
Detecting Defects
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today

• Part 1 Lecture(~45 mins)
• 10 min break

• Part 2: Tech Talks (30 mins)
• Two tech talks

• Part 3: In-Class Activity(1 hour)

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics

• HW 4 due 11/29

3

LaToza CS 695 / SWE 699 Fall 2023

Overview
• Where do defects come from?

• How can defects be prevented?

• How should potential defects be communicated to
developers?

4

LaToza CS 695 / SWE 699

Where do
defects come

from?

5

[Glass TSE81]

LaToza CS 695 / SWE 699

Where do defects come from?

6

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Where do defects come from?

7

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Where do defects come from?

8

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Where do defects come from?
• Ko & Myers proposed a model for understanding

the cognitive causes of defects
• Latent errors becomes active errors when they

breach defenses of system

9

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Skill / Rule / Knowledge
• James Reason proposed a taxonomy of cognitive

breakdowns based on differences in type of cognition being
used

• Skill-based activity: routine, proceduralized activity
• e.g., typing a string, opening a source file, compiling a

program
• Rule-based activity: use of rules for acting in certain

contexts
• e.g., starting to type a for loop in order to perform an

action on each element of a list
• Knowledge-based activity: forming plans & making high-

level decisions based on knowledge of program
• e.g., forming a hypothesis about cause of runtime failure

10

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Types of skill breakdowns

11

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Types of rule breakdowns

12

LaToza CS 695 / SWE 699

Types of knowledge breakdowns

13

LaToza CS 695 / SWE 699

Breakdown chain example (Part 1)

14

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Breakdown chain example (Part 1)

15

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Causes of defects: API misuse

• Components expose APIs which have rules about
how they should be used

• What types of rules do components impose?

16

LaToza CS 695 / SWE 699

Causes of defects: API misuse
• Based on survey of APIs, categorized directives APIs

impose on clients
• Restrictions on when to call

• Do not call from UI thread, for debugging use only
• Protocols specifying ordering constraints

• Method must only be called once, method must be
called prior to other method

• Locking describing thread synchronization
• Restrictions on possible parameter values

• String.replaceAll() should not include $ or \
characters in replacement string

17

Uri Dekel and James D. Herbsleb. 2009. Improving API documentation usability with knowledge pushing. In Proceedings of
the 31st International Conference on Software Engineering (ICSE ’09), 320-330.

LaToza CS 695 / SWE 699

Causes of defects: Object protocol misuse

• Examined Java code for presence of protocols,
found 7.2% of types defined protocols & 13% of
classes used protocols

• Most frequent causes:
• Initialization (28.1%): calls to an instance method

m without first calling initializing method i
• Deactivation (25.8%): calls to an instance method

m after calling a deactivation method d
• Type Qualifier (16.4%): object enters a state

during which method m will always fail

18

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In
Proceedings of the 25th European conference on Object-oriented programming (ECOOP'11), Mira Mezini (Ed.).
Springer-Verlag, Berlin, Heidelberg, 2-26.

LaToza CS 695 / SWE 699

Causes of defects in JavaScript
• Examined 502 bug reports from 19 repos, categorizing

the cause of each error
• Most common types of errors:

• Erroneous input validation (16%): inputs passed into
JS code are not validated or sanitized

• Error in writing a string literal (13%): incorrect CSS
selectors, regular expressions, forgetting prefixes, etc.

• Forgetting null / undefined check (10%)
• Neglecting differences in browser behavior (9%):

differences in behavior of browser API across
browsers

• Errors in syntax (7%)

19

Ocariza et al, A Study of Causes and Consequences of Client-Side JavaScript Bugs, TSE 2016

20

21

Callbacks

x.on("event", ..., function callback(arg){/**/})

22

bind target: event to
subscribe to

bind configuration: parameters
controlling behavior

callback context: what args and additional
state is available when invoked

Common problems with callbacks
Bind Targets: Identifying or choosing an event, life cycle hook, or trigger to register a callback

• CB1 Unidentified Target 
desired bind target à API name & code fragment

• CB2 Constrained Target 
bind target code fragment à API rules making fragment (in)valid

