
Program Transformation
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today
• Part 1 (Lecture)(~60 mins)

• 10 min break!

• Part 2 (In-Class Activity)(50 mins)

• Part 3 (Group work time)

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics

• HW 2 due next week

3

LaToza CS 695 / SWE 699 Fall 2023

Overview

• What is program transformation
• Applications of program transformation

• Improving the design of code
• Editable programming views
• API & language migration
• Security fixes

4

LaToza CS 695 / SWE 699 Fall 2023

Program transformation

• Problem
• You already have some existing code
• You want to change it
• Your change impacts several parts of the code

• --> Program Transformation

5

LaToza CS 695 / SWE 699 Fall 2023

Key Ideas

• Transformations are repetitive edits
• Need to change all call sites to add new parameter to

signature
• Need to change all call sites to respond to new API change
• Need to change code snippets of a specific type to make

them more secure
• Doing this work manually is tedious and error prone

• Might miss something
• Programming tools can do some of this work for the

developer

6

LaToza CS 695 / SWE 699 Fall 2023

Some Key Design Dimensions
• What types of transformations are possible?

• What types of changes can be described?
• How much control does a developer have over the

transformation?
• All or nothing? Change the behavior of a

transformation that doesn't work right?
• What can a developer see before or after a change

has been made?
• # of place changed? Diff of each change? Errors

where the change didn't work?

7

LaToza CS 695 / SWE 699 Fall 2023

Challenges

• What if a transformation might sometimes insert a
defect?

• What if there's more than one way to do the
transformation, which a developer might want to
choose between?

8

Improving the design
of code

LaToza GMU CS 695 / SWE 699 Fall 2023

Copy & paste code reuse
• A very common way to edit code is by copying existing

code. —> copy & paste reuse
• Creates code duplication

• But… ok if this code duplication does not represent
new abstraction

• Studies have attempted to understand when code
duplication introduced by copy & paste is bad

• Many tools to detect code clones introduced by copy &
paste

10

Slides for this section adapted from 05-899D Human Aspects of Software Development Spring 2011, “Software
Evolution” by YoungSeok Yoon

LaToza GMU CS 695 / SWE 699 Fall 2023

Why do developers copy & paste code?

• structural template (the most common intention)
• relocate, regroup, reorganize, restructure, refactor

• semantic template
• design pattern
• usage of a module (following a certain protocol)
• reuse a definition of particular behavior
• reuse control structure (nested if~else or loops)

11

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of International
Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU CS 695 / SWE 699 Fall 2023

Why do developers copy & paste?

• Forking
• Hardware variations
• Platform variation
• Experimental variation

• Templating
• Boiler-plating due to language in-expressiveness
• API/Library protocols
• General language or algorithmic idioms

• Customization
• Bug workarounds
• Replicate and specialize

12

C. Kapser and M. W. Godfrey (2006), “‘Cloning Considered Harmful’ Considered Harmful,” in 13th Working Conference on Reverse Engineering (WCRE
’06), 2006, pp. 19-28.

LaToza GMU CS 695 / SWE 699 Fall 2023

Properties of copy & paste reuse

• Unavoidable duplicates (e.g., lack of multiple
inheritance)

• Programmers use their memory of C&P history to
determine when to restructure code

• delaying restructuring helps them discover the
right level of abstraction

• C&P dependencies are worth observing and
maintaining

13

M. Kim, L. Bergman, T. Lau, and D. Notkin (2004), “An ethnographic study of copy and paste programming practices in OOPL,” in Proceedings of International
Symposium on Empirical Software Engineering (ISESE’04), pp. 83-92.

LaToza GMU CS 695 / SWE 699 Fall 2023

Code clone genealogies

14

l Investigates the validity of the
assumption that code clones
are bad

l Defines clone evolution model

l Built an automatic tool to
extract the history of code
clones from a software
repository

11

Code Snippet

Clone Group Clone Lineage

M. Kim, V. Sazawal, D. Notkin, and G. Murphy (2005), “An empirical study of code clone genealogies,” in Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering (ESEC/FSE-13).

LaToza GMU CS 695 / SWE 699 Fall 2023

Fixing code duplication

• Code duplication happens because there is a missing
abstraction.

