
Problem Solving
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today
• Part 1 (Lecture)(~85 mins)
• Break!

• Part 2 (In-Class Activity)(45 mins)

• Part 3 (Project group work)(20 mins)
• Time to work in groups, ask questions

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics
• HW1 due next week

• Project direction will evolve over time - that's ok!

• Anyone still looking for a group?

• Anyone who has not yet signed up for a Tech Talk?

3

A	few	minutes	in	the	life	of	a	developer

4

5

Developer assigned bug by team
Reproduces error

Browser hits error message (500 internal error)
Attaches debugger

Browse to page again, hit null reference exception
Hypothesize from call stack which function might be responsible
Browse through code
Uses debugger to change values & experiment
Make change, recompile, check, doesn’t work
Navigates slice, wrong values came from objects

In complicated code doesn’t understand
Walks to B’s office and asks where data comes from

B working on high profile feature in area
Tries to make change, still doesn’t work
Walks back to B, realize related to C’s feature, C at lunch
After lunch, A and B walk to C’s office,
 A, B, C change design to work with new feature
Bug passed from A to C to change feature

A	few	hours	in	the	life	of	a	professional	so4ware	developer

collabora7on
programming

collabora7on

programming
collabora7on

design
collabora7on

LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

Problem	solving

6
Newell, A.; Shaw, J.C.; Simon, H.A. (1959). Report on a general problem-solving program. Proceedings of the International Conference on Information
Processing. pp. 256–264.

Goal: where am I trying to go?
Operators: what actions can I take
to get closer to the goal?

Apply operator, look at new state,
apply another operator

http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf

Problem	solving	is	recursive

7
LaToza	and	Myers.	Designing	useful	tools	for	developers.	PLATEAU	2011.

Investigate and fix a design problem

How is BufferHandler using its buffer field? Are there any other mutations on it?

Read methods of BufferHandler

Why is there a buffer member variable that is never used?

Investigate references to BufferHandler.buffer

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Why is an event being issued by forcing a cache update?

Assure correctness

Set conditional break point
Check that jEdit still appears to work correctly
Repro original bug by reinserting

task

IDE

question

action

Problem	solving	is	recursive

8

Goal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Problem	solving	involves	answering	ques7ons

9

Goal:
Fix issue

Where is the
defect?

Subgoal

Subgoal

Subgoal

Which function
generated the

incorrect
output?

Where is this
function
invoked?

Subgoal

Subgoal

Subgoal

Problem	solving	involves	strategies

10

Goal:
Fix issue

Where is the
defect?

Subgoal

Subgoal

Subgoal

Trace output
backwards

Subgoal

Subgoal

Subgoal

Which function
generated the

incorrect
output?

Problem	solving	involves	taking	ac7ons	to	answer	ques7ons	and	
follow	strategies

11

Goal:
Fix issue

Where is the
defect?

Trace output
backwards

Which function
generated the

incorrect
output?

Developers	use	a	variety	of	techniques	for	obtaining	informa7on	
and	answering	ques7ons

12LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

Problem	solving	involves	formula7ng	hypotheses

13

Goal:
Fix issue

Where is the
defect?

Is the
registration

code executing
correctly?

Maybe it's in the
registration code I

just wrote

Problem	solving	involves	choices	between	strategies

14

Goal:
Fix issue

Where is the
defect?

Maybe it's in the
registration code I

just wrote

Trace output
backwards

Which function
generated the

incorrect
output?

Is the
registration

code executing
correctly?

LaToza CS 695 / SWE 699 Fall 2023

Problem solving in programming
• Developers have tasks (e.g,. fix this defect, implement this feature)

which they work to complete

• Developers ask questions reflecting information they need in order
to complete tasks.
• e.g., What’s the best design for implementing this?

• Developers may formulate hypotheses representing answers to
questions.

• Developers select strategies to gather evidence answer questions
and to support or reject hypotheses.
• From code, from external resources, from teammates

• Developers often have multiple strategies to answer questions

15

Program	comprehension	as	fact	finding

16

SEEK

LEARN

CRITIQUE

EXPLAIN

PROPOSE

IMPLEMENT

Read relevant methods looking for facts

Fact A is true

Fact A is bad design

Fact A is true to make fact B true

Change facts A1, B1 to facts A2, B2

Change code to reflect facts A2, B2

LaToza,	Garlan,	Herbsleb,	Myers.	Program	comprehension	as	fact	finding.	FSE	07.

LaToza CS 695 / SWE 699 Fall 2023

Supporting programming activities

17

Goal:
Fix issue

Where is the
defect?

Maybe it's in the
registration code I

just wrote

Trace output
backwards

Which function
generated the

incorrect
output?

Is the
registration

code
executing

• Many potential points of intervention, supporting
subgoals / strategies / question answering /
testing hypotheses

Useful	interven7ons	solve	important	problems

18

frequency

durationquality impact

LaToza	and	Myers.	Designing	useful	tools	for	developers.	PLATEAU	2011.

19

What	percentage	of	the	last	week	have	you	spent…

LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

Example:	Ac7vi7es	in	fixing	a	defect

20

Circle	size:			%	of	Rme Edge	thickness:			%	of	transiRons	observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

For	tasks	in	code	in	your	own	codebase	that	you	haven’t	seen	recently	

LaToza	and	Myers.	Developers	ask	reachability	quesRons.	ICSE	2010.

21
Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on Software Engineering (ICSE '07). IEEE Computer Society,
Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

Some	methods	for	suppor7ng	problem	solving

• Find an important question, build tool that makes it easier
to answer

• Find an action that helps developers answer questions,
make it easier to take

• Find a new strategy that helps developers answer
question more effectively

22

Many	other	factors	influence	difficulty	answering	ques7ons

23

effort to answer
questions

expertise

development environments

time to market

software qualitycode quality

programming languages

team practices

• Interventions might also target these factors

•

Some	methods	for	suppor7ng	problem	solving

• Find an important question, build tool that makes it
easier to answer

• Find an action that helps developers answer questions,
make it easier to take

• Find a new strategy that helps developers answer
question more effectively

24

LaToza CS 695 / SWE 699 Fall 2023

Making questions easier to answer

• Tools help developers be more productive by
reducing the time to answer questions, increasing
likelihood of success

• This requires
• understanding precisely the information

required and context available to developers
• insight into a mechanism to make a question

easier to answer

25

LaToza CS 695 / SWE 699 Fall 2023
0" 10" 20" 30" 40" 50"

Object"merging"

Has"label"

May"(not)"alias"

Is"owned"

Has"a"

Cardinality"

Is"in"@er"

How"to"get"

Part"of"

Navigability"

Is"a"

Points"to"

Beliefs" Ques@ons"

Questions and beliefs about object structure

Example: Questions about object structure

26

Is in tier

Is owned
[...] the window itself has a reference to the UndoManager but you can’t tell from
this diagram whether each window has its own UndoManager, or whether it is just
one global manager.

How to get
How I will get hold of the DrawingEditor object? [...] Basically I need to know the
instance of the current window.

What I would be interested in is looking in the code to try to understand where are
the view and model

Part of Maybe I would start with the Drawing object and that should have a list of listeners?

Navigability

Is a

I know I need to get the view from here; so how do I do that?

Who implements type X? [who can be an object or a type]

Cardinality

Has a Maybe I would start with the Drawing object and that should have a list of listeners

May alias
So I have different selections in the different views.

The class diagram says that the DrawingEditor has one DrawingView and the
StandardDrawingView may or may not have a Drawing.
I would like to know the cardinality: so Window has one or more
StandardDrawingViews?

Let's say I am in the StandardDrawing class and I want the JavaDrawApp object
which is a DrawingEditor [...]. What would save me a lot of time is to say now I am
at the Drawing and I want to go to the DrawingEditor, show me my options.

Both of them are two views on the same Drawing, but if there are two windows...

