
Debugging
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today

• Part 1 Lecture(~45 mins)
• 10 min break

• Part 2: Tech Talks (30 mins)
• Two tech talks

• Part 3: In-Class Activity(1 hour)

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics

• HW 4 due today
• HW 4 presentations on 12/6 during final exam

period

3

LaToza CS 695 / SWE 699 Fall 2023

Overview

• Process and Challenges of Debugging

• Types of Debugging Tools

4

LaToza CS 695 / SWE 699 Fall 2023

Steps in fixing bugs

• Reproduce the problem
• Find cause of defect
• Investigate fix
• Implement fix
• Test fix

5

LaToza CS 695 / SWE 699 Fall 2023 6

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

LaToza CS 695 / SWE 699 Fall 2023 7

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

LaToza CS 695 / SWE 699 Fall 2023 8

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

LaToza CS 695 / SWE 699 Fall 2023 9

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

Edit	/	Debug	Cycle

10

Circle	size:			%	of	%me Edge	thickness:			%	of	transi%ons	observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

For	tasks	in	code	in	your	own	codebase	that	you	haven’t	seen	recently	

LaToza	and	Myers.	Developers	ask	reachability	ques%ons.	ICSE	2010.

Debugging	process	model

11

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore,
MD, 2013, pp. 383-392.

LaToza CS 695 / SWE 699 Fall 2023

Formulate & test hypotheses
• Use knowledge & data so far to formulate hypothesis about

why bug happened
 cogitation, meditation, observation, inspection,
contemplation, hand-simulation,
 gestation, rumination, dedication, inspiration,
articulation

• Recognize cliche
 seen a similar bug before

• Controlled experiments - test hypotheses by gathering data

12

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Debugging	hypotheses	ma;er

• Developers with a correct hypothesis early in the
debugging process

• Spent 30% less time fixing the fault

• >5x more likely to succeed

• No evidence industrial programming experience or
more knowledge of related technologies associated
with better hypotheses performance.

• No evidence that providing potential fault
locations helps debugging.

• Providing generalized debugging hypotheses

• > 16x more likely to successfully fix a fault

13
A. Alaboudi and T. D. LaToza, "Using Hypotheses as a Debugging Aid," 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Dunedin, New Zealand, 2020, pp. 1-9, doi: 10.1109/VL/HCC50065.2020.9127273.

LaToza CS 695 / SWE 699 Fall 2023

Resources for testing hypotheses

14

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore,
MD, 2013, pp. 383-392.

LaToza CS 695 / SWE 699 Fall 2023

Resources used in debugging

15

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore,
MD, 2013, pp. 383-392.

LaToza CS 695 / SWE 699 Fall 2023

Definitions
• Error - discrepancy between actual behavior of system

and intended behavior

• Failure - incorrect output value, exception, etc.; an error
that has become observable

• Fault - lines in code which are incorrect

• Debugging: determining the cause of a failure
• May involve finding location (fault localization) as well

as explanation.

16

LaToza CS 695 / SWE 699 Fall 2023

Information needs in debugging

17

omniscient debuggers

How did this runtime state occur? (12)
data, memory corruption, race conditions,
hangs, crashes, failed API calls, test
failures, null pointers

* Where was this variable
last changed? (1)*
Why didn’t this
happen? (3)*

Record execution history
Provide interactions for browsing or searching

WhyLine
directly supports all 3 questions
in some situations

LaToza	and	Myers.	Hard-to-answer	ques%ons	about	code.	PLATEAU	2010.

LaToza CS 695 / SWE 699 Fall 2023 18

statistical debugging [1]

How do I debug
this bug in this
environment?(3)

*
In what
circumstances
does this bug
occur? (3)

*

-Sample execution traces
on user computers
-Find correlations between
crashes and predicates

No need to
reproduce
environment on
developer
computer

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

LaToza CS 695 / SWE 699 Fall 2023 19

Which team’s component
caused this bug? (1)
Which team should I
assign this bug to?

✖

What runtime state changed
when this executed? (2) ✖

How is this object different
from that object? (1)✖

Informa>on	needs	in	debugging

• What code could have caused this behavior?

• What's statically related to this code?

• What code cause this program state?

20

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on Software Engineering (ICSE '07). IEEE Computer Society,
Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

LaToza CS 695 / SWE 699 Fall 2023

Activity
• What's the hardest debugging bug you've ever

debugged?
• What made it hard?

21

LaToza CS 695 / SWE 699 Fall 2023

What makes debugging hard?

22

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore,
MD, 2013, pp. 383-392.