• CB3 Confused Target 
current & desired bind targets à API use differences, new target’s code
fragment

23

24

Graphical idioms

25

const [r1, r2] = queryInterface(params);
r1.get("prop") && r2.set({aProp: value, ...});

graphical getter graphical setter

graphical query

Common problems with graphical idioms
Graphical Setters: Updating graphical properties of the layout via API (DOM access methods, CSS selectors)

• GB1 Unidentified Setter 
visual property change à code fragment to mutate property

• GB2 Unobservable Setter 
setterA & visual property change à setterB to mutate property

• GB3 Indirect Setter 
setterA à elements which inherit properties from setterA or occlude
mutations

• GB4 Overwritten Setter 
setterA à setterB overwriting setterA & code fragments with alternative fixes

26

27

Common problems w/ object-interaction idioms
Valid References: Determining defined standard or framework identifiers at compile time or runtime

• OB1 Inactionable Reference Error 
statement generating error & error message à explanation of error message

• OB2 Silent Invalid Reference 
invalid statement à warning message & statement fixing warning

28

LaToza CS 695 / SWE 699

Some techniques for helping developers
better work with defects

• Help developers engage in better information
seeking to prevent defects from ever occurring

• Use tool to find defect, report error message to
developer

• Use tests to find defect, report test failures to
developers

29

LaToza CS 695 / SWE 699

Preventing defects by supporting better
information seeking

1. Help programmers recover from interruptions or delays by reminding
them of their previous actions
2. Highlight exceptional circumstances to help programmers adapt their
routine strategies
3. Help programmers manage multiple tasks and detect interleaved
actions
4. Design task-relevant information to be visible and unambiguous
5. Avoid inundating programmers with information
6. Help programmers consider all relevant hypotheses, to avoid the
formation of invalid hypotheses
7. Help programmers identify and understand causal relationships, to
avoid invalid knowledge
8. Help programmers identify correlation and recognize illusory
correlation
9. Highlight logically important information to combat availability and
selectivity heuristics
10. Prevent programmer’s overconfidence in their knowledge by testing
their assumptions

30

Adapted from Ko & Myers, JVLC05

LaToza CS 695 / SWE 699

Tools for preventing defects
• Early work in program analysis and formal methods

made possible analyzing code to find
inconsistencies with a specification

• But...
• Often required extensive work to write a

specification of behavior

31

LaToza CS 695 / SWE 699

Early 2000s
• Static analysis tools becoming sufficiently scalable

to be used on real-world programs
• More emphasis on finding real-world defects rather

than simply focusing on improvements in
underlying analysis technology

• Several tools adopted in industry, often to address
specific and important problems

32

LaToza CS 695 / SWE 699

Slam

Iteratively refines
boolean abstraction
of program to
determine if there
exists path that
violates rules

33

T. Ball and S.K. Rajamani, “The Slam Project: Debugging System Software via Static Analysis,” Proc. 29th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL 2002), ACM Press, 2002, pp. 1–3.

Rules governing lock

LaToza CS 695 / SWE 699 34

LaToza CS 695 / SWE 699 35

LaToza CS 695 / SWE 699

FindBugs

36

David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications (OOPSLA '04). ACM, New York, NY,
USA, 132-136.

Null pointer deref

Unconditional wait

LaToza CS 695 / SWE 699

Some initial Findbugs bug patterns

37

LaToza CS 695 / SWE 699

Current list of Findbugs bug patterns

38

http://findbugs.sourceforge.net/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

LaToza CS 695 / SWE 699

Some challenges in preventing defects

• How do you know what is incorrect behavior?

• How do you explain to a developer the cause of the
(potential) defect?

• What happens if the tool approximates program
behavior and comes to an incorrect conclusion?