Marwan Abi-Antoun, Nariman Ammar, and Thomas LaToza. 2010. Questions about object structure during coding activities.
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE '10). ACM, New York, NY, USA, 64-71.
DOI=http://dx.doi.org/10.1145/1833310.1833321

LaToza CS 695 / SWE 699 Fall 2023

Example: Programming questions

27

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE Computer Society, Washington, DC, USA, 344-353. DOI: https://doi.org/10.1109/ICSE.2007.45

LaToza CS 695 / SWE 699 Fall 2023 28
LaToza,	Venolia,	and	DeLine.	Maintaining	Mental	Models:	A	Study	of	Developer	Work	Habits.	ICSE	2006.

29
LaToza	and	Myers.	Hard-to-answer	quesRons	about	code.	PLATEAU	2010.

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42)

When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)

History (23)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)

How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this
type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

Questions developers report as hard to
answer span many topics

Many	of	these	already	have	tools	that	support	them

• Debugging

• Refactoring

• Design Rationale

• So if there's already a tool designed to support this,
why is it still so hard??

30

LaToza CS 695 / SWE 699 Fall 2023

Supporting information needs
• Debugging is hard.

• Tool x claims to make debugging easier!

• Does tool x help?

• Depends…
• Does tool x apply in the situations that make

debugging challenging?
• Do developers have the context they need to invoke

tool x
• Does tool x reliably produce the information required
• Are the interactions for using tool x usable

31

LaToza CS 695 / SWE 699 Fall 2023

Debugging (26)

32

omniscient debuggers

How did this runtime state occur? (12)
data, memory corruption, race
conditions, hangs, crashes, failed API
calls, test failures, null pointers

* Where was this variable
last changed? (1)*
Why didn’t this
happen? (3)*

[1] Ko, A.J., and Myers, B.A. (2008). Debugging reinvented: asking and answering why and why not questions about
program behavior. In Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

Record execution history
Provide interactions for browsing or searching

WhyLine [1]
directly supports all 3 questions
in some situations

LaToza CS 695 / SWE 699 Fall 2023

Debugging (26)

33

statistical debugging [1]

How do I debug
this bug in this
environment?(3)

*
In what
circumstances
does this bug
occur? (3)

*

-Sample execution traces
on user computers
-Find correlations between
crashes and predicates

No need to
reproduce
environment on
developer
computer

Examine
correlations
between crashes
and predicates

[1] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I. 2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.

LaToza CS 695 / SWE 699 Fall 2023

Debugging (26)

34

Which team’s component
caused this bug? (1)
Which team should I
assign this bug to?

✖

What runtime state changed
when this executed? (2) ✖

How is this object different
from that object? (1)✖

LaToza CS 695 / SWE 699 Fall 2023

Rationale (42)

35

How did this ever
work? (4)

Why was it done this way? (14) Why wasn’t it done this
other way? (15)

Was this intentional,
accidental, or a
hack? (9)

naming, code structure, inheritance relationships, where resources freed,
code duplication, algorithm choice, optimization, parameter validation
visibility, exception policies

✖

✖ ✖

✖

LaToza CS 695 / SWE 699 Fall 2023

Refactoring (25)

36

Is there functionality or code
that could be refactored? (4)

Is the existing design
a good design? (2) * *

obsolete code, duplicated functionality, redundant data
between equally accessible data structures✖

smell detectors [1], metrics clone detectors [2]

Look for bad design idioms
Suggests developer refactor

data clumps
feature envy
refused bequest
typecast

[1] Murphy-Hill, E. and Black, A. P. (2008). Seven habits of a highly effective smell detector. In Proc of Recommendation
Systems for Software Engineering at FSE.

Detects syntactically similar code
Suggests developer refactor

[2] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: a multi-linguistic token-based code clone detection
system for large scale source code. In TSE, 28(7).

instanceof
magic number
long method
large class

ComponentUI mui = new MutilColorChooserUI();
return MultiLookAndFeel.createUIs(mui,
 (MultiColorChooserUI) mui);

ComponentUI mui = new MultiButtonUI();
return MultiLookAndFeel.createUIs(mui,
 (MultiButtonUI) mui);

clone

LaToza CS 695 / SWE 699 Fall 2023

Refactoring (25)

37

Should I refactor
this? (1)

Are the benefits of this refactoring
worth the time investment? (3)✖ ✖

LaToza CS 695 / SWE 699 Fall 2023

Refactoring (25)

38

Is it possible to
refactor this? (9)

How can I refactor this (2) without
breaking existing users(7)?

IDE refactoring automation

higher-level refactorings

*

✖

*

changing a method’s scope, moving functionality between layers,
changing semantics of config values, making operations more data
driven, generalizing code to be more reusable

rename
move
pull up
push down
encapsulate field
convert local variable to field
....

LaToza CS 695 / SWE 699 Fall 2023

Barriers in Front-End Web Development

• Where do developers encounter barriers answering
questions and get stuck?
• --> Opportunities to make better tools by reducing

barriers

• Let's look at the sorts of questions developers ask on
StackOverflow
• Common challenges that are hard
• If we find patterns, maybe a question indicates a

bigger issue?

39

40

41

StackExchange API, posts from 5/2016 - 10/2016
including 24 most frequent front-end web
development tags

286,000

Excluding posts unanswered, duplicates, no upvoted
questions 50,000

Randomly sampled 1000

Manually excluded posts without upvotes for top
answer 666

Excluding posts unrelated to front-end web
development 301

42

Programming activities

• implement code from scratch

• comprehend code

• change the behavior of existing code

• resolve a compile time or runtime error

• refactoring

• performance optimization

43

Evidence referenced in questions and answers
• code

• executable code within a pastebin

• official documentation by the software’s author
or standards body

• alternate documentation offered by others
including tutorials

• program output

• execution state describing intermediate values
computed and observed through debugging
aids such as console logging or the debugger

• other
44

Idioms

• Callback idioms: bind targets, callback contexts, bind
configurations

• Graphical idioms: queries, getters, setters

• Object-interaction idioms: valid references, back-end
requests, this scope, collections and formats, method
chains

45

Coding Barriers: Example

Q: "...[code snippet] works fine if i remove "400, function()", when i click the
menu-trigger, the menu appears. but with it added, the menu appears then
disappears too quickly,..."

A: "Remove the display setting which jQuerys slideToggle() sets, that why the
menu gets hidden...:"

GB1 Unidentified Setter 
visual property change à code fragment to mutate property

46

$(this).toggleClass("nav-expanded").css("display","")

47

48

Callbacks

x.on("event", ..., function callback(arg){/**/})

49

bind target: event to
subscribe to

bind configuration: parameters
controlling behavior

callback context: what args and
additional state is available
when invoked

Common problems with callbacks
Bind Targets: Identifying or choosing an event, life cycle hook, or trigger to register a callback

• CB1 Unidentified Target 
desired bind target à API name & code fragment

• CB2 Constrained Target 
bind target code fragment à API rules making fragment
(in)valid

• CB3 Confused Target 
current & desired bind targets à API use differences, new
target’s code fragment

50

51

Graphical idioms

52

const [r1, r2] = queryInterface(params);
r1.get("prop") && r2.set({aProp: value, ...});

graphical getter graphical setter

graphical query

Common problems with graphical idioms
Graphical Setters: Updating graphical properties of the layout via API (DOM access methods, CSS selectors)

• GB1 Unidentified Setter 
visual property change à code fragment to mutate property

• GB2 Unobservable Setter 
setterA & visual property change à setterB to mutate property

• GB3 Indirect Setter 
setterA à elements which inherit properties from setterA or occlude
mutations

• GB4 Overwritten Setter 
setterA à setterB overwriting setterA & code fragments with alternative fixes

53

54

Common problems w/ object-interaction idioms
Valid References: Determining defined standard or framework identifiers at compile time or runtime

• OB1 Inactionable Reference Error 
statement generating error & error message à
explanation of error message

• OB2 Silent Invalid Reference 
invalid statement à warning message & statement
fixing warning

55

Find a new strategy that makes question easier to
answer

57

58

Find an event immediately before the incorrect behavior
Trace control forwards, observing each statement until something
incorrect happens

59

Find the statement that generated the incorrect output
Keep following the data used backwards until you find something that's
wrong

60

guess and check

backwards search

forwards search

read the docs

check StackOverflow

ask a coworker 
 

draw a whiteboard diagram

Example	of	a	programming	strategy

61

Developers	o4en	have	choices	between	strategies

62

vs.