LaToza CS 695 / SWE 699 Fall 2023

What makes hard bugs hard to debug?
• Cause / effect chasm - symptom far removed from the root cause (15

instances)
 timing / synchronization problems
 intermittent / inconsistent / infrequent bugs
 materialize many iterations after root cause
 uncertain connection to hardware / compiler / configuration

• Inapplicable tools (12 instances)
 Heisenbugs - bug disappears when using debugging tool
 long run to replicate - debugging tool slows down long run even more
 stealth bug - bug consumes evidence to detect bug
 context - configuration / memory makes it impossible to use tool

• What you see if probably illusory (7 instances)
 misreads something in code or in runtime observations

• Faulty assumption (6)
• Spaghetti code (3)

23

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza CS 695 / SWE 699 Fall 2023

What makes hard bugs hard to debug?

24

LaToza CS 695 / SWE 699 Fall 2023

Some debugging strategies
• Backwards: Find statement that generated incorrect

output, follow data and control dependencies
backwards to find incorrect line of code

• Forwards: Find event that triggered incorrect
behavior, follow control flow forward until incorrect
state reached

• Input manipulation: Edit inputs, observe differences
in output

• Blackbox debugging: Find documentation, code
examples to understand correct use of API

25

LaToza CS 695 / SWE 699 Fall 2023

Traditional debugging techniques

• Stepping in debugger
• Logging - insert print statements or wrap particular

suspect functions
• Dump & diff - use diff tool to compare logging data

between executions
• Conditional breakpoints
• Profiling tool - detect memory leaks, illegal memory

references

26

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

LaToza CS 695 / SWE 699 Fall 2023

Debugging tools
• Make breakpoint debuggers better

• Support stepping backwards (omniscient debuggers)
• Support finding statement that generated incorrect output

• Find part of program that generated incorrect output
(slicing)

• Output: subset of program
• Compare execution across different runs to guess locations

that might be related (automatic debugging)
• Output: list of potential fault locations

• Simplify input to find a simpler input that still generates
failure (delta debugging)

• Output: simplified input
• Hypothesis-based debugging: identify potentially relevant

hypotheses and gather evidence from execution to test
27

LaToza CS 695 / SWE 699 Fall 2023

Program analysis building blocks

• Many tools rely on gathering an execution trace
• Record the value of every expression as it

executes (or sometimes at function boundaries)
• Challenge: scalability

• Other tools use log data
• Gives developer control over what is being logged
• More easily scalable, requires developer to control

what is logged
• Other tools use test coverage data

• Which statement executes on each test, test
passing or succeeding

28

LaToza CS 695 / SWE 699 Fall 2023

Make breakpoint debugging better

• Debugging in a debugger is hard
• Forces developer to guess which methods to step

into
• Forces developers to guess which values to

instrument
• Changing guess requires reproing failure again

• Can be time consuming

• What if developers could debug forwards and
backwards?

29

LaToza CS 695 / SWE 699 Fall 2023

• Forwards / backwards stepping
through execution events

• Select graphical output, find code that drew it
•

ZStep94

30

See value of selected variables

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code and behavior in programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI '95), 480-486.

Demo: http://web.media.mit.edu/
~lieber/Lieberary/ZStep/ZStep.mov

http://dx.doi.org/10.1145/223904.223969
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov
http://web.media.mit.edu/~lieber/Lieberary/ZStep/ZStep.mov

LaToza CS 695 / SWE 699 Fall 2023

Omniscient debugger

31

Bill Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), October 2003.

http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf
https://www.youtube.com/watch?v=xpI8hIgOyko

LaToza CS 695 / SWE 699 Fall 2023

Find part of the program that caused
incorrect output

• Slice
• Subset of the program that is responsible for

computing the value of a variable at a program
point

• Backwards slice
• Transitive closure of all statements that have a

control or data dependency

• Originally formulated as subset of program

32

LaToza CS 695 / SWE 699 Fall 2023

Early evidence for slicing

• BEGIN
READ(X, Y)
TOTAL := 0.0
SUM := 0.0
IF X <= 1
 THEN SUM := Y
 ELSE BEGIN
 READ(Z)
 TOTAL := X * Y
 END
WRITE(TOTAL, SUM)
END

• (Static) slice - subset of the program that produces the same variable
values at a program point

• Slice on variable Z at 12

33

Participants performed 3 debugging tasks on
short code snippets

Asked to recognize code snippets afterwards

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

http://portal.acm.org/citation.cfm?id=358577

LaToza CS 695 / SWE 699 Fall 2023

Slicers debug faster
• Students debugging 100 LOC C++ programs
• Students given

 Programming environment
 Hardcopy input, wrong output, correct output
 Files with program & input

• Compared students instructed to slice against
everyone else
 Excluding students who naturally use slicing strategy

• Slicers debug significantly faster (65.29 minutes vs.
30.16 minutes)

