Detecting Defects

CS 695 / SWE 699: Programming Tools
Fall 2023

LaToza

Today

 Part 1 Lecture(~45 mins)
e 10 min break

o Part 2: Tech Talks (30 mins)
 [wo tech talks

o Part 3: In-Class Activity(1 hour)

CS 695 / SWE 699 Fall 2023

LaToza

« HW 4 due 11/29

Logistics

CS 695 / SWE 699 Fall 2023

LaToza

Overview

e Where do defects come from??

 How can defects be prevented?

 How should potential defects be communicated to
developers”?

CS 695 / SWE 699 Fall 2023

Where do
defects come
from?

10.

1,
[Glass TSE81]

12.

LaToza

Omitted logic

Failure to reset data

Regression error

Documentation in error

Requirements inadequate

Patch in error
Commentary in error

IF statement too simple

Referenced wrong data variable

Data alignment error

Timing error causes data loss

Failure to initialize data

Code is lacking which should be present.
Variable A is assigned a new value in logic

path X but is not reset to the value required
prior to entering path Y,

Reassignment of needed value to a variable omitted.
See example for "omitted logic."

Attempt to correct one error causes another.

Software and documentation conflict; software
is correct. User manual says to input a value in

inches, but program consistently assumes the value
is in centimeters, '

Specification of the problem insufficient to
define the desired solution.

See Figure 4. If the requirements failed to
note the interrelationship of the validity
check and the disk schedule index, then

this would also be a requirements error,

Temporary machine code change contains an error.
Source code is correct, but "jump to 14000"
should have been "jump to 14004."

Source code comment is incorrect.

Program says DO I=1,5 while comment says
"loop 4 times."

Not all conditions necessary for an IF
statement are present.

IF A<B should be IF A<B AND B<C.

Self-explanatory
See Figure 3. The wrong queues were referenced.

Data accessed is not the same as data desired due
to using wrong set of bits.

Leftmost instead of rightmost substring of

bits used from a data structure.

Shared data changed by a process at an
unexpected time.

Parallel task B changes XYZ just before task A
used it.

Non-preset data is referenced before a value
is assiqgned.

Where do defects come from?

Gould [14] Assignment bug
Novice Fortran
Iteration bug

Array bug

Eisenberg [15] Visual bug
Novice APL
Naive bug
Logical bug
Dummy bug

Inventive bug
Illiteracy bug

Gestalt bug

LaToza

Software errors in assigning
variables’ values

Software errors in iteration
algorithms

Software errors in array index
expressions

Grouping related parts of
expression

Iteration instead of parallel
processing

Omitting or misusing logical
connectives

Experience with other
languages interfering
Inventing syntax
Difficulties with order of
operations

Unforeseen side effects of
commands

Adapted from Ko & Myers, JVLCO05

CS 695 / SWE 699

Requires understanding of
behavior
Requires understanding of
language
Requires understanding of
language

‘...need to think step-by-step’

‘...seem to be syntax
oversights’

“...failure to see the whole
picture’

LaToza

Where do defects come from?

Knuth [18] While
writing TeX in
SAIL and Pascal

Algorithm awry

Blunder or botch

Data structure
debacle
Forgotten
function

Language liability

Module mismatch

Robustness

Surprise scenario

Trivial typos

Improperly implemented
algorithms

Accidentally writing code not
to specifications

Software errors in using data
structures

Missing implementation

Misunderstanding language/
environment

Imperfectly knowing
specification

Not handling erroneous input

Unforeseen interactions in
program elements
Incorrect syntax, reference, etc.

Adapted from Ko & Myers, JVLCO05

CS 695 / SWE 699

‘proved...incorrect or
inadequate’
‘not...enough brainpower’

‘did not preserve...invariants’

‘I did not remember everything’

‘I forgot the conventions I had
built’

‘tried to make the code bullet-
proof™

‘forced me to change my ideas’

‘my original pencil draft was
correct’

Where do defects come from?

Clobbered
memory

Eisenstadt [19]
Industry experts
COBOL, Pascal,
Fortran, C

Vendor problems
Design logic
Initialization
Variable

Lexical bugs
Language

Overwriting memory, subscript
out of bounds

Buggy compilers, faulty
hardware

Unanticipated case, wrong
algorithm

Erroneous type or initialization
of variables

Wrong variable or operator
used

Bad parse or ambiguous syntax
Misunderstandings of language
semantics

Adapted from Ko & Myers, JVLCO05

LaToza

CS 695 / SWE 699

Also identified why software
errors were difficult to find:
cause/effect chasm; tools
inapplicable; failure did not
actually happen; faulty
knowledge of specs;
“spaghetti” code.

Where do defects come from?

o Ko & Myers proposed a model for understanding
the cognitive causes of defects

L atent errors becomes active errors when they
breach defenses of system

Runtime Faults

Adapted from Ko & Myers, JVLCO05

LaToza CS 695 / SWE 699

Skill / Rule / Knowledge

 James Reason proposed a taxonomy of cognitive
breakdowns based on differences in type of cognition being

used

» Skill-based activity: routine, proceduralized activity

* e.9., typing a string, opening a source file, compiling a

program

* Rule-based activity: use of rules for acting in certain

contexts

* e.9., starting to type a for loop in order to perform an
action on each element of a list

 Knowledge-based activi

evel decisions based o

ty:

N K

forming plans & making high-

owledge of program

* e.9g., forming a hypothesis about cause of runtime failure

Adapted from Ko & Myers, JVLCO05

LaToza

CS 695 / SWE 699

10

LaToza

Types

of skill breakdowns

Inattention Type Events resulting in breakdown
Failure to attend to a Strong habit In the middle of a sequence of actions — no
routine action at a critical intrusion attentional check — contextually frequent action
time causes forgotten is taken instead of intended action
actions, forgotten goals, or
inappropriate actions.

Interruptions External event — no attentional check — action

Delayed action

skipped or goal forgotten

Intention to depart from routine activity — no
attentional check between intention and action —
forgotten goal

Exceptional Unusual or unexpected stimuli — stimuli

stimuli overlooked — appropriate action not taken

Interleaving Concurrent, similar action sequences — no

attentional check — actions interleaved

Overattention Type Events resulting in breakdown
Attending to routine action Omission Attentional check in the middle of routine actions
causes false assumption — assumption that actions are already completed
about progress of action. — action skipped

Repetition Attentional check in the middle of routine actions

— assumption that actions are not completed —
action repeated

Adapted from Ko & Myers, JVLCO05

CS 695 / SWE 699

11

LaToza

Types of rule breakdowns

Wrong rule

Type

Events resulting in breakdown

Use of a rule that is successful
in most contexts, but not all.