Question Can I remove this call?

Understand implications before
editing by investigating callees

UnderstandStrategy:
Remove the call & test
behavior change

Implement & testStrategy:

Guess	and	check	debugging

63

1.Describe in words how the program is failing  

2.Brainstorm a list of possible causes of this failure  

3.For each possible cause: 

1. Read the potentially defective code. 

2. Gather data about program execution to verify that it is the defect. 

3. If it is the defect, repair it. 

4.If you didn’t find the defect, return to 2  

64

1.STRATEGY debug()
2. # Is the faulty output you're investigating printed to a command line?
3. IF the faulty output is logged to a command line
4. # To find print statements, try searching for keywords related to 'log' or 'print'
5. SET outputLines TO the line numbers of calls to console logging functions
6. # Graphical output includes things like colored lines and rectangles
7. IF the faulty output is graphical output
8. # To find these lines, try searching for keywords related to graphical output, like '
9. # draw' or 'fill'. Focus on lines that directly render something, not on higher-level
10. # functions that indirectly call rendering functions.
11. SET outputLines TO the line numbers of function calls that directly render graphics to the screen
12. # Now that you have some lines that could have directly produced the faulty output, you're
13. # going to check each line, see if it executed, and then find the cause of it executing. If
14. # you're lucky, you only have one output line to check.
15. FOR EACH 'line' IN 'outputLines'
16. IF the program executed 'line'
17. Analyze the line to determine its role in the overall behavior of the program
18. # Check for errors such as the wrong function being called, the wrong argument being
19. # passed to a function, the wrong variable being referenced, or a wrong operator being
20. # used.
21. IF any part of 'line' is inconsistent with its purpose
22. # You found the bug
23. RETURN 'line'
24. # If the output statement is not wrong, perhaps the line was not supposed to execute at all?
25. IF 'line' was not supposed to execute at all
26. # The conditional might be in the same function as the output statement, or it might
27. # have been a conditional in a function that called this function. Check the call
28. # stack if necessary by setting a breakpoint. Find the conditional that led this line
29. # to being executed
30. # Some value in the conditional's boolean expression must have been wrong. Which
31. # value was it?
32. SET 'wrongValue' to the value in the conditional's boolean expression that ultimately
33. allowed the faulty output to execute
34. # We'll use another strategy to find the source of the incorrect value.
35. RETURN localizeWrongValue('wrongValue')
36. # If the line was supposed to execute, but it executed with an incorrect value, find
37. # that value.
38. IF 'line' executed with an incorrect value
39. SET 'wrongValue' TO the incorrect value
40. # We'll use another strategy to find the cause of the incorrect value.
41. RETURN localizeWrongValue('wrongValue')
42. # If you made it to this line, then you must have missed something. Is it possible you
43. # made a mistake above? If so, go back and verify your work, because something caused the
44. # faulty output.
45. RETURN nothing

Many	factors	influence	the	effec7veness	of	a	strategy	in	a	situa7on

65

Strategy: Implement & test

Work style [Clarke+04]
vs. Strategy: UnderstandInfluencing factor

Opportunistic Systematic

Development process Test-driven development Few unit tests

Cost of bugs

Time to implement Easy to implement Hard to implement

Low High

Difficulty of testing

Test execution time Short-running test suites Long-running test suites

An easily tested property
(e.g., performance)

Non-functional property
(e.g., testing usability)

Developers	o4en	rapidly	switch	between	alterna7ve	ac7ons	or	
strategies

66

Rapidly	found	method	m	implemenRng	command	
Unsure	where	it	generated	error	

	
StaRcally	traversed	calls	looking	for	something	that	
would	generate	error	

Tried	debugger	

	
Did	string	search	for	error,	found	it,	but	many	callers	

Stepped	in	debugger	to	find	something	relevant	

StaRcally	traversed	calls	to	explore	

Went	back	to	stepping	debugger	to	inspect	values	
Found	the	answer

(66	minutes)

Where	is	method	m	genera7ng	an	error?

