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Today
• Part 1 (Lecture)(~90 mins)


• 10 min break!


• Part 2 (Tech Talk)(20 mins)


• Part 3 (In-Class Activity)(40 mins)
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Logistics
• HW1 due today


• HW 2 due in 2 weeks


• Anyone who has not yet signed up for a Tech Talk?
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Overview

• Challenges in expressing and communicating 
computation


• Structured editors
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What makes learning programming hard?

• What makes programming hard?

• Is the challenge thinking computationally?

• Or in understanding how to formally express 

computation in a programming language?
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Slides partially adapted from Human Aspects of Software Development, Spring 
2011, Lecture 11: How do people naturally think about computation? (Cyrus 

Omar)
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Intuitions about programming language 
constructs
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Intuitions about programming language 
constructs
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Is natural language programming a 
solution?

A difficult proposition – natural language is complex 
and imprecise


Computer and programmer do not have a shared context 
[Nardi, 1993]; programmers cannot use rules of cooperative 
conversation [Grice, 1975]

Not obvious where the computer’s limits are  

Novices can use formal languages if designed carefully 
[Bruckman and Edwards, 1999]


Describing the instructee as a naïve alien increases 
precision of instructions [Galotti, 1985]

Anthropomorphizing computers is counterproductive [du 
Boulay, 1989]
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Goal: Gentle Slope Systems
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Myers, B.A., Smith, D.C., and Horn, B. “Report of the `End-User Programming' Working Group,” in Languages for Developing User 
Interfaces. 1992. Boston, MA: Jones and Bartlett. pp. 343-366.
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Minimalist Learning Theory
• Choose an action-oriented approach


• Provide an immediate opportunity to act, encourage self-
directed exploration & innovation, prioritize user’s goals 
over delivery of information


• Anchor the learning tool in the task domain

• Use real tasks as instruction, organize instruction around 

task steps

• Support error recognition & recovery


• Prevent mistakes when possible, provide error information 
that offers not only detection but ‘on-the-spot’ diagnosis & 
recovery


• Support reading to do, study, locate

• Make instructions brief & self-contained to support different 

levels of engagement
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Carroll, J. (1990) The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill. MIT Press, Cambridge, MA. 
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Problem frames

• Developers approaching messy problem interpret it 
with a frame 


• Imposes boundaries on what learners will consider
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Simplify typing code

• If key barrier is syntax, reduce challenge of working 
with syntax


• Reduce constructs in programming language

• Simplify constructs in programming language

• Eliminate possibility of syntax errors
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Beginners All-Purpose Symbolic 
Instruction Code (BASIC, 1963)

• Support a subset of instructions & remove 
unnecessary syntax


• Offer rapid feedback through interpreted language

• Offer simplified statements w/ 3 parts: line number, 

operator, operands
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J.G. Kemeny and T. Kurtz, Dartmouth College, 1963
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LOGO (1967)
• Supports manipulating 

turtle to draw pictures

• Move forward 10 spaces

• Turn left 90 degrees


• Offers dialect of LISP with 
less punctuation


• Supports creating music, 
translating languages, 
and much more
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Seymour Papert, MIT, 1967

By 414owen - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=51472272
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Interacting with objects

• Enable users to create objects & rules on how objects behave
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My Make Believe Castle: Logo Computer Systems Incorporated, 1995 [LCSI, 1995] 
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Structured editors

19

Cornell Program Synthesizer/
Synthesizer Generator 1981
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ALOE
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• Initially programmers conceive of a program as structure; then 
they transform their mental picture of structure into text; and 
finally a parser transforms the text back into structure. WC 
believe that the user benefits greatly when they arc relieved 
from the first transformation of structure in to text. This has the 
added benefit of allowing us to eliminate, either totally or 
partially, the need for parsing as the user develops ALOE trees 
directly. 


• Our editors further provide a good mechanism for replacing 
the traditional {edit, compile, link, debug) cycle with a more 
natural {edit, execute) cycle; indeed, the LOIW system just 
described is based on this simple tools cycle. We believe that 
this is just one example of situations where traditional 
mechanisms cm be replaced by mechanisms that arc more 
suitable to users.

21



LaToza CS 695 / SWE 699 Fall 2023

Scratch 2005
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Challenges addressed 
by blocks based editors
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Learning programming vocabulary

• How to express computation 
in code?


• Learning 100-200 new words 
and understanding concepts 
behind them is 
overwhelming


• Much easier to select 
options from a palette


• Recognition easier than 
recall
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Palettes vs. Autocomplete
• Both make it easier to 

find a command

• But autocomplete


• Requires user to 
already remember 
part of what they're 
looking for


• Lacks hierarchic 
organization of similar 
functions
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Filling in arguments

• Remembering order, type, and valid 
argument values is hard


• Block languages have

• automatically generated holes 

showing what arguments are 
expected


• useful default operands

• drop down menus and specialized 

editors to create and change 
operands


• extra text explaining operand meaning

26



LaToza CS 695 / SWE 699 Fall 2023

Reading syntax
• Textual languages 

have lots of syntax 
that is unclear to 
newcomers


• Showing the 
structure of the 
code makes 
visible the chunks 
that experts 
eventually use to 
understand code
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Following syntax
• Developers, particularly novices, make 

syntax errors all the time

• Might be slip - intended to do something 

else

• Or mistake - didn't know the right way to 

do it

• Structured editors make syntax error 

impossible

• Each type has a distinct shape

• Commands connect vertically with nubs 

and notches

• Expressions are smooth
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Tinkering
• In textual languages, hard to know what the output 

of an expression is

• In blocks languages with liveness, can execute 

fragments just by clicking on them

• (More on live programming later)
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Intuitive words and concepts
• Textual languages rely on keywords that are 

incomprehensible to novices

• e.g., for, !=


• Blocks based languages choose keywords that 
better leverage real world concepts and ideas


• e.g., repeat, unequal
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Example reuse
• Professional reuse code all the time, but adapting 

can be hard 

• Blocks based languages can support this process, 

finding dependencies required to make a line of 
code run
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Limitations of blocks 
based editors
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Higher viscosity for small edits
• Writing (a/2 + b/2) requires a number of steps to 

find and drag blocks for 3 arithmetic operators and 
fill in with variables and numbers


• Faster, for an experienced programmer, with a 
textual language


• Rearranging expression from (a/2 + b/2) to (a+b)/2 
requires more steps to change the structure than 
similar textual structure
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Other disadvantages
• Low density - blocks take up more space

• Search - hard to find code

• Source control - may not work without textual 

representation
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Hybrid editors

• Can combine textual and blocks 
based editors


• Text-style entry of blocks - enter 
blocks as text, choosing blocks 
through autocomplete


• Can do drag and drop for bigger 
structure, and text for smaller


• Bidirectional mode switching

• Switch between blocks and text, 

edit in either
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Many domains use blocks programming
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Robot automation
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https://www.youtube.com/watch?v=9bSX9Q5aP6E
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https://www.youtube.com/watch?v=rhQ2jJGtgwM
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https://vimeo.com/228372549/140738254 

https://vimeo.com/228372549/140738254


10 min break



Tech Talk: Scratch
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In-Class Activity

• In groups of 2, build pong in Scratch


• https://scratch.mit.edu/projects/editor/?
tutorial=getStarted 
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https://scratch.mit.edu/projects/editor/?tutorial=getStarted
https://scratch.mit.edu/projects/editor/?tutorial=getStarted