Problematic signs
Information
overload

Favored rules

Favored signs

Ambiguous or hidden signs — conditions
evaluated with insufficient info — wrong
rule chosen — inappropriate action

Too many signs — important signs missed
— wrong rule chosen — inappropriate
action

Previously successful rules are favored —
wrong rule chosen — inappropriate action
Previously useful signs are favored —
exceptional signs not given enough weight
— wrong rule chosen — inappropriate
action

Rigidity Familiar, situationally inappropriate rules
preferred over unfamiliar, situationally
appropriate rules — wrong rule chosen —
inappropriate action

Bad rule Type Events resulting in breakdown

Use of a rule with problematic Incomplete Some properties of problem space are not

conditions or actions. encoding encoded — rule conditions are immature
— Inappropriate action

Inaccurate Properties of problem space encoded

encoding inaccurately — rule conditions are

Exception proves
rule
Wrong action

inaccurate — inappropriate action
Inexperience — exceptional rule often
inappropriate — inappropriate action
Condition is right but action is wrong —
inappropriate action

CS 695 / SWE 699

12

LaToza

Types of knowledge breakdowns

Bounded rationality

Type

Events resulting in breakdown

Problem space is too large to
explore because working
memory is limited and costly.

Selectivity

Biased reviewing

Psychologically salient, rather than
logically important task information is
attended to — biased knowledge
Tendency to believe that all possible
courses of action have been considered,
when in fact very few have been considered
— suboptimal strategy

Availability Undue weight is given to facts that come
readily to mind — facts that are not present
are easily ignored — biased knowledge

Faulty models of problem Type Events resulting in breakdown

space

Formation and evaluation of Simplified Judged by perceived similarity between
knowledge leads to incomplete causality cause and effect —» knowledge of outcome
or inaccurate models of increases perceived likelihood — invalid
problem space. knowledge of causation

[llusory Tendency to assume events are correlated

correlation and develop rationalizations to support the
belief — invalid model of causality

Overconfidence False belief in correctness and completeness

Confirmation bias

of knowledge, especially after completion
of elaborate, difficult tasks — invalid,
inadequate knowledge

Preliminary hypotheses based on
impoverished data interfere with later
interpretation of more abundant data —
invalid, inadequate hypotheses

CS 695 / SWE 699

13

Breakdown chain example (Part 1)

P2 has difficulty creating the
specifications for the Boolean logic to
check if all of the dots are eaten, as
evidenced by verbal utterances; also,
part of the expression was obscured,
and she though the "BigDot" reference
was off-screen.

She only forms one hypothesis about
the cause of the failure, which is

incorrect.

This causes a breakdown in modifying
the Boolean logic.

Rule breakdown creating

specifications for Boolean logic

for seeing if all dots are eaten
(wrong action)

/

e ifnot (dot1.isShowing
-x * and dot2.isShowing...)

- e .. L

\

1. Conditional becomes true
after one dot is eaten

\

Skill breakdown implementing
Boolean logic

(problematic sign) |

/

.
L ’

5.

wad e e “

H
Pac bounces before
all the dots are eaten

Missing reference to
BigDot.isShowing

Conditional
doesn't check
BigDot.isShowing

Knowledge breakdown
understanding runtime failure
(biased reviewing)

Rule breakdown modifying

Boolean logic

Adapted from Ko & Myers, JVLCO05

LaToza

CS 695 / SWE 699

(wrong action)

14

LaToza

Breakdown chain example (Part 1)

Because camera was pointing down at
Pac, she was unaware that Pac was
bouncing.

The fact that Pac doesn't seem to be
bouncing leads her to believe he is not.

After 20 minutes, P2 reorients the
camera and notices that Pac is
bouncing, but assumes it was due to
more recent changes and not the
earlier error.

if not dot1.isShowing and
not dot2.isShowing...

true immediately

Lo *
=25
v

H Conditional becomes
v

Pac bounces
immediately

Rule breakdown observing
runtime failure
(problematic signs)

Knowledge breakdown
observing runtime failure
(illusory correlation)

Knowledge breakdown
understanding runtime failure
(availability)

Adapted from Ko & Myers, JVLCO05

CS 695 / SWE 699

15

LaToza

Causes of defects: API misuse

e Components expose APIs which have rules about
how they should be used

 What types of rules do components impose”?

CS 695 / SWE 699

16

Causes of defects: API misuse

 Based on survey of APIs, categorized directives APIs
Impose on clients

* Restrictions on when to call
* Do not call from Ul thread, for debugging use only
* Protocols specitying ordering constraints

 Method must only be called once, method must be
called prior to other method

* [ocking describing thread synchronization
e Restrictions on possible parameter values

o String.replaceAll() should not include $ or \
characters in replacement string

Uri Dekel and James D. Herbsleb. 2009. Improving API documentation usability with knowledge pushing. In Proceedings of
the 31st International Conference on Software Engineering (ICSE ‘09), 320-330.

LaToza CS 695 / SWE 699 17/

Causes of defects: Object protocol misuse

 Examined Java code for presence of protocols,
found 7.2% of types defined protocols & 13% of

classes used protocols

 Most frequent causes:

e [nitialization (28.1%): calls to an instance method
m without first calling initializing method |

e Deactivation (25.8%): calls to an instance method
m after calling a deactivation method d

e Type Qualifier (16.4%): object enters a state
during which method m will always fall

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In
Proceedings of the 25th European conference on Object-oriented programming (ECOOP'11), Mira Mezini (Ed.).

Springer-Verlag, Berlin, Heidelberg, 2-26.
LaToza CS 695 / SWE 699

18

LaToza

Causes of defects in JavaScript

 Examined 502 bug reports from 19 repos, categorizing
the cause of each error

 Most common types of errors:
* Erroneous input validation (16%): inputs passed Into
JS code are not validated or sanitized

e Error in writing a string literal (13%): incorrect CSS
selectors, regular expressions, forgetting prefixes, etc.

* Forgetting null / undefined check (10%)

* Neglecting differences in browser behavior (9%):
differences in behavior of browser APl across
browsers

e Errors in syntax (7%)

Ocariza et al, A Study of Causes and Consequences of Client-Side JavaScript Bugs, TSE 2016

CS 695 / SWE 699 19

CALLBACK IDIOMS

BIND TARGETS IDENTIFYING OR CHOOSING AN EVENT, LIFECYCLE HOOK, OR
29% TRIGGER TO REGISTER A CALLBACK
CB1 Unidentified Target:
desired bind target = target name & code fragment
CB2 Constrained Target:
bind target code fragment = API rules making fragment (in)valid

CB3 Confused Target:
current & desired bind targets = API use differences, new target’s code fragment

25, CALLBACK CONTEXTS IDENTIFYING WHEN THE CALLBACK IS DISPATCHED,
% USING ITS ARGUM ENTS, OR OTHER RELATED OBJECTS

CB4 Improper Scheduling:

callback code fragments & desired schedule = correct callback order & code fix
CB5 Unidentified State:

desired state = API rationale for identifying state & code fragment to obtain it

CB6 Missed Callbacks:
callback code fragment = API rationale & state required for callback to occur