debugger

staRc	call	traversal

grep

debugger

staRc	call	traversal

debugger

3	So	we’ll	go	there	and	we’ll	just	crawl	through	this	code	and	we’ll	try	to	understand	that.	So	this	code	has	some	other	options	in	it.		
So,	I’m	just	scanning	through	to	just	understand	what	this	is	doing.	Typically	these	functions	look	for	subcommands	for	the	main	command.	So	u	has	
[looking	case	statement	looking	at	character	entered	by	the	user	to	dispatch	on	what	command	to	execute]	
one	functionality.	And	ub	has	another,	and	uf	has	another.	So	that’s	what	this	code	is	actually	doing,	hence	parse.		
4	And	the	guy	that	wrote	most	of	this	code	was	pretty	consistent	with	his	code	patterns	for	how	he	does	stuff.	So,	again	the	function	names	are	idicative	of	what	is	going	on.	And	he	makes	heavy	use	of	Elags	passing	around.	So	more	precisely,	what	I’m	looking	for,	I’m	looking	for	who	is	actually	returning	this	memory	access	string.	So	I	don’t	see	anything	just	scrolling	through	this	function,	clearly	it’s	not	this	function,	but	this	function	calls	a	bunch	of	other	functions,	so	I	could	walk	through	all	of	the	calls	to	try	to	isolate	that,	but	I’m	going	to	see	Eirst	if	I	can	get	lucky	and	narrow	it	down	from	the	other	end	and	look	at	where	the	output	is	coming	from.	
5	Searching	the	entire	project	and	we’re	just	going	to	do	a	string	search	for	all	of	the	project	and	see	if	that	comes	up	with	any,	with	basically	where	that	output	comes	from.		
[doing	source	insight	search]	
So,	luckily	this	doesn’t	seem	to	be	a	piece	of	output	that	gets	spewed	everywhere	which	is	nice,	but	it	seems	pretty	sparse.	And	in	fact	searching	the	project	didn’t	actually	Eind	that	at	all.	So	I’m	really	not	going	to	be	able	to	work	backwards	from	the	error	string.	
6	So	we’ll	go	back	to	the	source	Eile	itself,	so	we’ll	go	back	to	the	original	parse	Eile,	so	we	have	no	options.	No	modes,	so	we’re	in	the	default	mode,	so	we’re	going	into	this		instruction,	this	is	just	Elags.	I’m	just	trying	to	get	a	feel	for	the	parameters	that	we	are	dragging	along	here.		
I	don’t	know	if	you	want	editorial	comment	on	code	or	code	tools	while	I’m	walking	through	this.	
“Ah,	whatever,	it’s	mostly	just	whatever	you’re	thinking	about	while	your	working	on	the	task,	if	that’s	what	you’re	thinking	about	that’s	Eine.”	
7	[laughing]	Yeah,	it	would	be	nice	if	looking	at	this	function	on	the	parameters	themselves	were	overlaid	with	the	type.	So	this	has	a	mouse	over	that	is	something,	but	it	doesn’t	actually	tell	me	what	the	type	is.	So	again	looking	at	the	function	declaration	again	???	So	what	I	really	want	to	know	is	which	one	is	the	address	that	I’m	actually	going	to	disassemble	and	be	on	that.	So	
So	right	now	I’m	mostly	just	reading	the	code	and	trying	to	understand	stuff.	But	a	few	things	I	do	noticie	is	a	lot	of	the	lack	of	the	initialization.	So	some	of	that	I	might	change	is	I	ultimately	do	edit	this	function.	
[looking	at	the	method	that	is	called	from	dispatch	and	that	does	the	actual	work	for	the	subcommand	of	interest]	
8	Just	because	it’s	annoying.		
So	scanning	thorugh	here,	I’m	just	looking	for	the	calls	are	and	where	we	go	next,	or	where	the	output	is,		because	again	I’m	interested	in	who	is	putting	that	output	in	there.	So	here	is	this	function	call,	machine	disassemble.	Here’s	a	place	where	source	insight	falls	short,	it’s	showing	me	the	wrong	preview	for	the	dissasmeble	function.	
[little	preview	window	in	bottom	of	source	insight	window	for	callee]	
I	know	that	because	this	is	a	member	function	and	this	one	is	not.	This	is	the	wrong	number	of	parameters,	blah,	blah,	blah.	So	again	we	have	to	go	back	to	browse	the	project	symbols	for	the	disassemble	function.		
9	So	again,	lots	of	different	ones,	but	I	have	which	object	this	is.	So	if	I	go	back	here,	we	are	looking	at	the	machine	is	our	object	here,	and	it	is	a	machine	info	struct,	so	we	can	go	back	here	to	
[Eiguring	out	type	of	object	to	reason	about	dynamic	dispatch	for	manually	going	to	callee]	
go	to	the	machine	info	version	of	disassemble.	So	this	is	interesting	because,	now	we’re	outside	of	what	the	debugger	itself	is	doing	and	we’re	now	in	the	debugger	APIs.	So	that	makes	the	risk	of	a	change	higher.	There’s	more	of	a	regression	risk,	because	it’s	not	just	the	debugger	that’s	using	it,	
10	it’s	all	the	debugger	including	ones	that	are	not	ours.	So	I’m	just	scanning	through,	typically	looking	at	stuff	like	this	I’m	just	interested	in	how	big	the	function	is,	how	many	different	branches	it	could	take,	how	complex	it	is	going	to	be	to	Eind	out	where	we	are	going,	just	from	reading	the	code.	Of	course	I	can	attach	the	debugger	to	the	debugger	and	walk	through	that	which	is	probably	what	I’m	going	to	do	here	in	a	minute.	
11	Yeah,	so	this	will	be	a	little	easier	to	understand	if	I	actually	walk	through	the	code.	So	I’ll	just	open	another	debugger	session	and	attach	it	to	this	Eirst	one.	
[starts	a	second	windbg]	
So	we	started	with	parse	unassemble,	which	is	going	to	be	in	dbg	eng.		
12	Might	have	to	line	up	symbols	for	this.	So	we’ll	wait	on	that,	we’ll	go	back	here.	[to	source	insight]	
Decode.	
So	just	scrolling	through	the	function	and	looking	at	the	Eirst	actual	function	call	that	we	will	make	goes	to	this	decode	function.	And	again	I’m	just	looking	for	where	that	output	comes	from	or	if	we	would	set	a	different	set	of	brnaches.	The	comments	are,	this	is	nicely	commented	code	which	is	rare	to	say	the	least,	so	it’s	actually	a	little	easier	to	try	and	throw	out	pieces	of	code	that	are	probably	not	related	to	what	I’m	looking	for.	Because	I	have	some	innate	knowledge	as	to	what	I’m	looking	for,	and	this	error	
[again	thinking	about	reading	source	code	as	a	Eiltering	/	search	task]	
is	actually	most	likely	coming	from,	we’re	reading	an	address	that	is	not	in	the	dump	Eile.	So	I’m	looking	speciEically	for	read	memory	or	read	pointer	or	stuff	like	that.	
[he’s	right	–	it	does	end	up	being	from	one	of	these	calls]	
But	since	this	entire	codebase	calls,	so	I	know	that	that	is	going	to	be	something	like	read	ptr	or	read	virtual,	but	I	also	know	that	there’s	a	bazillion	calls	to	that	function,	and	it’s	not	very	easy	to	narrow	it	down	that	way,	so	I	can’t	go	about	it	that	way.	
[wants	do	string	search	of	callee	tree	identiEiers]	
14	So	the	debugger	over	here	came	back,	so	now	I	can	go	get	symbols	for	this	version.		
So	I	can	pick	the	symbol	path	in	the	debugger	so	that	I	can	walk	through	the	code,	and	again	we	wait	a	little	bit	so	we’ll	go	back	over	here.	[to	source	insight]	
15	This	part	of	the	code	is	actually	taking	apart	the	instructions,	so	by	this	point	we	already	have	the	data,	so	the	read	data	would	have	already	occurred,	and	we	would	have	failed	by	the	point	that	we	got	to	this	code.		
So	we’ll	go	back	here,	we	need	to	go	back	to	the	write	disassemble,	I	believe	this	is	the	right	one.	
[source	insight	symbol	browser	for	it]	
16	So	we’ll	assume	that	decode	failed,	but	if	we	do	that,	if	it	fails	totally	then	we	would	just	exit,	which	doesn’t	seem	to	be	what’s	happening.	
Because	otherwise	this	function	wouldn’t	have	this	text	output	that	we’re	interested	in.	
17	So	the	other	things	that	I	noticed	when	I	was	looking	at	the	deEintions	for	unsassemble	when	we	called	disassemble,	there’s	a	bunch	of	machine	speciEic	implementations	of	disassemble.	So	it	could	be	that	we’re	not	actually	calling	the	machine	info,	there	could	be	an	x86	one	that	we	are	actually	calling	since	this	is	debugging	x86	code.	So	my	ia64	version,	which	apparently	I	don’t	have	code	for	or	maybe	it	was	removed	from	the	project,	same	thing,	so	there’s	clearly,	so	there	might	be	something	wrong	with	my	project	which	is	why	there’s	so	many	deEinitions	ffor	this.		
