 Fall 2023

Code navigation tools
• Structural relationship traversal

• Find starting point, traverse relationships to find
other related code locations

• Recommenders
• Based on {edits, navigation} past developers did on

similar tasks, predict relevant elements

• Working set navigation
• Make it easier to navigate back and forth between

task context elements
• Make it easier to resume tasks by redisplaying

working set
21

LaToza GMU CS 695 / SWE 699 Fall 2023

Structural relationship traversal

22

Call hierarchy view

LaToza GMU CS 695 / SWE 699 Fall 2023

JQuery

23

LaToza GMU CS 695 / SWE 699 Fall 2023

StackSplorer

24

Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan Borchers. 2011. Stacksplorer: call graph navigation helps increasing code maintenance efficiency. In Proceedings of the 24th
annual ACM symposium on User interface software and technology (UIST '11). ACM, New York, NY, USA, 217-224. DOI: https://doi.org/10.1145/2047196.2047225

https://dl.acm.org/doi/10.1145/2047196.2047225

https://dl.acm.org/doi/10.1145/2047196.2047225

LaToza GMU CS 695 / SWE 699 Fall 2023

Prodet

25

Vinay Augustine, Patrick Francis, Xiao Qu, David Shepherd, Will Snipes, Christoph Bräunlich, and Thomas Fritz. 2015. A field study on fostering structural navigation with prodet. In Proceedings of the 37th International Conference on Software Engineering - Volume
2 (ICSE '15), Vol. 2. IEEE Press, Piscataway, NJ, USA, 229-238.

LaToza GMU CS 695 / SWE 699 Fall 2023

Reacher

26

T. D. LaToza and B. A. Myers, "Visualizing call graphs," 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Pittsburgh, PA, 2011, pp. 117-124.
doi: 10.1109/VLHCC.2011.6070388

LaToza GMU CS 695 / SWE 699 Fall 2023

Recommenders

• Based on {edits, navigation} past developers did on
similar tasks, predict relevant elements

27

LaToza GMU CS 695 / SWE 699 Fall 2023

Rose

28

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, Andreas Zeller. Mining Version Histories to Guide Software Changes. IEEE Trans. Software Eng. 31(6): 429-445 (2005)

LaToza GMU CS 695 / SWE 699 Fall 2023

TeamTracks
• Shows source code

navigation patterns of
team

• Related Items – most
frequently visited either
just before or after the
selected item

• Favorite Classes – hide
less frequently used

• Deployed for real use – 5
developers for 3 weeks

• Successful, but usability
issues, seemed most
useful for newcomers

29

R. DeLine, M. Czerwinski and G. Robertson, "Easing program comprehension by sharing navigation data," Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05), 2005,
pp. 241-248.

LaToza GMU CS 695 / SWE 699 Fall 2023

Task context navigation

• Make it easier to navigate back and forth between
task context elements

• Make it easier to resume tasks by redisplaying task
context

30

LaToza GMU CS 695 / SWE 699 Fall 2023 31

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks. IEEE Trans. Softw. Eng. 32, 12 (December 2006), 971-987.

LaToza GMU CS 695 / SWE 699 Fall 2023

Concern Graphs
• Abstract (formal) model that describe which parts of

the source code are relevant to different concerns
• FEAT tool builds concern graphs “semi-automatically”
• Shows only code relevant to the selected concern
• User-specified or detected using intra-concern analysis
• User can make queries

32

Martin P. Robillard and Gail C. Murphy. 2007. Representing concerns in source code. ACM Trans. Softw. Eng. Methodol. 16, 1, Article 3 (February 2007).

LaToza GMU CS 695 / SWE 699 Fall 2023

Mylar

33

1 – task list
3 – package explorer filters to show what relevant to this task

Most relevant are bold
4 – active search shows what might be relevant
5 – switch to different task

Mik Kersten and Gail C. Murphy. 2006. Using task context to improve programmer productivity. International symposium on Foundations of software engineering, 1-11.