230\ BIND CONFIGURATIONS SETTING OPTIONS OF A CALLBACK TRIGGER, OR
% MODIFYING PARAMETERS OF ITS BIND MECHANISM

CB7 Incorrect Bind Parameters:

callback parameter fragments & desired behavior 2 correct code fragments

CB8 Misconfigured Framework:

framework configuration fragments & desired behavior = correct framework code

GRAPHICAL IDIOMS

37)GRAPHICAL SETTERS UPDATING GRAPHICAL PROPERTIES OF THE LAYOUT VIA
%) API (DOM ACCESS METHODS, CSS SELECTORS)

GB1 Unidentified Setter:

visual property change = code fragment to mutate property

GB2 Unobservable Setter:

setterA & visual property change - setterB to mutate property

GB3 Indirect Setter:
setterA = elements which inherit properties from setterA or occlude mutations

GB4 Overwritten Setter:
setterA > setterB overwriting setterA & code fragments with alternative fixes

N GRAPHICAL QUERIES RETRIEVING GRAPHICAL ELEMENTS OR SIMILAR
21% REPRESENTATIONS VIA APl (DOM ACCESS METHODS, CSS SELECTORS)
GB5 Incomplete Query:
queryA and desired elements to be matched 2 queryB matching those elements
GB6 Outdated Query:
queryA - changes to query result set over time & code fragment fixing it

GB7 Overwritten Query:
queryA =2 queryB intersecting queryA’s mutations & code fragment fixing queryA

g, GRAPHICAL GETTERS OBTAINING GRAPHICAL PROPERTIES OF THE LAYOUT
% \JIA AP| METHODS

GB8 Unidentified Getter:
visual property =2 getter code fragment to retrieve it

OBJECT-INTERACTION IDIOMS |

2]? VALID REFERENCES DETERMINING DEFINED STANDARD, OR FRAMEWORK
% |DENTIFIERS AT COMPILE TIME OR RUNTIME
OB1 /nactionable Reference Error:
statement generating error & error message = explanation of error message
OB2 Silent Invalid Reference:
invalid statement 2 warning message & statement fixing warning

> BACK-END REQUESTS SENDING STRUCTURED DATA TO A SERVER, OR
16% HANDLING SERVER RESPONSES
OB6 Misconfigured Request:

back-end request & desired behavior = modified request matching behavior
OB7 Unclear Transmission:

back-end request as sent = back-end request as received

OB8 Mishandled Response:
Eack-end request =2 code fragment for response(s) listening and parsing

8o SCOPE CONTEXTS IDENTIFYING THE CONTEXT GIVEN TO THE KEYWORD
° this WITHIN A CODE BLOCK, OR A VARIABLE'S VISIBILITY

OB12 Unclear Scope: this statement = owner scope of this

ZCE COLLECTIONS AND FORMATS CREATING OR MANIPULATING A COLLECTION,
OR FORMATTING DATA FOR USE IN A FRAMEWORK OR LIBRARY

OB3 Unidentified Iteration Construct:

collection object = code fragment with corresponding iteration construct
OB4 Occluded Modification:

collection object & loop fragment = modifications of collection per iteration

OB5 Confused Formatting:
object in format A = code fragment converting object to format B

=
8 METHOD CHAINS DETERMINING THE EFFECTS OF A METHOD INVOCATION
% WITHIN A SEQUENCE OF CONSECUTIVE CALLS

OB9 Incomplete Sequence:

o.m1(...).m2(...)...mn(....) 2 o.m1(...).m2(...)....mk(...)....mn(...)
OB10 /ncorrect Sequence:

o.m1(...).m2(...)...mn(....) 2 o.mk(...)...m1(...).mn(...)

OB11 Overwritten Effect:
o.m1(...).m2(...)...mn(....) 2 methods mk and m! where both mutate object

20

B3t cauBackipiovs |

299, BIND TARGETS IDENTIFYING OR CHOOSING AN EVENT, LIFECYCLE HOOK, OR
°" TRIGGER TO REGISTER A CALLBACK
CB1 Unidentified Target:
desired bind target = target name & code fragment
CB2 Constrained Target:

bind target code fragment = API rules making fragment (in)valid

CB3 Confused Target:
current & desired bind targets = API use differences, new target’s code fragment

25, CALLBACK CONTEXTS IDENTIFYING WHEN THE CALLBACK IS DISPATCHED,
%" USING ITS ARGUM ENTS, OR OTHER RELATED OBIJECTS

CB4 Improper Scheduling:

callback code fragments & desired schedule = correct callback order & code fix
CB5 Unidentified State:

desired state = API rationale for identifying state & code fragment to obtain it

CB6 Missed Callbacks:
callback code fragment = API rationale & state required for callback to occur

230\ BIND CONFIGURATIONS SETTING OPTIONS OF A CALLBACK TRIGGER, OR
% MODIFYING PARAMETERS OF ITS BIND MECHANISM

CB7 Incorrect Bind Parameters:

callback parameter fragments & desired behavior = correct code fragments

CB8 Misconfigured Framework:

framework configuration fragments & desired behavior = correct framework code

Callbacks

x.on('event", .

callback context: what args and additional
state 1s available when invoked

., function callback(arg){//})

bind target: event to bind configuration: parameters
subscribe to controlling behavior

22

Common problems with callbacks

Bind Targets: ldentifying or choosing an event, life cycle hook, or trigger to register a callback

 CB1 Unidentified Target
desired bind target = API| name & code fragment

 CB2 Constrained Target
bind target code fragment - APl rules making fragment (in)valid

 CB3 Confused Target
current & desired bind targets > API use differences, new target’s code
fragment

23

E¥ GrapHicALIDIOMS |

37, GRAPHICAL SETTERS UPDATING GRAPHICAL PROPERTIES OF THE LAYOUT VIA
%) API (DOM ACCESS METHODS, CSS SELECTORS)

GB1 Unidentified Setter:

visual property change = code fragment to mutate property
GB2 Unobservable Setter:

setterA & visual property change -2 setterB to mutate property

GB3 Indirect Setter:
setterA = elements which inherit properties from setterA or occlude mutations

GB4 Overwritten Setter:
setterA = setterB overwriting setterA & code fragments with alternative fixes

N\ GRAPHICAL QUERIES RETRIEVING GRAPHICAL ELEMENTS OR SIMILAR
21% REPRESENTATIONS VIA API (DOM ACCESS METHODS, CSS SELECTORS)
GB5 Incomplete Query:
queryA and desired elements to be matched = queryB matching those elements
GB6 Outdated Query:
queryA -2 changes to query result set over time & code fragment fixing it