18	Ok,	so	the	debugger	over	here	came	back	so	I	can	just	set	a	breakpoint	on	parse	unassemble	and	then	walk	back	through	the	code,	oh	we	actually	don’t	that	one	bececause	that	one	is	going	to	succeed,	we	want	the	failure	case	which	is	this	one.	
[demonstrated	some	behavior	and	got	a	call	into	it	twice]	
Ok,	so	we	are	at	parse	unassembled,	so	we’ll	make	the	debugger	look	at	the	same	source	code	that	we	are	looking	at	in	source	insight	over	here.		
And	the	debugger	should,	if	it	can	Eind	the	code,	maybe	it	doesn’t	like	this	code	path.	That	will	deEinitely	make	it	harder	to	walk	through	the	code.	
19	So	we’ll	go	back	into	disassemble	here,	since	there’s	not	really	a	better	implementation	that	is	able	to	do	it,	we’ll	go	back	to	the	machine	info	one.		
What	would	really	be	helpful	here	is	to	know	what	code	paths	are	most	common,	like	the	metadata	that	preEix	provides,	or	some	tracing	tools.	If	that	was	somehow	overlaid	with	the	source	code,	then	you	could	see	what	code		
20	was	dead	effectively,	or	what	code	gets	run	in	certain	environments,	we’ll	just	put	that	in	the	pipe	dream	pile.	
“So	you	just	want	to	see	what’s	always	executed?”	
So	it	would	be	nice	to	see,	so	like	preEix	only	does	a	set	number	of	paths,	but	like	Ben	Liblit	has	a	project,	you’re	familiar	with	him?	
“He’s	from	wisonsin”	
Yeah,	he’s	a	researcher	from	Wisconsin,	his	statistical	debugging	is	his	thing,	and	he	has	all	this	tracing	stuff	that	comes	up	and	back	and	forth.	So	that,	the	thing	about	looking	at	failure	data,	because	we	have	failure	data	too,	we	can	see	what	code	path	executes	when	things	fault,	what	code	executes	commonly	when	stuff	works,	so	if	we	had	some	way	to	say	in	the	source	code,	because	I	can	do	it	from	the	debugger,		
21	but	I	had	some	way	to	say	in	the	source	code,	ok,	if	I	give	you	these	values,	what	paths	will	execute.	Which	I	guess	is	effectively	debugging	the	code.	
“So	you’d	want	to	specify	those	values	at	function	entry	rather	than	just	randomly	end	up	with	the	values	from	playing	with	the	UI?”	
I	think	what	I’m	saying	is	that,	given	a	function	deEintion,	I	Eill	in	a	set	of	values,	so	what	happens	if	this	guy	is	null,	and	this	guy	is	also	null,		
[writing	asserts	on	params]	
“Make	a	bunch	of	asserts	essentially”	
Yeah,	it	would	basically	highlight	in	the	code	which	paths	are	going	to	execute,	something	like	that.	
“What	would	you	use	that	information	for,	how	would	that	change	how	you	are	looking	at	this	method,	it	would	help	you	rule	out	pieces?”	
22	Yeah,	it	would	help	me	rule	out	which	paths	were	going	to	execute,	so	commonly	when	I’m	looking	at	code,	either	code	that	I’m	familiar	with	in	the	project	that	I	worked	on	commonly	or	because	my	job	is	partially	to	debug	everybody	else’s	code,	so	a	lot	of	the	time	I	have	crash	dumps	that	say	what	the	state	at	the	time	of	the	failure	was,	and	I	have	the	source	code,	but	I	have	to	do	a	lot	of	either	qualiEication	of	values	in	the	debugger	itself	or	a	bunch	of	guessing	whatever	in	my	head	to	try	and	Eigure	out	which	paths,	because	we’re	looking	at	a	static	point	of	time	in	the	debgugger	and	a	static	piece	of	code.	And	the	2	won’t,	you	can	overly	the	two,	but	you	won’t	necessarily	know	which	paths	executed,	so	you	have	to	kind	of	walk	through	backwards.	So,	but	I	do	have,	in	general	I	do	have	the	parameters,	this	is	null,	this	is	not	null,	this	is	this	static	value,	this	is	static	value.	
23	So	if	I	could	overlay	with	the	source,	so	that	might,	for	some	of	these	signiEicantly	longer	functions,	it	would	help	me	understand	what’s	going	on	there.		
The	other	thing	that	I	do	a	lot	when	I	look	at	code	that	I	own,	I’m	typically	looking	for	places	that,	this	is	for	stuff	that	I	much	more	familiar	with,	I’m	always	interested	in	what	sort	of	things	could	be	refactored.	Where	I	could	I	make	a	function	smaller,	where	could	I	reduce	the	number	of	parameters.	So	having	a	refactoring	mode	in	the	source	editor	would	be	helpful.	Slickedit	has	some	interesting	things	where	you	can	highlight	a	section	of	code	and	slickedit	will,	if	you’re	going	to	refactor	this,	then	you	also	need	to	drag	along	these	locals	and	these	parameters,	and	they	have	to	be	passed,	and	it	makes	your	function	deEinition	for	you.	
24	So	that’s	very	interesting.		
So,	anyway,	we’re	back	to	this.	It	doesn’t	like	my	source	path,	oh	because	I’m	giving	it	the	wrong	one.	
[still	trying	to	load	symbols	in	debugger]	
25	[waiting	on	it	to	try	to	load	symbols	again,	back	to	source	insight]	
Ok,	again	the	comments	are	helpful,	because	I	can	basically	ignore	this	branch	because	I’m	pretty	sure	that	the	decoder	didn’t	fail	and	I	don’t	see	this	output.	[reasoning	about	what	branches	were	taken	based	on	output	behavior]	
But	this	is	interesting	to	see	this	output	in	the	context	of	that,	I	was	looking	for	a	piece	of	output,	because	this	output	is	split	across	2	source	lines	as	if	someone	had	a	signiEicantly	more	narrow	source	editor	view.	So	that	might	mean	that	one	of	the	reasons	that	I	couldn’t	Eind	the	string	I	was	looking	for	before	was	because	it	was	wrapped.	So	maybe	if	I	go	back	to	my	search,	I	was	searching	for	the	entire	string	“memory		
26	space	access	space	error”	so	maybe	if	I	just	make	it	memory	access	and	let	it	search	along,	and	that	Einds	signiEicantly	more	entires,	including	one	in	utils	dot	cpp,	in	a	table	of	error	strings.	
[goes	to	that	reference]	
So	wherever	that	guy	was,	there	you	go.	So	this	is	like	an	interesting	search	problem	in	general.	Actually,	I	don’t	think	google	or	live	search	do	this,	but	if	you	give	a	set	of	4	individual	search	terms,	usually	you	get	all	or	nothing	from	a	search	engine.	So	you	get	the	set	of	results	that	get	all	4	terms,	or	in	this	case	all	3	terms,	or	no	terms.		
27	But	you	don’t	typically	get	a	treed	set	of	terms,	here	are	the	set	of	results	that	have	all	of	your	terms,	here	is	the	set	of	results	that	have	all	minus	1,	all	minus	2,	all	the	way	down	to	0.	But	in	that	case,	this	would	have	been	very	helpful,	this	would	have	potentially	saved	me	a	good	bit	of	time.	
So	I’m	looking	for	a	call	to	error	string	with	the	error	value	memory.	
[wants	the	caller	to	this	method	with	a	particular	parameter	–	the	enum	that	forces	the	case	where	it	prints	the	string]	
So	we	can	see	how	many	callers	there	are	here,	ok,	so	there’s	a	pretty	large	number	of	callers	of	this.	Maybe	we	can	look	at	where	those	callers	are	and	narrow	that	down	based	on	what	we	know.	
So	there	are	a	lot	in	typed	data,	a	lot	in	system.	
28	SpeciEically	we’re	looking	for	calling	error	string	with	the	Eirst	parameter	of	memory,	but	this	is	another	case	where	search	generally	fails	in	general	because	of	spacing.	So	this	is	error	string	open	paren,	and	then	the	word	in	all	caps	memory	[(MEMORY)].	
But	there’s	all	sorts	of	permutations	of	how	that	could	be	spaced	and	still	be	legitamite	compilable	code,	so	we’ll	start	with	this	one	and	see	if	we	get	anything.	Which	we	don’t.	So	we’ll	go	back	here	
29	a	lot	of	spaces,	error	space,	open	paren	space,	and	the	word	memory,	and	we’ll	search	for	that.		
[still	nothing]	
So	I’m	done	trying	to	do	that.	So	let’s	look	at	callers	of	error	string.	
[back	to	other	strategy	of	looking	through	callers]	
So	maybe	if	we	just	parse	through	here,	or	step	through	here,	we	can	see	which	ones	are	calling	with	the	parameter	of	memory.	
But	unfortunately,	many	of	these	are	calling	with	the	Eirst	parameter	as	a	variable.	So	that	would	mean	that	what	we	were	looking	at	before	is	not	a	search	problem,	it’s	a	variable	interpretation	problem.		
30	So,	I’m	just	kind	of	stepping	through	these	values,	and	in	my	head,	I’m	just	trying	to	remember	which	ones	are	legitimate	and	which	ones	might	not	be.	So	it	would	be	nice	if	I	could	just	take	this	whole	list	of	result	values	and	select	them	all	out	of	this	combobox,	and	then	paste	them	into	notepad,	so	I	could	then	remove	them	from	my	list.	So	I	wouldn’t	have	to	just	worry	about	remembering	them.		
