
Structured Editors
CS 695 / SWE 699: Programming Tools

Fall 2023



LaToza CS 695 / SWE 699 Fall 2023

Today
• Part 1 (Lecture)(~90 mins)


• 10 min break!


• Part 2 (Tech Talk)(20 mins)


• Part 3 (In-Class Activity)(40 mins)

2



LaToza CS 695 / SWE 699 Fall 2023

Logistics
• HW1 due today


• HW 2 due in 2 weeks


• Anyone who has not yet signed up for a Tech Talk?

3



LaToza CS 695 / SWE 699 Fall 2023

Overview

• Challenges in expressing and communicating 
computation


• Structured editors

4



LaToza CS 695 / SWE 699 Fall 2023

What makes learning programming hard?

• What makes programming hard?

• Is the challenge thinking computationally?

• Or in understanding how to formally express 

computation in a programming language?

5

Slides partially adapted from Human Aspects of Software Development, Spring 
2011, Lecture 11: How do people naturally think about computation? (Cyrus 

Omar)



LaToza CS 695 / SWE 699 Fall 2023

Intuitions about programming language 
constructs

6



LaToza CS 695 / SWE 699 Fall 2023

Intuitions about programming language 
constructs

7



LaToza CS 695 / SWE 699 Fall 2023

Intuitions about programming language 
constructs

8



LaToza CS 695 / SWE 699 Fall 2023

Intuitions about programming language 
constructs

9



LaToza CS 695 / SWE 699 Fall 2023

Intuitions about programming language 
constructs

10



LaToza CS 695 / SWE 699 Fall 2023

Is natural language programming a 
solution?

A difficult proposition – natural language is complex 
and imprecise


Computer and programmer do not have a shared context 
[Nardi, 1993]; programmers cannot use rules of cooperative 
conversation [Grice, 1975]

Not obvious where the computer’s limits are  

Novices can use formal languages if designed carefully 
[Bruckman and Edwards, 1999]


Describing the instructee as a naïve alien increases 
precision of instructions [Galotti, 1985]

Anthropomorphizing computers is counterproductive [du 
Boulay, 1989]

11



LaToza CS 695 / SWE 699 Fall 2023

Goal: Gentle Slope Systems

12

Myers, B.A., Smith, D.C., and Horn, B. “Report of the `End-User Programming' Working Group,” in Languages for Developing User 
Interfaces. 1992. Boston, MA: Jones and Bartlett. pp. 343-366.




LaToza CS 695 / SWE 699 Fall 2023

Minimalist Learning Theory
• Choose an action-oriented approach


• Provide an immediate opportunity to act, encourage self-
directed exploration & innovation, prioritize user’s goals 
over delivery of information


• Anchor the learning tool in the task domain

• Use real tasks as instruction, organize instruction around 

task steps

• Support error recognition & recovery


• Prevent mistakes when possible, provide error information 
that offers not only detection but ‘on-the-spot’ diagnosis & 
recovery


• Support reading to do, study, locate

• Make instructions brief & self-contained to support different 

levels of engagement

13
Carroll, J. (1990) The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill. MIT Press, Cambridge, MA. 



LaToza CS 695 / SWE 699 Fall 2023

Problem frames

• Developers approaching messy problem interpret it 
with a frame 


• Imposes boundaries on what learners will consider

14



LaToza CS 695 / SWE 699 Fall 2023

Simplify typing code

• If key barrier is syntax, reduce challenge of working 
with syntax


• Reduce constructs in programming language

• Simplify constructs in programming language

• Eliminate possibility of syntax errors

15



LaToza CS 695 / SWE 699 Fall 2023

Beginners All-Purpose Symbolic 
Instruction Code (BASIC, 1963)

• Support a subset of instructions & remove 
unnecessary syntax


• Offer rapid feedback through interpreted language

• Offer simplified statements w/ 3 parts: line number, 

operator, operands

16

J.G. Kemeny and T. Kurtz, Dartmouth College, 1963



LaToza CS 695 / SWE 699 Fall 2023

LOGO (1967)
• Supports manipulating 

turtle to draw pictures

• Move forward 10 spaces

• Turn left 90 degrees


• Offers dialect of LISP with 
less punctuation


• Supports creating music, 
translating languages, 
and much more

17

Seymour Papert, MIT, 1967

By 414owen - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=51472272



LaToza CS 695 / SWE 699 Fall 2023

Interacting with objects

• Enable users to create objects & rules on how objects behave

18

My Make Believe Castle: Logo Computer Systems Incorporated, 1995 [LCSI, 1995] 



LaToza CS 695 / SWE 699 Fall 2023

Structured editors

19

Cornell Program Synthesizer/
Synthesizer Generator 1981



LaToza CS 695 / SWE 699 Fall 2023

ALOE

20



LaToza CS 695 / SWE 699 Fall 2023

• Initially programmers conceive of a program as structure; then 
they transform their mental picture of structure into text; and 
finally a parser transforms the text back into structure. WC 
believe that the user benefits greatly when they arc relieved 
from the first transformation of structure in to text. This has the 
added benefit of allowing us to eliminate, either totally or 
partially, the need for parsing as the user develops ALOE trees 
directly. 