GB7 Overwritten Query:
queryA =2 queryB intersecting queryA’s mutations & code fragment fixing queryA

g, GRAPHICAL GETTERS OBTAINING GRAPHICAL PROPERTIES OF THE LAYOUT
% \JIA AP| METHODS

GB8 Unidentified Getter:
visual property =2 getter code fragment to retrieve it

Graphical idioms

graphical query

const [rl, r2] = querylnterface(params);
rl.get("prop") && r2.set({aProp: value, ...});

graphical getter graphical setter

25

Common problems with graphical idioms

Graphical Setters: Updating graphical properties of the layout via APl (DOM access methods, CSS selectors)

 GB1 Unidentified Setter
visual property change = code fragment to mutate property

 GB2 Unobservable Setter
setterA & visual property change > setterB to mutate property

 GB3 Indirect Setter
setterA - elements which inherit properties from setterA or occlude
mutations

 GB4 Overwritten Setter
setterA - setterB overwriting setterA & code fragments with alternative fixes

20

OBJECT-INTERACTION IDIoms |}

21\ VALID REFERENCES DETERMINING DEFINED STANDARD, OR FRAMEWORK
% |DENTIFIERS AT COMPILE TIME OR RUNTIME
OBl Inactionable Reference Error:
statement generating error & error message > explanation of error message
OB2 Silent Invalid Reference:
invalid statement 2 warning message & statement fixing warning

> BACK-END REQUESTS SENDING STRUCTURED DATA TO A SERVER, OR
16% HANDLING SERVER RESPONSES
OB6 Misconfigured Request:

back-end request & desired behavior = modified request matching behavior
OB7 Unclear Transmission:

back-end request as sent =2 back-end request as received

OB8 Mishandled Response:
Eack-end request =2 code fragment for response(s) listening and parsing

8o SCOPE CONTEXTS IDENTIFYING THE CONTEXT GIVEN TO THE KEYWORD
° this WITHIN A CODE BLOCK, OR A VARIABLE'S VISIBILITY

OB12 Unclear Scope: this statement = owner scope of this

OR FORMATTING DATA FOR USE IN A FRAMEWORK OR LIBRARY
OB3 Unidentified Iteration Construct:
collection object = code fragment with corresponding iteration construct
OB4 Occluded Modification:
collection object & loop fragment 2 modifications of collection per iteration

OBS5 Confused Formatting:
object in format A = code fragment converting object to format B

=
8. METHOD CHAINS DETERMINING THE EFFECTS OF A METHOD INVOCATION
% WITHIN A SEQUENCE OF CONSECUTIVE CALLS

OB9 Incomplete Sequence:

o.m1(...).m2(..)...mn(....) 2 o.m1(...).m2(...)....mk(...)....mn(...)
OB10 /Incorrect Sequence:

o.m1(...).m2(...)...mn(....) 2 o.mk(...)...m1(...).mn(...)

OB11 Overwritten Effect:
o.m1(...).m2(...)....mn(....) 2 methods mk and m! where both mutate object

2@ COLLECTIONS AND FORMATS CREATING OR MANIPULATING A COLLECTION,

27

Common problems w/ object-interaction idioms

Valid References: Determining defined standard or framework identifiers at compile time or runtime

e OB1 Inactionable Reference Error
statement generating error & error message =2 explanation of error message

* OB2 Silent Invalid Reference
invalid statement > warning message & statement fixing warning

28

Some techniques for helping developers
better work with defects

* Help developers engage in better information
seeking to prevent defects from ever occurring

o Use tool to find defect, report error message to
developer

o Use tests to find defect, report test failures to
developers

LaToza CS 695 / SWE 699

29

LaToza

Preventing defects by supporting better

information seeking

1. Help programmers recover from interruptions or delays by reminding
them of their previous actions

2. Highlight exceptional circumstances to help programmers adapt their
routine strategies

3.

elp programmers manage multiple tasks and detect interleaved

actions
4. Design task-relevant information to be visible and unambiguous

5. Avoid inundating programmers with information

0.
for

/.

-Help programmers consider all relevant hypotheses, to avoid the
mation of invalid hypotheses

elp programmers identity and understand causal relationships, to

avold invalid knowledge

8.
CO
9.
Se

10

elp programmers identity correlation and recognize illusory
'relation
Highlight logically important information to combat availability and

ectivity heuristics

. Prevent programmer’'s overconfidence in their knowledge by testing

their assumptions

Adapted from Ko & Myers, JVLCO05

CS 695 / SWE 699 30

LaToza

Tools for preventing defects

o Early work in program analysis and formal methods
made possible analyzing code to find
inconsistencies with a specitication

e But...

o QOften required extensive work to write a
specification of behavior

CS 695 / SWE 699

31

LaToza

Early 2000s

o Static analysis tools becoming sufficiently scalable
to be used on real-world programs

 More emphasis on finding real-world defects rather
than simply focusing on improvements in
underlying analysis technology

e Several tools adopted in industry, often to address
specific and important problems

CS 695 / SWE 699

32

Slam

state {
enum { Unlocked, Locked} s = Unlocked; // FSM states

}

AcquireSpinLock.entry { // Transition on lock acquire
' if (8 == Locked) error;
Rules governing lock i¥ (s == Locked)
}
ReleaseSpinLock.entry { // Transition on lock release

if (s == Unlocked) error;
else s = Unlocked;

lteratively refines
boolean abstraction
of program to
determine If there
exists path that
violates rules

T. Ball and S K. Rajamani, “The Slam Project: Debugging System Software via Static Analysis,” Proc. 29th ACM SIGPLAN-SIGACT Symp.

Principles of Programming Languages (POPL 2002), ACM Press, 2002, pp. 1-3. 33

LaToza CS 695 / SWE 699

& & docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier

=. Microsoft | Hardware Dev Center Explore v Docs Downloads »» Events Samples Support Dashboard

Docs Windows Windows Drivers Driver Technologies Tools for Testing Drivers [l Bookmark & Feedback ¢ Edit |© Shar

Y Filter by title Static Driver Verifier

Driver Development Tools 06/13/2019 » 2 minutes to read - 0 kA Q

Index of Windows Driver Kit Tools

, , Static Driver Verifier (also known as "StaticDV" or "SDV") is a static verification tool that systematically
> Tools for Testing Drivers .) . L .
analyzes the source code of Windows kernel-mode drivers. SDV is a compile time tool that is capable of

v Tools for Verifying Drivers discovering defects and design issues in a driver. Based on a set of interface rules and a model of the
Tools for Verifying Drivers operating system, SDV determines whether the driver correctly interacts with the Windows operating

Static and Dynamic Verification Tools system kernel.
Survey of Verification Tools

> Checked Build of Windows Installing Static Driver Verifier

Application Verifier

Static Driver Verifier is available as part of the Windows Driver Kit (WDK) in both the full WDK experience
and in the standalone Enterprise WDK. In addition, the Visual C++ Redistributable Packages for Visual

> Code Analysis for Drivers

> Driver Verifier _ _ .
Studio are required for SDV to run. See the following:
> DDI Compliance Rules

v Static Driver Verifier e Visual Studio 2019 Redistribution
e Visual C++ Redistributable Packages for Visual Studio 2017
e Visual C++ Redistributable Packages for Visual Studio 2013

Static Driver Verifier

Using Static Driver Verifier to Find

Defects in Windows Drivers For versions of SDV available in the WDK for Windows 10, Version 1809 or earlier, the Visual C++
Static Driver Verifier commands Redistributable Packages for Visual Studio 2012 should be installed instead of the 2017 packages.
(MSBuild)

> Intr in ic Driver Verifier . . -
ireducng Static briver verie Visual Studio Integration

> Using Static Driver Verifier

> Static Driver Verifier Report Static Driver Verifier is integrated into Visual Studio. You can run static analysis on your Visual Studio
driver project. You can launch, configure, and control Static Driver Verifier from the Driver menu in Visual
Studio.