31	I	think	that’s	something	that	I	tend	to	do	a	lot	when	debugging	as	well	as	reading	code,	is	that	I	end	up	with	lots	of	clipboard	items,	but	not	clipboard	in	the	sense	of	you’re	sharing	text	between	applications,	but	clipboard	in	the	sense	of	these	are	little	hints	on	which	paths	I	went	down	and	which	paths	I	didn’t.	
“So	you	want	to	make	sure	you’re	not	repeating	paths,	and	that	you’re	pursuing	all	the	paths	that	you	might	want	to	reasonably	pursue?”	
And	more	what	I	was	thinking	at	the	time	when	I	omitted	a	path	or	considered	a	path.	So	sometimes	when	I	am	actually	editing	the	code,	I	will	go	through	an	output	not	likely	to	be	the	path	because	of	this,	and	then	a	lot	of	those	comments	I	would	then	clip	out	before	the	code	gets	submitted	because	they	are	mostly	just	code	reviewer	comments.	And	typically,	that’s	something	that	we	see	in	collaborative	word	docs.	
32	It’s	pretty	typical	that	you’ll	collaborate	on	a	word	doc,	and	people	will	put	comments	in	line	with	stuff,	but	it’s	a	little	less	typical	for	source	code,	source	code	comments	tend	to	be	missing	in	total	or	the	comment	by	the	actual	developer	or	the	maintainer.	There’s	not	really	a	place	for	comments	for	readers.	This	may	have	been	perfectly	clear	for	the	developer	who	wrote	it,	the	source	code	maintainer	might	understand	it,	but	the	thousands	of	other	people	who	are	going	to	read	it	for	debugging,	for	customers,	for	the	developers	themselves,	there’s	really	no	place	for	them	to	put	comments,	and	maybe	there	should	be.	
“What	stops	people	like	from	just	checking	the	comment	into	the	source	depot?	There’s	just	too	much	overhead	and	you	don’t’	have	the	authority	to	do	that,	or	you	don’t	own	that	code?”	
33	I	think	it’s	not	necessarily	authority,	it’s	respect	for	one.	Because	this	is	somebody	else’s	code,	so	unless	you	are	going	to	make	a	net	positive	change,	I	wouldn’t	effect	a	piece	of	code.	And	I	wouldn’t	consider	comments	to	be	a	net	positive	change,	although	maybe	I	should.	Usually	it’s	not	permissions,	its	usually	this	change	doesn’t	need	to	be	persisted.	Or	in	my	opinion,	it	doesn’t	need	to	be	persisted.		
You	could	end	up	with	a	very	interesting	source	tree	if	you	just	opened	it	up	to	ad	hoc	comments	by	any	reviewer.		
34	First	you’d	have	to	assume	that	people	do	it.	But	then	you	get	into	a	tool	such	as	a	compiler	that	will	decide	if	you	are	correct	or	not.	So	if	you	put	a	comment	in	there	that	says	that	this	is	going	to	do	this	in	this	case	and	you’re	wrong,	there’s	no	checking	for	that.		
“You	need	some	sort	of	authority	about	who	this	person	is	who	is	making	the	comment”	
Maybe	that	would	help.	Or	maybe,	just	like	you	do	for	changes,	that	change	is	effectively	a	suggestion	that	you	send	for	review	to	the	code	owner.	Maybe	we	do	that	with	comments	to.	But	then	that	puts	an	additional	constraint	on	the	developers	which	is	already	an	overused	resource,	or	a	busy	resource	if	we’re	expecting	developers	to	do	this.	So,	
35	none	of	these	are	clearly	what’s	not	going	on	here.	A	lot	of	these	are	clearly	unrelated,	but	very	generic.	So	this	error	here	is	being	used	by	a	lot	of	very	generic	functions.	Which,	I	guess	is	pretty	typical	for	c++	code.	I	guess	any	object	based	code,	because	you	see	it	in	C#	and	see	it	in	jave	as	well,	so	you	have	lots	of	classes	and	members	that	overriding	???,	so	you	end	up	with	lots	of	wrappers,	around	wrappers,	around	other	wrappers.	And	it’s	a	puzzle	in	itself	to	Eigure	out	which	one	is	actually	of	interest.	
36	So	we’ll	go	back	to	the	debugger	to	see	if	I	can	actually	walk	through	some	of	this	code.	
So	it	looks	like	I’m	not	actually	going	to	get	source	in	here,	which	is	unfortunate.	So	we’ll	just	have	to,	we’ll	have	to	kind	of	guess	what	is	going	on	here.	
[looking	through	assembly	to	see	function	calls	amidst	lots	of	other	assembly]	
So	some	of	these	functions	I	don’t	remember	seeing	in	the	parse	function	where	we	started,	so	I’m	going	to	go	look	for	those.		
37	So	there’s	get	range.		
So	the	other	thing	that	I	know	about	this	is	that	I’m	relatively	certain	that	the	output	will	come	from	one	of	two	functions.	So	we’ll	set	a	breakpoint	on	those,	and	we’ll	see	who	the	caller	of	those	is,	but	clearly	I’m	wrong,	because	we	didn’t	call	either	of	those	functions,	so	we’re	going	through	some	other	output	routine.		
38	So	again,	back	to	the	original	function,	let’s	walk	through	this	a	little	more	carefully.	
[back	to	source	insight]	
So	that’s	going	to	be	true,	that	is	false,	that	is	false,	so	is	that,	as	well	as	that.	[picking	guards	and	paths	to	follow]	
That’s	where	that	annoying	error	comes	from.	
39	That	one	is	false	and	so	is	this	one.	So	we’re	just	going	to	go	in	here,	so	the	Eirst	one	that	we’ll	do	is	call	get	range,	and	set	???	to	false,	so	now.		
So	maybe	we’re	not	making	it	as	far	as	the	unassembled	itself,	maybe	we’re	stuck	in	this	get	range	function.	So	here’s	another	case	where	the	editor	is	providing	me	what	it	think	could	be	the	implementation	that	I’m	calling,	but	I’m	second	guessing	that	based	on	experience.	So	we’ll	look	for	other	ones.	
[browsing	list	of	source	insight	symbols	for	that	method]	
But	that’s	probably	the	correct	one,	so	let’s	go	into	get	range	and	walk.	
40	Ok,	so	this	one	goes,	skips	that	next	character,	and	that’s	not	going	to	do	anything	in	there	[reasoning	about	call	–	won’t	have	this	effect	in	it	–	based	on	identifer	and	domain	knowledge]	and	then	were	going	to	call	get	???	address	most	likely.	
No,	we’re	going	to	call	evaluate	address	and	here	the	source	code	editor	doesn’t	give	me	a	preview	of	which	one	it	is.	So	we’ll	see	if	we	even	have	this	at	all,	so	now	we	have	to	guess	which	of	these	implementations	we	are	actually	going	to	call.		
41	The	c++	one	or	the	masm	one,	or	these	are	all	prototypes.	But	it	may	be	that	we	only	want	this	one.	
So	we’ll	go	into	that	one	and	see	if	we	see.		
Another	fucniton	calling	a	function	where	we	don’t	see	this	at	all.	Now	the	source	code	editor	is	telling	me	that	this	is	a	macro,	but	it	doesn’t	seem	to	be	able	to	Eind	the	macro	deEinition.		
42	So,	we’ll	just	ignore	that	for	the	time	being.	Here’s	another	one	that	looks	like	a	macro,	but	it	doesn’t	seem	to	like	that,	so	we’ll	go	over	here	and	search	for	it	in	a	different	way,	because	that	Einally	Einished.		
So	now	I’m	in	a	razzle	window	trying	to	search	for	the	same	thing,	since	my	source	code	editor	is	failing,	I	‘ll	go	look,	I’ll	go	lower.	
[Eixed	a	typo	in	search]	
43	Well	that’s	iterating,	it’s	not	Einding	anything.		
I	always	Eind	macros	very	difEicult	to	deal	with	and	I’m	unsure	if	that	is	just	general	unfamiliarity	or	the	lack	of	good	tools	or	something	else	I	don’t		know.	But	it	always	seem	that	when	looking	at	code	in	a	source	code	editor,	it	would	be	helpful	to	have	an	instance	macro	expander	inline,	so	it	would	just	show	you	what		
44	is	actually	going	to	happen.	Because	macros	are	there	for	the	code	writer,	and	makes	it	difEicult	for	everything	else.		
So	while	this	is	searching	and	we’re	spending	a	whole	lot	of	time	walking	through	this	code	with	minimal	results.	
45	So	we’ll	go	back	here	to	the	debugger.	And	what	are	we	looking	for,	we’re	looking	for	that	function,	whatever	that	function	was.	Yeah,	probably	get	address	expression.		
So,	we’ll	set	a	breakpoint	there,	and	sure	enough	we	call	that	guy.		
So	in	some	ways	this	is	cheating	because	I	can	basically	repro	what	I’m	doing.		[can	repro	and	step	through	code	rather	than	just	getting	static	snapshot]	