LaToza GMU CS 695 / SWE 699 Fall 2023 34

Code Bubbles

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr.. 2010. Code bubbles: a
working set-based interface for code understanding and maintenance. Conference on Human Factors in Computing Systems (CHI ’10), 2503-2512.

https://www.youtube.com/watch?v=PsPX0nElJ0k

LaToza GMU CS 695 / SWE 699 Fall 2023

Debugger Canvas

35

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles paradigm," International Conference on Software
Engineering, 1064-1073.

https://www.youtube.com/watch?v=3p9XUwIlhJg

LaToza GMU CS 695 / SWE 699 Fall 2023

Use in practice
• Debugger Canvas offered as extension to Visual

Studio
• Mylar —> Mylyn, part of default Eclipse
• Mylyn —> commercial

36

https://www.tasktop.com/tasktop-dev

https://marketplace.visualstudio.com/items?itemName=DebuggerCanvasTeam.DebuggerCanvas

https://www.tasktop.com/tasktop-dev
https://marketplace.visualstudio.com/items?itemName=DebuggerCanvasTeam.DebuggerCanvas

LaToza GMU CS 695 / SWE 699 Fall 2023

Results from Debugger Canvas
deployment

37

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles paradigm," International Conference on Software
Engineering, 1064-1073.

LaToza GMU CS 695 / SWE 699 Fall 2023

Perceptions of debugger canvas

38

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles paradigm," International Conference on Software
Engineering, 1064-1073.

LaToza GMU CS 695 / SWE 699 Fall 2023

Useful when

39

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles paradigm," International Conference on Software
Engineering, 1064-1073.

“I often have to debug several layers on our side from the UI, via
middle tier to the data layer. It often gets confusing to go into the
deeper layer. This is where the canvas helps, you hit a breakpoint
here and can see the stack trace as you step through the layers.
This helps us debug things much faster.”

“I was working on a large project for only a week. There was a
huge ramp up, of course, and Debugger Canvas was invaluable
for stepping into the code to see what was going on.”

“With a really large code base that you are not familiar with it is
really handy. It helps wrap your head around other people's code.
That kind of visualization really helps to follow code as it crosses
different classes and projects. Go-to-definition and using Reflector
is just too cumbersome to navigate through all that code.”

LaToza GMU CS 695 / SWE 699 Fall 2023

Not useful when

40

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen and S. P. Reiss, 2012. ”Debugger Canvas: Industrial experience with the code bubbles paradigm," International Conference on Software
Engineering, 1064-1073.

For a "normal" project it isn't worth the hassle with performance.

I don't always want to get into the canvas. When I’m debugging something
small: for example - Did the parameter get here? Then it doesn’t warrant
opening up the canvas.

Sometimes the fix that I need to do involves code that is not in the bubbles,
but is in the same files, so I'd like to be able to get to the rest of the file
easily.

I stop using it when I need to see definition of classes. I'm aware of the Go-
to-definition feature, but I use ReSharper and lots of tools to navigate, so I
find it easier to go back to the file in those cases.

I hit a breakpoint check the value of a private field.That’s when seeing the
rest of the file comes in handy.

10 min break

Tech Talks

LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity

• In groups of 2 or 3, write a reflecting on your experiences with code navigation
tools.

• Consider tools such as Go To Definition, Find in Files, Call Hierarchy, Debugger,
Tabs

• Write a strategy for each of the following common tasks reflecting how you
would typically approach the problem

• Find all of the methods involved in feature x.
• Understanding what a method does and when it is called.
• Manage a working set of files you are working on together for a commit

• Based on your strategy for each task, reflect on challenges you experience.
How might specific tools help address some of these challenges?

• Submission
• Submit (1) pdf or doc with reflection and (2) source code through Blackboard. 1

submission per group. Due 7:00pm today.

43