> Static Driver Verifier Reference
> WDF Verifier Control Application
> WdfTester: WDF Driver Testing Toolset

» Tools for Software Tracing Static Driver Verifier Documentation

> Additional Driver Tools)
e Static Driver Verifier Known Issues: Lists latest known issues for Static Driver Verifier

e Using Static Driver Verifier to Find Defects in Drivers: Tells you what you need to get started
analyzing your driver code in the Visual Studio environment.

e Static Driver Verifier commands (MSBuild): Lists the MSBuild commands to use to run SDV in a Visual
Studio Command Prompt window.

e Introducing Static Driver Verifier: Provides an overview of the static analysis tool.

e Using Static Driver Verifier: Provides the details about using and configuring the static analysis tool.

e Static Driver Verifier Report: Describes the viewer that displays the detailed trace of the static code
analysis.

e Static Driver Verifier Rules: The rules define the requirements for proper interaction between a driver
model and the kernel interface of the operating system.

e Static Driver Verifier Reference: Provides reference information about the function role types, SDV
configuration files, error, and warning messages.

LaToza CS 695 / SWE 699

Rules for Audio Drivers

05/20/2018 « 2 minutes to read - 0 1

The DDI compliance rules for audio (PortCls) miniport drivers verify the DDI interface between PortCls.sys
and its miniport drivers.

In this section

Topic Description

PcAddAdapterDevice The PcAddAdapterDevice rule specifies that a PortCls
miniport driver correctly uses the PcAddAdapterDevice

function, specifically that the DeviceExtensionSize should
be either zero (0) or no less than
PORT_CLASS_DEVICE_EXTENSION_SIZE.

PcAllocateAndMapPages The PcAllocateAndMapPages rule specifies that a PortCls
miniport driver calls the following interfaces, using the

correct parameters:

* |PortWaveRTStream:AllocatePagesForMdl|
* |PortWaveRTStream::AllocateContiguousPagesForMd|
* |PortWaveRTStream:MapAllocatedPages

PcAllocatedPages The PcAllocatedPages rule specifies that a PortCls miniport

driver frees previous allocated pages by calling
AllocatePagesForMdl or AllocateContiguousPagesForMdl
methods.

PclrqlDDIs The PclrgIDDIs rule specifies that a PortCls miniport driver
must call PortCls DDIs at the correct IRQL level.

Pclrgliport The Pclrgllport rule specifies that a PortCls miniport driver
must call PortCls IPort interfaces at the correct IRQL level.

LaToza CS 695 / SWE 699

FindBugs

// Eclipse 3.0,
// org.eclipse.jdt.internal.ui.compare,
: JavaStructureDiffViewer. java, line 131
Null pointer deref o :
Control c= getControl();
if (¢ == null && c.isDisposed())
return;

// JBoss 4.0.0RC1

// org.jboss.deployment.scanner
// AbstractDeploymentScanner.java, line 185

'yt , // If we are not enabled, then wait
Unconditional walit 3¢ (lenabled) {
try {

synchronized (lock) {
lock.wait();

David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications (OOPSLA '04). ACM, New York, NY,
USA, 132-136.

LaToza CS 695 / SWE 699

36

Some initial Findbugs bug patterns

Code | Description
CN | Cloneable Not Implemented Correctly
DC | Double Checked Locking
DE | Dropped Exception
EC | Suspicious Equals Comparison
Eq | Bad Covariant Definition of Equals

HE | Equal Objects Must Have Equal Hashcodes

IS2 | Inconsistent Synchronization
MS | Static Field Modifiable By Untrusted Code
NP | Null Pointer Dereference
NS | Non-Short-Circuit Boolean Operator
OS | Open Stream
RCN | Redundant Comparison to Null
RR | Read Return Should Be Checked
RV | Return Value Should Be Checked
Se | Non-serializable Serializable Class
UR | Uninitialized Read In Constructor
UW | Unconditional Wait
Wa | Wait Not In Loop

LaToza CS 695 / SWE 699

Current list of Findbugs bug patterns

BIT: Check for sign of bitwise operation

CN: Class implements Cloncable but does not define or use clone method

lone method does not call super clone() ig: cquals method always reterns false
CN: Class defines clone() but doesn't implement Cloncable s method always)
CNT: Rough valve of known constant found Eq: equals method comparcs class names rather than class objocts
Co: Abstract class defines covariant compareTo() method iq; Covariant equals() method defined for coum
Co: ¢ To{Mcompare() inc v handles float or double value q: equals() method defined that docsnt override equals(Obicct
Co: compareTo{Ncompare() returs Integer MIN VALUE iq; equals() method defined that doesat override Obiect equals{Obiect)
Co: Covaniant comparcToQ) method defined £g: equals method overrides equals in suporclass and may not be symmesnc
Covariant equals) method defined, Objectequals(Obiect) inberited
G MEROD mIEhHt IRROCE CXCCPIIon l-)‘x“m — YL‘.I vl NoX 3
M1 Adding clements of an entry set may fail due to reuse of Entry objects 2. Forat e . chsboklac incomenihie. ok caseed accumat.
DML Random object created and used only once MessagcFormat supplied where prntf stvle format expected
ML Doa't use removeAll to clear 8 col Morc arguments arc passed than are actuallv used in the format string

Dm: Method invokes System exit(,.) Ilicgal format siring

Method invokes dangerous method runFinalizersOnExit S Foomat sring references missing srgument
omparison of String parameter using ocl= S, \4:‘ previous argement for format sring
: Comparison of String obiccts using == or No between seneric paramster and method argemsat
o ignature doclares use of snhashable class in hashed constrect
! E-Use of class without 8 hasbCodel -
5q; Equals checks for incompatible operand HE Lae uf com withouta b g Sl
~ . T [CAST. int value converted to long and used as absolule time
«; Class dofines comparcTol,) and uses Objectequals) ICAST: Integral valus cast to double and then passed to Math ceil
i oquals method fails for subt ICAST. int value cast to flowt and then passed t Math round
Covariant equals() method defiped WU JUnit assetion in run methed will not be aoticed by JUnit

gatCane doclares a bad suite meshod
e3tCane hias 0O lests

pty finalizer should be deleted
plicit invocation of finalizer
nalizer nulls ficlds
alizer only nulls fields
Finalizer docs not call finalizes