46	But	debugging	postmortem	failures,	I	don’t	get	a	chance	to	do	that,	so	that’s	why	I	have	this	dichotomy	of	what	the	tools	should	do,	because	on	the	one	hand	I’m	reading	the	code	and	maybe	editing	it,	and	on	the	other	hand	I	spend	as	much	time	if	not	more	reading	code	and	trying	to	understand	what	it’s	doing	without	necessarily	having	to	interact	with	it	at	all.		
Everyting	very	slow	today.	
[still	waiting	on	Eile	system	search	and	debugger]	
So	I’ll	switch	over	here	and	do	a	totally	unrelated	task	while	I’m	waiting.	
47	Ok,	so	the	debugger	came	back	so	I	can	walk	thorugh	here.	
Well,	it’s	got	to	be	this	call	here.	Yep.	So	here’s	what	I	was	loking	for	in	the	source	code	before,	and	I	didn’t	have	any	way	to	tell	other	than	walking	through	???,	but	here,	walking	through	the	debugger,		
48	I	can	clearly	see	that	the	implementation,	this	particular	eval	holder	local	variable,	what	type	it	is.	So	I	can	go,	basically	grab	this	and	go	back	to	the	code	and	Eind	the	masm	eval	expression	and	look	for	eval	address	in	there.	
But,	again,	my	handy	dandy	code	editor	is	not	very	helpful	today.		
Wait,	do	I	know?		
Ok.		
The	symbols	say	this	should	be	in	ee	masm,	and	there’s	ee	masm,	but	its	not	there.	So	that’s	odd,	maybe	there’s	something	wrong	with	the	project,	so.	
50	[trying	to	add	Eile	to	rpoject,	but	not	in	Eilesystem]	
So,	no	ee	masm.	So,	clearly	that	Eile	is	not	here.	
Well,	that’s	because	it’s	not	there.	My	client	view	is	messed	up.	
51	[edits	sd	client	conEig	Eile]	
Oh,	because	when	I	changed	that	before	I	broke	it.	So	in	doing	something	else	totally	different	today	I	basically	deleted	a	bunch	of	source	Eiles	from	my	machine.		
So,	we’ll	have	to	Eix	that.		
[adding	several	extra	directory	lines	to	his	sd	client	conEig	Eile	to	restore	it	to	normal	state]	
52	And	magically	all	the	Eiles	will	reappear,	which	probably	explains	why	my	source	debugging	wasn’t	working.	
[does	sd	sync	to	get	all	the	Eiles	he	didn’t	have	before]	[wasn’t	getting	symbols	in	debugger]	
53	Or	maybe	not,	but	alas,	maybe	I	have	the	Eile	I’m	looking	for	now,	and	low	and	behold	there	it	is.	[source	insight	scans	Eile	system	and	updates	index,	and	now	can	navigate	to	that	Eile]	
So	what	are	we	looking	for,	eval	address.		
54	So	if	I	would	have	to	edit	this	Eile,	I	would	probably	Eix	some	of	the	spacing	issues,	these	tabs	not	replaced	with	spaces	etc.	
But	I’m	also	missing	some	source	Eile,	let’s	see	if	searching	for	either	of	those	things	I	couldn’t	Eind	before	actually	yields	anything	now.	[repeats	source	insight	search,	still	nothing]	[illustrates	returning	to	an	old	path	when	information	about	paths	changes]	
So	where	are	we,	we’re	in	eval	address.		
55	[skimming	thorugh	a	block	of	several	methods	in	source	insight]	
So	this	function	calls	this	function.		
Push	context,	pop	context,	compute	???	address,	and	what	does	it	do?	
56	[goes	to	callee]	
So	let’s	just	test	this.	So	we	actually	make	it	back	to	get	address	expression.	And	we’re	in	get	address	expression.		
Ok,	so	it	seems	like	we	are	going	to	return	from	this	guy	without	doing	anything.	So	now	we’re	back	to	get	range.	
57	And	that’s	where	we	call	peek	char,	we	don’t.	And	a	case	where	the	parameters,	there’s	no	comments	here,	but	the	parameters	are	named	well,	so	I	can	make	some	assumptions	based	on	them.	So	if	not	has	???	address	expression,	address	ok,	so	we	go	down	there.		
[going	back	and	forth	between	debugger	and	source	insight	–	inspecting	code	in	source	insight,	loking	at	values	in	debugger]	
but	we	do	call	get	address	expression	again.	So	let’s		
58	we’ll	go,	but	we	didn’t	actually	call,	so	we’re	back	to	that	reset.		
So	we	only	call	get	address	expression	once,	and	that	call	is	from	get	range,	so	let’s	see.	So	there’s	1,	2.	So	we’re	not	going	to	do	any	of	this	if.		
[still	reasoning	about	what	paths	to	follow	in	source	insight]	
59	We’re	just	going	to	return?	
So	parse	and	assemble.	
So	we	do	return	from	get	length,	oh	has	length,	so	we	are	going	to	go	into	that	unassembled	instruction.	We’ll	check	that,	and	there	we	go,	we	go	into	the	unassembled	instruction.	
1:00	[checking	in	dubgger	which	method	gets	stepped	into,	then	back	to	source	insight	to	read	it]	
So	here’s	where	we	create	that,	???		
1:01	Address,	ok,	calls,	ok.		
So	we’ll	assume	that	it’s	related	to	this	call,	yep.	So	we	call	machine	code	assemble	??	ok	
1:02	So	I	was	right	in	terms	of	reading	the	code.	It’s	nice	to	have	this	to	conEirm.	So	it	seems	that	we	actually	make	it	to	this	decode	call.		
“You’re	basically	using	the	debugger	to	step”	
More	like	jump	around.	I’m	not	really	stepping	through	the	code	because	a	lot	of	these	functions	are	pretty	long.	So	I’m	basically	just	picking	a	point,	reading	code,	picking	a	point,	and	running	to	that	point	to	make	sure	we	actually	got	there,	so	just	testing	a	theory.	So	like	this	one,	
1:03	I	am	looking	for	where	we	call	decode	because	I	think	we’ll	make	it	at	least	that	far.	So	since	the	source	came	back	[can	Einally	link	to	source	in	debugger]	
I	can	actually	just	run	to	this	point.		
Since	the	source	code	of	the	debugger	wasn’t	working,	I	was	actually	switching	back	and	forth	between	source	code	debuggin	and	assembly	debugging.	There	are	different	things	that	are	easier	to	do.	Ok,	so	that’s	where	we	call	decode.	[wanted	to	know	caller	of	decode]	
1:04	So	now	I’m	just	going	to	step	a	little	bit	here.		
Ah,	I	bet	that’s	it.		
So	where	are	we	–	we’re	in	machine	dot	cpp.	
[saw	a	call	–	read	address	memory	=	that	he	thinks	triggers	error	string]	
And	we’re	in	decode.	[method	of	machine	dot	cpp]	
1:05	And	I	went	aha	because	I	saw	the	function	read	address	memory.	And	I’m	positing	that	that	is	where	our	error	is	coming	from,	and	this	is	what’s	calling	read	virtual.	
So	I	bet	read	virtual	is	failing,	so	we’ll	continue	to	step	through	here.	And	that’s	actually	what	I	want	to	change.	I	want	to	change	the	behavior	when	read	virtual	
[Einally	located	program	point	where	he	wants	to	make	a	change!	–	be	interesting	to	compare	to	how	long	it	takes	developers	in	other	cases]	
fails	so.	So	I	think	I	found	where	the	code	change	would	need	to	go,	but	I	need	to	conEirm	that	that’s	the	place	where	the	code	change	needs	to	go,	and	then	I	need	to	read	through	the	code	to	see	what	might	be	the	safest	way	to	make	this	change.		
1:06	So	we’ll	put	the	cursor	here	and	we’ll	run	to	this	point,	and	we’ll	step	into	read	instruction	memory.	And	I	think	all	of	this	is	largely,	wait,	that’s	not	right.	Here’s	where	we	call	read	virtual,	so	we’ll	walk	through	this	just	to	make	sure	we	don’t’,	but	I	think	we’re	just	going	to	hit,	yeah,	we	hit	that	branch,	and	then	we	go	into	that	branch,	yep.	
[veriEied	that	that	is	the	call	that	fails	by	just	seeing	how	the	return	from	failure	is	causing	it	to	step	into	other	branches	of	the	method	on	the	failure	path]	
Read	physical	is	going	to	be	false,	so	we’re	to	call	read	virtual,	yep	that’s	our	offset,	our	offset	is	our	origainl	parameter,	there’s	our	out	parameter,	let’s	see.	So	where	are	we,	we’re	in	dump	.cpp	
1:07	And	we’re	at	line	8958.		
[stepping,	inspecting	some	immediates]	
Oh,	that’s	not	right.	Cpp.	
So	we’ll	just	walk,	and	there	is	our	read	virtual	failure.	So	when	read	virtual	fails	with	something	other	than	s	ok,	we	go	to	done.		[stepping]	
Yep,	and	then		
1:08	Is	that	instruction	memory.		
Yeah,	so	that’s	null.		
What	is	this	on,	memory	bites.		
Yeah,	so	we	read	nothing	and	there’s	nothing	in	our	buffer.	
So	clear	that.	
1:09	What’s	our	status	at	this	point,	our	status	is	the	hresult,	ok.	[checking	in	immediate]	
Ok,	so,	ok	so	there’s	where	we	return	the	status.	And,	yep	we	failed,	so	we	return	that	back,	decode	returns	to	disassemble,		
So	that’s	interesting,	we	don’t	actually	check	the	status	here,	so	what	function	are	we	in	here,	machine	dot	cpp,	and	we’re	in	disassemble	[function	name]	