39

LaToza CS 695 / SWE 699

Use of defect prevention tools in OSS
projects (Dec 2014)

40

M. Beller, R. Bholanath, S. McIntosh and A. Zaidman, "Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source Software," 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Suita, 2016, pp. 470-481. doi: 10.1109/
SANER.2016.105

LaToza CS 695 / SWE 699

Why developers don't use defect
prevention tools

• Not integrated. The tool is not integrated into the developer’s
workflow or takes too long to run

• Not actionable. The warnings are not actionable;
• Not trustworthy. Users do not trust the results due to, say, false

positives
• Not manifest in practice. The reported bug is theoretically

possible, but the problem does not actually manifest in
practice

• Too expensive to fix. Fixing the detected bug is too expensive
or risky

• Warnings not understood. Users do not understand the
warnings.

41

LaToza CS 695 / SWE 699

Challenges with customizability
• Many tools have many false positives
• Want to have the ability to turn on and off useful and

not useful rules
• Teams may customize settings, but then results in

issues when different teams use different settings
and find different issues with shared code

42

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don't software developers use static analysis tools to find bugs?. In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13). IEEE Press, Piscataway,
NJ, USA, 672-681.

LaToza CS 695 / SWE 699

Working with developer intent
• How do you know what behavior is incorrect? (i.e.,

the oracle problem)
• Have developers write specifications for a

program for properties they care about
• Build rules about how an API should be used,

check that clients use it correctly
• Look at lots of code, find atypical behaviors

43

LaToza CS 695 / SWE 699

Writing specifications

• Specifying constraints on code often requires
learning and using a new language defined by tool

• Often done by dedicated tool expertise with
expertise in writing necessary specs

• May capture company-wide policies

44

Natural language spec and corresponding implementation in PMD

LaToza CS 695 / SWE 699

How should potential defects be
communicated to developers?

• Static analysis tools increasingly part of the build
process

• Builds compile code, run static analysis tools
• Individual teams may build their own static analysis

rules

• How should these tools communicate analysis
results to developers?

45

LaToza CS 695 / SWE 699

Tricorder
• Goals:

• Low false positives—error
reports should result in code
changes

• Empower users to contribute
—let developers write their
own checkers

• Make data-driven usability
improvements

• Effective workflow integration
• Quick fixes

46

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza CS 695 / SWE 699

Tricorder Analysis Results

47

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza CS 695 / SWE 699 48

https://www.youtube.com/watch?v=4ng5usM6fd8

LaToza CS 695 / SWE 699

Communicating errors to developers

• Study at Google based on 26.6 million builds
• Developers frequently see error messages

• ~30% of builds fail due to compiler error
• Median resolution time is ~12 minutes

• Dependency errors are the most common

49

Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert Bowdidge. 2014. Programmers' build errors: a case study (at google). In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 724-734. DOI: https://doi.org/10.1145/2568225.2568255

LaToza CS 695 / SWE 699

Communicating error messages

50

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

vs.

LaToza CS 695 / SWE 699

Communicating errors

51

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

Claim: there is a problem

Grounds: why is this a problem

LaToza CS 695 / SWE 699

Examples

• OpenJDK only presents a claim. Jikes presents a
ground (there is an accessible field "varname"),
which is qualified through a rebuttal (However).

52

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza CS 695 / SWE 699

How do developers themselves explain
errors on StackOverflow?

53

10 min break

Tech Talks

LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity
• In groups of 2 or 3, try out Snyk, eslint (JavaScript), or SpotBugs (Java)

• https://spotbugs.github.io/ https://eslint.org/ https://snyk.io/
• Find a codebase that you can run it on (e.g., your 695 project)
• Based on the language, choose an appropriate tool
• Download and setup the tool, run it on your codebase
• Try to make a really small change to your codebase (or intentionally write incorrect code),

check for defects
• Write a reflection on your experiences using the tool:

• Which tool did you pick
• Review of the installation and setup process. What steps were required to get it to work

with your project?
• Did it find any defects in your project? If so, what were they? Were they defects you

think are worth fixing?
• What's hardest to use about the tool? What information would you like to see that it

doesn't currently provide?
• Submission

• Submit a pdf with your reflection through Blackboard. 1 submission per group. Due 7:10pm
today.

56

https://spotbugs.github.io/
https://eslint.org/
https://snyk.io/