LU TestCane defines tearDown that docsn't call super searDown()

uals method should not assume anything about the type of its argument

Finalizer nullifics superclass finalizer |y
nalizer docs nothing but call lass finalizer ge recursiv
Format string should use %n rather than \n or muleiol
. . . . Inchecked tvpe in generic call ¢
. - . . -lass defines equals() but pot hashCode() INT: Bad comparisos of tive value with pegative constant of zere
o CCK 10r S1£2nN O DIIWISC Opcration ey STl L
- - 5 _— “lass defines hashCodel) bat not equals()y 0 Duwsiieed atig gt ppeesd o an o3y towigul stiyen
ass dofines hashCode() and uscs Obicctcquals() patnmeret is o upe T Dl
i: Class inherits equals() and uses Obiect hashCode() Ve s e
. : 53 uscs subclas ME Mt dnflocn. o saciable tha checuris & e
CN: Class 1mplements Cloneable but does not define or use clone method g Ese e
5 N = of ¢l Ol i
. N . — -~ hJ > ~ = = - - t: terator pext() method can't throw NoSuchElementException
JCIP: Ficlds of immutable classes should be final NPV
{E: Public cnum method unconditionally sets its feld P Noo-nel fcld is oot initislized
N ® l n lh d d q n t l l g \l E: Enum feld is public and mutable Cubedodall oo el s kil oaams
CN: clone metho 0€S NOL Call super.cione i s s e s ol i S SR e
— Clooe method may return null P Possible null pomter dercferenc
: cqualsQ) method doss ot check for pull angumens P Possible qull pointer 12 method on cageption pach
P: toString method mav retumm pull P Method call passes null for non-pell parameter
' . m: Class names should start with an upper case Jetier y 13 0l o 1
‘ N . ‘ las S de ﬁ ne S C l One() bul doe S n t m: Class is pot derived from an Exception, cven though it is named as such P Noo-vireal method call passes oull for noo-null parameter
l m e me n One a e ; Confesing me! BADSS NP Method with Opgonal retern tvps returns explicit pull
e— 2 m— - —_— m: Freld pames should stagt with a lower case letter P Store of gull valee into ficld anpcested @Noagull
NP. Read of sawritten ficld

Nm: Use of ideatificr that is a kevword in Iater versioas of Java

1 Class defines egeal(Obiect): shoeld it be equals(Obiect)?

Nm: Use of ideatificr that is » kevword in Iater versions of Java Class defines hashcodel: ‘hastCode()?
N Method names should start with 8 lower case Jetter fL -ﬁ‘ ‘7:“: h,‘,,m:j' k&m‘iﬂ b‘t,gm .““[«)
b vm: Class pames shoulda't shadow simple name of implemented inerface m. Apparcet g conlesion
a S Class names shouldn't shadow simple name ! m: Verv coafusing method sames

v confusing method aames (but perhaps intentional) m: Method dossn't override method i superciass dus to wrong packags for pamameter
cthod docsn't override method in Jus to wrong package for parameter BA. Motbod assigm boolcan Literal in boolcan cxpremion

fethod mav fail to close database resource ANGE: Amav index is out of bounds

fethod mav fail to closs database resource on cxception NOE: Amy lengsh is outof bounds

Co: Abstract class defines covariant compareTo() method I — Eerere]

Doa't reuse eatev obiects in iserators ey Yy e —
RC: Suspicious sfersns 1o constans T e
RC: Suspicious reference comparison of Boolean values RE: File scparator used for regular expression
. RR: Method ignores results of InputStream read(BEL"." O "V wsed for egular expression
e RR: Method ignores results of InputStream skip() V: Randoen value from 0 1o 1 s coerced to the intoger 0
Co: compareTo()/compare() incorrectly handles float or double value BV i o o T S e
- RV: Method ipnores excentionl retum valie V. Rad atiempt 1o computo sheolutc valug of signed randon
- - SI Static initializer creates instance before all static final ficlds assigned s ds bt st e b coner by
W Certain swing methods needs 1o be invoked in Swing theead v L e
e lizable instance ficld in serializable class pC. Repeaed condional tests
Co: compareTo()/compare() returns Integer. MIN VALUE e e B e
c: lizable value stored into instance fickd of a scrializable class Self comparison of fold with itself
‘—Lo_p A — - —— A& Sc. Comparator docsnt implement Scrializable A: Noasenucal sclf computation involving a feld (¢ x & x)

be: Seri ble inner class A f S cal rather than assignment 1 d
ve: serial VerssoaUTD isn't final ALSell of value with itself

VersioaUID isn't long SA: Noaseasical self computation involving a variable (e g x & x)

.
o e serialVerstonUID lsn't static SF- Dead siore die to switch satemees fall throsgh
0. Lovariant comparc 10() meciuno cline e s ot i R b s

Se: Class is Externalizable but dossn't define a void constructor b1

I
B

Se: Resolve method must laed with a retum tvpe of Object, SOL- Method aticmpss 1o acoess 8 prepared stasement parameter with index 0
Se: Transicat ficld that isn't set by deserialization QL Method attempes 1o access a resslt st field with mdex 0
- - nVI: Class is Serializable, but docsn't define serial VersioaUID Jnncoded use of curventThread() call, to call)
. 11 Usage of GetR mav be unsafe if class is cxtended satic Thread intcrrupted) method invokied on thread instasce
Te] cast Method must be private in order for 1o work
. le downe. The readResolve method must not be declared as 8 seatic meshod
.~ 4T} C downcast b
C: "downcast of toArray() result faluc aspotated as carrving a type qualifier used where & value that must not carry that qualifier is reguired
e Tal Tal mpanag valuss with iscompatidle type gualifiers
. R BUALE (R A Value that might aot carry a type gualificr is alwavs used in 3 way reguires that type gualifier
* - * BIT: Bitwise 8dd of signed bvte value hat might carry a tvpe qualifier is always used in way prohabits it from having that type qualiier
. BI bit masks ‘asaotated as nover carrving a tvpe gealifier esed whese value carrving that qualifier s required
. BIT: Check to see if () & 0) == 0 Value w 4 type qualificr used where 3 value i required 1o have that gualifier
BIT: I ble bit masks thod defined in class
BIT: Bitwise OR of signed byte valve of ficld i co wor
BIT: Check for sign of bitwise operation of ficld method called from coasructoe of superclass
BOA: Class ov a method implemented in super class Adapter wrongly Invocation of toString on an unnamed array

DMI: Adding elements of an entry set may fail due to reuse of Entry objects [s
DMI: Random obiject created and used only once