67

Developers	o4en	rapidly	switch	between	alterna7ve	ac7ons	or	
strategies

Strategy 1. Guess the answer.
― This was a quick hack, not a reasoned changed
because otherwise they would have been removed. But
what would break if they were here?

Strategy 2. Check code history.
― I commented these out 2 years ago along with many
other changes. But why?

Strategy 3. Implement & test.
― Removed comments, all tests still pass.
But did I break anything?

Strategy 4. Ask my teammates.
― Sent an email. Teammates replied with a description of
a rare input which causes it to break. Success!

Lacks knowledge to determine
how these lines influence program
behavior

Tries to recover rationale, but no
explanation in check-in message

Tests might have identified a bug, but
don't prove absence.

Teammates remembered another
scenario.

Some	strategies	are	more	effec7ve	than	others	in	a	specific	
situa7on

68

getStartContext

retrieveRelaRonships

runAnalysis

NPE

69

getStartContext

retrieveRelaRonships

runAnalysis

NPE

Strategies	can	make	a	large	difference	in	task	performance

70

programming strategy a procedure
for accomplishing a programming task

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J.
Ko. (2020). Explicit programming strategies. Empirical
Software Engineering (ESE), 25, 2416–2449.

71

David J. Gilmore. Expert programming knowledge: A strategic approach. In
Psychology of Programming. Elsevier, 223–234.

Amy J. Ko, Thomas D. LaToza, Stephen Hull, Ellen A. Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. 2019. Teaching Explicit
Programming Strategies to Adolescents. In Technical Symposium on Computer
Science Education (SIGCSE '19),469–475.

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020).
Explicit programming strategies. Empirical Software Engineering (ESE),
25, 2416–2449.

Developers work more systematically and efficiently when
given effective explicit programming strategies

“Strategies determine success more than does the
programmer’s available knowledge”

 “Experts seem to acquire a collection of strategies for
performing programming tasks.”

72

better CSS  
debugging strategy

73

74

75

STRATEGY :: strategy IDENTIFIER (IDENTIFIER+) STATEMENTS

STATEMENTS :: STATEMENT+

STATEMENT :: * (ACTION | CALL | CONDITIONAL | FOREACH | ASSIGNMENT |
RETURN)+

ACTION :: (word | IDENTIFIER)+ .

CALL :: do identifier (IDENTIFIER*)

CONDITIONAL :: if QUERY STATEMENTS

FOREACH :: for each IDENTIFIER in identifier STATEMENTS

UNTIL :: until QUERY STATEMENTS

ASSIGNMENT :: set IDENTIFIER to QUERY

RETURN :: return QUERY

QUERY :: (word | IDENTIFIER | CALL)+

IDENTIFIER :: ' identifier '

76

SET 'conflictedFiles' TO the project
files that have a conflict

FOR EACH 'file' IN 'conflictedFiles'

conflictedFiles

ASSIGNMENT :: set IDENTIFIER to QUERY

FOREACH :: for each IDENTIFIER in  
identifier STATEMENTS

77

78

Self-guided Guided

Template Found and used example code as a template for
implementation.

4/14 (29%)
 0/14 (0%)

Decompose Analyzed functional requirements for sub-problems,
implementing each independently 9/14 (64%) 0/14 (0%)

TDD Translated functional requirements into test cases, identifying
sub-problems from test case requirements. 2/14 (14%) 11/14 (79%)

Strategy: Design task

Strategy: Debugging task
Self-guided Guided

Guess & check Participants found suspicious lines of code, modifying them
and checking the effects of their modification.

4/14 (29%)
 0/14 (0%)

Forward search
Participants identified where the program began processing

input, following its execution forward
 9/14 (64%) 0/14 (0%)

Backward
search

Participants identified faulty output and worked backwards
through control and data flow dependencies 2/14 (14%) 11/14 (79%)

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020).
Explicit programming strategies. Empirical Software Engineering (ESE),
25, 2416–2449.

79

1.96 times more likely to make more progress
p < 0.004*

1.30 times more likely to make more progress

Debugging task

Design task

p < 0.023*

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020).
Explicit programming strategies. Empirical Software Engineering (ESE),
25, 2416–2449.

80

are programming strategies tacit?

81

Maryam Arab, Thomas D. LaToza, Jenny Liang, Amy J. Ko. (2022). An
exploratory study of sharing strategic programming knowledge. Conference
on Human Factors in Computing Systems (CHI), 1-15.

82

Maryam Arab, Thomas D. LaToza, Jenny Liang, Amy J. Ko. (2022). An
exploratory study of sharing strategic programming knowledge. Conference
on Human Factors in Computing Systems (CHI), 1-15.

83

84

code interacting with framework

likelihood
(odds
ratio)

search online forum create diagrams

3.84
 0.51

(3.84x more

likely)

(0.51x less

likely)

Cassandra Bailey. The Impact of Affect, Scenario and Task
Characteristics on Developer Decision-Making. (2020).
Masters Thesis, George Mason University.

85

feeling stressed / nervous (LVHA)

add print statements read surrounding code

2.42
 0.17

(2.42x more

likely)

(0.17x less

likely)

likelihood
(odds
ratio)

Cassandra Bailey. The Impact of Affect, Scenario and Task
Characteristics on Developer Decision-Making. (2020).
Masters Thesis, George Mason University.

86

feeling sad / depressed (LVLA)

experiment with edits

0.09

(0.09x less

likely)

likelihood
(odds
ratio)

Cassandra Bailey. The Impact of Affect, Scenario and Task
Characteristics on Developer Decision-Making. (2020).
Masters Thesis, George Mason University.

87

feeling excited / enthusiastic (HVHA)

likelihood
(odds
ratio)

ask for help from a colleague

2.13

(2.13x more

likely)

Cassandra Bailey. The Impact of Affect, Scenario and Task
Characteristics on Developer Decision-Making. (2020).
Masters Thesis, George Mason University.

88

Ways to work more effectively

89

metacognition be aware of your problem
solving process

be more effective with

90

self-regulation monitor progress
and use of time

(Robillard et al. 2004; Falkner et al. 2014)

be more effective with

91

be more effective with
better strategies

92

be more effective with
sharing strategies

93

be aware of impact of how you feel

feeling sad / depressed (LVLA)

feeling stressed / nervous (LVHA)

feeling excited / enthusiastic (HVHA)

94

participate in a programming strategies
mentoring session

email marab@gmu.edu

mailto:marab@gmu.edu

What's	next:	Suppor7ng	informa7on	needs

• Editing Code

• Structured editors: writing code, without the syntax errors

• Program transformation: editing code with GUI commands

• GUI builders & No Code: generating code with GUI commands

• Program synthesis: transforming text into code

• Understanding Code

• Live Programming: working with immediate, real time feedback

• Computational Notebooks

• Reusing code - external APIs

• Navigating code - getting around and reading internal code

• Software visualization - using diagrams and pictures to make sense of code.

• Fixing Code

• Detecting defects

• Debugging 95