• Our editors further provide a good mechanism for replacing 
the traditional {edit, compile, link, debug) cycle with a more 
natural {edit, execute) cycle; indeed, the LOIW system just 
described is based on this simple tools cycle. We believe that 
this is just one example of situations where traditional 
mechanisms cm be replaced by mechanisms that arc more 
suitable to users.

21



LaToza CS 695 / SWE 699 Fall 2023

Scratch 2005

22



Challenges addressed 
by blocks based editors



LaToza CS 695 / SWE 699 Fall 2023

Learning programming vocabulary

• How to express computation 
in code?


• Learning 100-200 new words 
and understanding concepts 
behind them is 
overwhelming


• Much easier to select 
options from a palette


• Recognition easier than 
recall

24



LaToza CS 695 / SWE 699 Fall 2023

Palettes vs. Autocomplete
• Both make it easier to 

find a command

• But autocomplete


• Requires user to 
already remember 
part of what they're 
looking for


• Lacks hierarchic 
organization of similar 
functions

25



LaToza CS 695 / SWE 699 Fall 2023

Filling in arguments

• Remembering order, type, and valid 
argument values is hard


• Block languages have

• automatically generated holes 

showing what arguments are 
expected


• useful default operands

• drop down menus and specialized 

editors to create and change 
operands


• extra text explaining operand meaning

26



LaToza CS 695 / SWE 699 Fall 2023

Reading syntax
• Textual languages 

have lots of syntax 
that is unclear to 
newcomers


• Showing the 
structure of the 
code makes 
visible the chunks 
that experts 
eventually use to 
understand code

27



LaToza CS 695 / SWE 699 Fall 2023

Following syntax
• Developers, particularly novices, make 

syntax errors all the time

• Might be slip - intended to do something 

else

• Or mistake - didn't know the right way to 

do it

• Structured editors make syntax error 

impossible

• Each type has a distinct shape

• Commands connect vertically with nubs 

and notches

• Expressions are smooth

28



LaToza CS 695 / SWE 699 Fall 2023

Tinkering
• In textual languages, hard to know what the output 

of an expression is

• In blocks languages with liveness, can execute 

fragments just by clicking on them

• (More on live programming later)

29



LaToza CS 695 / SWE 699 Fall 2023

Intuitive words and concepts
• Textual languages rely on keywords that are 

incomprehensible to novices

• e.g., for, !=


• Blocks based languages choose keywords that 
better leverage real world concepts and ideas


• e.g., repeat, unequal

30



LaToza CS 695 / SWE 699 Fall 2023

Example reuse
• Professional reuse code all the time, but adapting 

can be hard 

• Blocks based languages can support this process, 

finding dependencies required to make a line of 
code run

31



Limitations of blocks 
based editors



LaToza CS 695 / SWE 699 Fall 2023

Higher viscosity for small edits
• Writing (a/2 + b/2) requires a number of steps to 

find and drag blocks for 3 arithmetic operators and 
fill in with variables and numbers


• Faster, for an experienced programmer, with a 
textual language


• Rearranging expression from (a/2 + b/2) to (a+b)/2 
requires more steps to change the structure than 
similar textual structure

33



LaToza CS 695 / SWE 699 Fall 2023

Other disadvantages
• Low density - blocks take up more space

• Search - hard to find code

• Source control - may not work without textual 

representation

34



LaToza CS 695 / SWE 699 Fall 2023

Hybrid editors

• Can combine textual and blocks 
based editors


• Text-style entry of blocks - enter 
blocks as text, choosing blocks 
through autocomplete


• Can do drag and drop for bigger 
structure, and text for smaller


• Bidirectional mode switching

• Switch between blocks and text, 

edit in either

35



Examples



LaToza CS 695 / SWE 699 Fall 2023

Many domains use blocks programming

37



LaToza CS 695 / SWE 699 Fall 2023 38



LaToza CS 695 / SWE 699 Fall 2023

Robot automation

39



LaToza CS 695 / SWE 699 Fall 2023 40

https://www.youtube.com/watch?v=9bSX9Q5aP6E


LaToza CS 695 / SWE 699 Fall 2023 41

https://www.youtube.com/watch?v=rhQ2jJGtgwM


LaToza CS 695 / SWE 699 Fall 2023 42

https://vimeo.com/228372549/140738254 

https://vimeo.com/228372549/140738254


10 min break



Tech Talk: Scratch



LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity

• In groups of 2, build pong in Scratch


• https://scratch.mit.edu/projects/editor/?
tutorial=getStarted 

45

https://scratch.mit.edu/projects/editor/?tutorial=getStarted
https://scratch.mit.edu/projects/editor/?tutorial=getStarted