DLS: Dead store of class literal VA: Primitive arrav passed to function expecting a varisble susmber of oblect argements
S: Overwritten increment G Potential lost logger changes due to weak refercace in OpeaJDK
DML Reversed method ORL: Mothod may fail to clean up stream Of resource

ad constant value for month BL: Method may fal to clesn up stream or resource ca chocked exception
Decimal d from double that isn't d precisely DmConsider using Locale parameterized version of isvoked method
m Reliance on default cncading
Classloaders should only be created inside doPrivileged block
P. Mcthod invoked that shosld be only be invoked inssde a doPrivileged block
May gxposg intermal by retuming reforence to mutable object

O

M

M

M

MI: hasNext method invokes next

MI: Collections should not contain th 1
M

M

M

M

]

‘oh! A | method =
of hashCode on an array

D!

fay cxpose intermal by refereace to mutable obect
Double longBitsToDouble invoked oa an int inalizer should be protected, not peblic
DMI: Vacuous call to collects S: May cxpose intornal stasic stato by storing » mutable obiect into a static fiold
Dmy: Can't use reflection to check for peesence of annotation without runtime retention S: Ficld isa't final and can't be protected from malicious code
Dm: Futile attemot to change max pool size of ScheduledThreadPoolExecutoe S Public satic method mav expose internal representation by retuming array
Creation of ScheduledThreadPoolExecutor with zero core threads S Figld should be both final and package protected

id is 3 mutable array

is 3 mutable collection

I is 2 mutable collestion which should be package protested
is & mutable Hashtable

cquals() used to compare array and nonarray

EC: Invocation of equals() on an array, which is fo == should be moved cet of an isterface and made packape protected
EC: cquals(_..) used to compare ible arravs =T)

EC: Call to equals(null) isn't final but should be

EC: Call to equals() ing unrelated class and interface

EC: Call to equals() ing differcat interface types

EC: Call to equals() ing differcat types

EC: Using pointer equality to compare different types

http://findbugs.sourceforge.net/bugbDescriptions.html

LaToza CS 695 / SWE 699

http://findbugs.sourceforge.net/bugDescriptions.html

Some challenges in preventing defects

 How do you know what is incorrect behavior?

 How do you explain to a developer the cause of the
(potential) defect?

 What happens if the tool approximates program
behavior and comes to an incorrect conclusion”

LaToza CS 695 / SWE 699

39

Use of defect prevention tools in OSS
projects (Dec 2014)

Source Projects | Use 1 ASAT | Use > 1 ASATs

GitHub 83 34% 30%

OpenHub 9 67% 22%

SourceForge 10 30% 0%

Gitorious 20 30% 5%

Total 122 36% 23%

TABLE III
DESCRIPTION OF THE ASATS FOR RQ 2 AND 3.

Tool Language | Format | Extendable | Released | # of Rules
CHECKSTYLE [41] Java XML Yes 2001 179
FINDBUGS [42] Java Text Yes 2003 160
PMD [43] Java XML Yes 2002 330
ESLINT [44] JavaScript JSON Yes 2013 157
JSCS [45] JavaScript JSON Yes 2013 116
JSHINT [46] JavaScript JSON No 2011 253
JSL [47] JavaScript Text No 2005 63
PYLINT [48] Python Text Yes 2006 390
RUBOCOP [49] Ruby YAML Yes 2012 221

M. Beller, R. Bholanath, S. McIntosh and A. Zaidman, "Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source Software," 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Suita, 2016, pp. 470-481. doi: 10.1109/
SANER.2016.105

LaToza CS 695 / SWE 699 40

LaToza

Why developers don't use defect

prevention tools

Not integrated. The tool is not integrated into the developer's
workflow or takes too long to run

Not actionab

Not trustwort
positives

Not manifest

possible, but

practice

e.

ny.

'he warnings are not actionable;

Jsers do not trust the results due to, say, false

In practice. The reported bug Is theoretically
he problem does not actually manifest in

Too expensive to fix. Fixing the detected bug Is too expensive

or risky

Warnings not understood. Users do not understand the

warnings.

CS 695 / SWE 699

41

Challenges with customizability

 Many tools have many false positives

e \Want to have the ability to turn on and off useful anad
not useful rules

 [eams may customize settings, but then results In
iIssues when different teams use different settings
and find different issues with shared code

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don't software developers use static analysis tools to find bugs?. In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13). IEEE Press, Piscataway,
NJ], USA, 672-681.

LaToza CS 695 / SWE 699 42

Working with developer intent

 How do you know what behavior is incorrect? (i.e.,
the oracle problem)

 Have developers write specifications for a
orogram for properties they care about

e Build rules about how an AP| should be used,
check that clients use it correctly

e ook at lots of code, find atypical behaviors

CS 695 / SWE 699

LaToza

Writing specifications

Model classes should have ‘private’ fields and getters.

//CompilationUnit[PackageDeclaration/Name[@Image="com.bankapplication.model"]]//ClassOrInterfaceDeclaration[count(
ClassOrInterfaceBody/ClassOrInterfaceBodyDeclaration/FieldDeclaration[@Private="true"])=0 or count(ClassOrInterfaceBody/

ClassOrInterfaceBodyDeclaration/MethodDeclaration/MethodDeclarator[starts-with(@Image, "get")])=0]

Natural language spec and corresponding implementation in PMD

e Specitying constraints on code often requires
learning and using a new language defined by tool

o QOften done by dedicated tool expertise with
expertise in writing necessary specs

 May capture company-wide policies

CS 695 / SWE 699

44

LaToza

How should potential defects be
communicated to developers?

Static analysis tools increasingly part of the build
Drocess

Builds compile code, run static analysis tools

Individual teams may build their own static analysis
rules

How should these tools communicate analysis
results to developers?

CS 695 / SWE 699

45

Tricorder

Goals:
Low false positives—error

reports should result in code

changes

Empower users to contrib

Jte

—Ilet developers write thel

own checkers

[

Make data-driven usabillity

improvements

Effective workflow integration

Quick fixes

~ Analyzer

AffectedTargets
AndoidLint
AutoRefaster
BuildDeprecation

Builder
ClangTidy
DocComments
ErrorProne
Formatter
Golint

Govet
JavacWamings
JscomptlerWamings
Linter

Unused
UnusedDeps

| Description

| How many targets are affected

Scans android projects for likely bugs |
Implementation of Refaster [42)
Identify deprecated build targets

Checks if a changelist builds
Bug patterns based on AST matching |
Errors 1n javadoc

Bug patterns based on AST matching
Errors in Java format strings

Style checks for go programs
Suspicious constructs in go programs
Curated set of warnings from javac |
Warnings produced by jscompiler
Style issues in code

Unused variable detection

Flag unused dependencies

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza

CS 695 / SWE 699

46

Tricorder Analysis Results

package com.google.devtools.staticanalysis;

public class Test {

« Lint Missing a Javadoc comment.