34

Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging, Science of Computer Programming, 40(2-3), 151-169.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

LaToza CS 695 / SWE 699 Fall 2023

Dynamic
slicing

35

Hiralal Agrawal, Richard A. Demillo, and Eugene H.
Spafford. 1993. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23, 6 (June 1993),
589-616.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.231

LaToza CS 695 / SWE 699 Fall 2023

Associating incorrect output with responsible code

36

Amy J. Ko and Brad A. Myers. 2008. Debugging reinvented: asking and answering why and why not questions about program behavior. In Proceedings of the 30th international conference on Software engineering (ICSE '08). Association for Computing Machinery, New
York, NY, USA, 301–310. https://doi.org/10.1145/1368088.1368130

https://www.youtube.com/watch?v=pbElN8nfe3k

LaToza CS 695 / SWE 699 Fall 2023

Record / Replay for Web Apps

37

Demo: https://dl.acm.org/doi/10.1145/2501988.2502050
BJ Burg, Richard Bailey, Amy J. Ko, and Michael D. Ernst. 2013. Interactive record/replay for web application debugging. Symposium on User interface software and technology (UIST '13). 473–484. https://doi.org/

10.1145/2501988.2502050

https://dl.acm.org/doi/10.1145/2501988.2502050

LaToza CS 695 / SWE 699 Fall 2023

Compare faulty & unfaulty execution
traces

38

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza CS 695 / SWE 699 Fall 2023

Compare faulty & unfaulty execution
traces

• Program runs on user computer
 Crashes or exhibits bug (failure)
 Exits without exhibiting bug (success)

• Counters count # times predicates hit
 Counters sent back to developer for failing and
successful runs

• Statistical debugging finds predicates that predict bugs
 100,000s to millions of predicates for small applications
 Finds the best bug predicting predicates amongst
these

• Problems to solve
 Reports shouldn’t overuse network bandwidth (esp
~2003)
 Logging shouldn’t kill performance
 Interesting predicates need to be logged (fair
sampling)
 Find good bug predictors from runs
 Handle multiple bugs in failure runs

39

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza CS 695 / SWE 699 Fall 2023

Compare faulty & unfaulty execution
traces

• Predictor of what statements are related to a bug:
 Fail(P) - Context(P)
 Pr(Crash | P observed to be true) - Pr(Crash | P observed
at all)

• Example of a “likelihood ratio test”

• Comparing two hypotheses
• 1. Null Hypothesis: Fail(P) <= Context(P)

 Alpha <= Beta
• 2. Alternative Hypothesis: Fail(P) > Context(P)

 Alpha > Beta

40

Ben Liblit. (2005). Cooperative bug isolation. Dissertation, UC Berkeley.

LaToza CS 695 / SWE 699 Fall 2023

Simplify failure inducing input
• Long sequence of steps uncovered by tester

triggers a bug.
• Which of these steps are causing the bug
• Complex input - which part of input is responsible

for bug?
• Example - 10,700 Mozilla bugs (11/20/2000)

41

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering 28(2),
February 2002, pp. 183-200.

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

LaToza CS 695 / SWE 699 Fall 2023

Find shortest repro steps
• ddmin algorithm sketch:
• 1. Decompose input into pieces

2. Run tests on pieces
3. If there’s a piece that still fails, go back to 1 on
piece
 Otherwise, found locally minimal smallest input

•

42

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering 28(2),
February 2002, pp. 183-200.

http://www.st.cs.uni-saarland.de/papers/tse2002/
http://www.computer.org/tse/

LaToza CS 695 / SWE 699 Fall 2023

Hypothesis-Based Debuggers

43

Abdulaziz Alaboudi and Thomas D. Latoza. 2023. Hypothesizer: A Hypothesis-Based Debugger to Find and Test Debugging Hypotheses. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology (UIST '23). Association for Computing Machinery, New York, NY, USA, Article 73, 1–14. https://doi.org/10.1145/3586183.3606781

LaToza CS 695 / SWE 699 Fall 2023 44

LaToza CS 695 / SWE 699 Fall 2023 45

10 min break

Tech Talks

LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity
• In groups of 2 or 3, try out replay.io

• Find a sample frontend JavaScript codebase that you can run it on (e.g.,
your 695 project)

• Download and setup the tool, run it on your codebase
• Use it to try to understand a behavior in the web application codebase
• Write a reflection on your experiences using the tool:

• How did it help in understanding application behavior?
• How did tool change your approach or strategy to working with

execution behavior?
• What did you like most about the tool?
• What's hardest to use about the tool? What information would you like to

see that it doesn't currently provide?
• Submission

• Submit a pdf with your reflection through Blackboard. 1 submission per
group. Due 7:10pm today.

48

http://replay.io