1:02 AM, Aug 21

Please fix Not useful

public boolean foo() {
return getString() == "foo".toString():;

«~ ErrorProne String comparison using reference equality instead of value equality

StringEquaiity (see /] , le. / r- n IKi in li)
1:03 AM, Aug 21

Please fix

Suggested fix attached: show Not useful

}

public String getString() {
return new String(“foo");

}
}

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soderberg, and Collin Winter. 2015. Tricorder: building a
program analysis ecosystem. International Conference on Software Engineering, 598-608.

LaToza CS 695 / SWE 699

47

S“Yk sjmaple | Vulnerability DB Docs g My account

Dashboard Reports Projects Integrations Settings

' Search l("."(."si'.'::lil"w Search

Add projects

Importing projects. View log

[session-3-jshell/teamshell/pom.xml 7 I:I‘ 9 Ii:il View report and fix | Test daily v | Tested an hour ago

() sjmaple/shallow-goof

[1] package.json 2 I:l 2 Ii:,l View report and fix Test daily v ’ lested 28 minutes ago

() sjmaple/spring.goof

| GitHub (10
() sjmaple/goof ©)
PJCKJgC.JSOﬂ 13 ew l'CpOf'l and nx | Test dai y v lested an hour ago
' 12 8 V df | dail

() sjmaple/java-goof @
I pom.xm| View report Test daily v | Tested an hour ago o 4
M| todolist-core/pom.xml [1 III 3 i;:il View report and fix | Test daily v | Tested an hour ago ¢
[todolist-web-common/pom.xmil [3 III '. Ii:il View report and fix | Test daily v | Tested an hour ago c
[todolist-web-struts/pom.xml| 17 II. 22 I;:;I 2 l. View report and fix \ Test daily v | Tested an hour ago o 4
() sjmaple/jdk9-jigsaw ©)
I session-3-jshell/)Shell-Examples/pom.xml View report ’ Test daily v | Tested an hour ago o
[session-3-jshell/shellFX/pom.xml View report | Test daily v | Tested an hour ago o

View report and fix | Test daily v | Tested an hour ago
|

I pom.xml|

https://www.youtube.com/watch?v=4ng5usM6fd8

Communicating errors to developers

e Study at Google based on 26.6 million builds
 Developers frequently see error messages

e ~30% of builds fail due to compiler error
 Median resolution time is ~12 minutes

 Dependency errors are the most common

Count | Error Fix
10 Misspelled identifier Fix spelling
5) Wrong number of args to constructor call Add or remove arguments
4 Missing import Add import
2 Missing dependency Add dependency to BUILD file
2 Incorrect type parameter in arg to method | Fix type parameter
1 Called a non-existent method Removed method call
1 Accessed a non-existent field Added field
1 Removed a class but didn’t remove all uses | Removed remaining uses of class

Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert Bowdidge. 2014. Programmers' build errors: a case study (at google). In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 724-734. DOI: https://doi.org/10.1145/2568225.2568255

LaToza CS 695 / SWE 699 49

Communicating error messages

2 void m() {

3 final int x;
4 while (true) {
5 X = read();

F.java:5: error: variable x might be assigned in loop
X = read();

A

1 error

VS.

F.java:5: error: The blank final variable "x" cannot
be assigned within the body of a loop that may execute
more than once.

X = read();

A

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza CS 695 / SWE 699

Communicating errors

F.java:5: error: The blank final variable "x" cannot
be assigned within the body of Q/I6op that may execute
more than once.

X = read();

A

Claim: there is a prgblem

Grounds: why Is this a problem

The claim is the concluding assertion or
judgment about a problem in the code.

 Resolution | | |
T T Resolutions suggest concrete actions to
1 the source code to remediate the problem.
Grounds »| Claim
Facts, rules, and evidence to support the
claim.
Warrant Bridging statements that connect the

grounds to the claim. Provides justifica-
tion for using the grounds to support the
claim.

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza CS 695 / SWE 699 51

Examples

OpenJDK cannot find symbol
symbol: variable varnam
location: class Foo

Jikes No field named "varnam" was found
in type "Foo". However, there
1s an accessible field "varname"
whose name closely matches the name
"varnam".

 OpendDK only presents a claim. Jikes presents a
ground (there is an accessible field "varname"),
which is qualified through a rebuttal (However).

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (ICSE '17). IEEE Press, Piscataway, NJ, USA, 575-585. DOI: https://doi.org/10.1109/ICSE.2017.59

LaToza CS 695 / SWE 699

How do developers themselves explain
errors on StackOverflow?

I . |
' Resolution |
Sphidpugpigs
|
. |
' Resolution Grounds > Claim
Sty
|
|
=S T :
' Resolution | Grounds » Claim Warrant
—e—m - -
' T
l .
Claim Claim Warrant Backing
(a) Claim-only (b) Claim-resolution (c) Simple argument layout (d) Extended argument layout
(CEM = 191, SO = 0) (CEM = 10, SO = 59) (CEM = 8, SO = 49) (CEM = 1, SO = 102)
Attribute Description Extended Argument Components
Simple Argument Components BACKING Additional evidence to support the war-
Section 5.3.5 t, if th ti t ted.
CLAIM The claim is the concluding assertion or () ratih [T Warratit 1S IOt aceepte
(Section 5.3.1) judgment about a problem in the code. Q_UALIFIER This is the degr ee of belief for a claim,
. : (Section 5.3.6) often used to weaken a claim.
RESOLUTION Resolutions suggest concrete actions to
(Section 5.3.2) the source code to remediate the problem. REBUTTAL Exceptions to the claim or other compo-
. (Section 5.3.7) nents of the argument.
GROUNDS Facts, rules, and evidence to support the
(Section 5.3.3) claim.
WARRANT Bridging statements that connect the
(Section 5.3.4) grounds to the claim. Provides justifica-
tion for using the grounds to support the
claim.

LaToza CS 695 / SWE 699

10 min break

lech lalks

In-Class Activity

* |n groups of 2 or 3, try out Snyk, eslint (JavaScript), or SpotBugs (Java)

nttps://spotbugs.github.io/ https://eslint.org/ https://snyk.io/
-ind a codebase that you can run it on (e.g., your 695 project)

Based on the language, choose an appropriate tool
Download and setup the tool, run it on your codebase

Try to make a really small change to your codebase (or intentionally write incorrect code),
check for defects

Write a reflection on your experiences using the tool:

Which tool did you pick

Review of the installation and setup process. What steps were required to get it to work
with your project?

Did it find any defects in your project? It so, what were they? Were they defects you
think are worth fixing”

What's hardest to use about the tool? What information would you like to see that it
doesn't currently provide?

e Submission

e Submit a pdf with your reflection through Blackboard. 1 submission per group. Due 7:10pm
today.

LaToza CS 695 / SWE 699 Fall 2023

56

https://spotbugs.github.io/
https://eslint.org/
https://snyk.io/