• Instead of one piece of code being called 10 times
with different parameters to achieve different
behaviors, have 10 copies of code with behavior
hardcoded

• How can we make it easier to redesign code to create
the abstractions that we just realized we needed?

15

LaToza GMU CS 695 / SWE 699 Fall 2023

Refactoring: Motivation

16

“Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves
its internal structure.” [Fowler 1999]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999), “Refactoring: Improving
the Design of Existing Code”, 1st ed. Addison-Wesley Professional.

Slides for this section adapted from 05-899D Human Aspects of Software Development Spring 2011, “Software
Evolution” by YoungSeok Yoon

LaToza GMU CS 695 / SWE 699 Fall 2023

First tool: A Refactoring Tool for Smalltalk

17

D. Roberts, J. Brant, and R. Johnson (1997), “A refactoring tool for smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253-263.

LaToza GMU CS 695 / SWE 699 Fall 2023

(Very) brief story of refactoring
• Started with academic work defining idea of refactoring

• William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois, 1992.

• Academic work for tools quickly followed (e.g., [Brant
TPOS97])

• Built in real IDE for Smalltalk from beginning
• Disseminated by agile thought leaders like Martin Fowler
• Adopted into mainstream IDEs like Eclipse, Visual Studio
• Became standard accepted feature of IDES
• Research continued

• Do developers use refactoring tools?
• Could they use them more?
• How could refactoring tools better support developers?

18

LaToza GMU CS 695 / SWE 699 Fall 2023

Developers manually perform refactorings
not yet supported by tools

• About 70% of structural changes may be due to refactorings
• About 60% of these changes, the references to the affected entities

in a component-based application can be automatically updated
• State-of-the-art IDEs only support a subset of common low-level

refactorings, and lack support for more complex ones

19

Z. Xing and E. Stroulia (2006), “Refactoring Practice: How it is and How it Should be Supported - An Eclipse Case Study,” in Proceedings of 22nd IEEE International Conference
on Software Maintenance (ICSM ‘06), 2006, pp. 458-468.

LaToza GMU CS 695 / SWE 699 Fall 2023

How developers refactor
• The RENAME refactoring tool is used much more frequently by

ordinary programmers than by the developers of refactoring tools
• About 40 percent of refactorings performed using a tool occur in

batches
• About 90 percent of configuration defaults in refactoring tools are

not changed when programmers use the tools
• Programmers frequently floss refactor, that is, they interleave

refactoring with other types of programming activity
• About half of refactorings are not high level, so refactoring

detection tools that look exclusively for high-level refactorings will
not detect them

• Refactorings are performed frequently
• Close to 90 percent of refactorings are performed manually,

without the help of tools

20

Editable progam views

LaToza GMU CS 695 / SWE 699 Fall 2023

Editable program views

• Expressing code edits through textual changes can
be time consuming

• extra boilerplate, code duplication, etc.

• Key idea: Enable developers to instead interact with
abstracted view of code

• Use edits to abstract view to edit underlying code

• More control than a traditional refactoring tool -->
transformation to be done controlled by the developer

22

LaToza GMU CS 695 / SWE 699 Fall 2023

Linked Editing

23

Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Duplicated Code with Linked Editing. In Proceedings of the 2004 IEEE Symposium on Visual Languages - Human
Centric Computing (VLHCC '04). IEEE Computer Society, Washington, DC, USA, 173-180.

LaToza GMU CS 695 / SWE 699 Fall 2023

Editable views

24

Samuel Davis and Gregor Kiczales. 2010. Registration-based language abstractions. In Proceedings of the ACM international conference
on Object oriented programming systems languages and applications (OOPSLA '10). ACM, New York, NY, USA, 754-773.

LaToza GMU CS 695 / SWE 699 Fall 2023

Supporting systematic edits
• Developers sometimes make edits to multiple files

that are very similar

• Tool idea: find commonality in edits between 2 or
more examples, generalize to others

25

LaToza GMU CS 695 / SWE 699 Fall 2023

Example

26
Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 502-511.

LaToza GMU CS 695 / SWE 699 Fall 2023

Locating and applying systematic edits

27
Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA, 502-511.

API & Language
Migration

LaToza CS 695 / SWE 699 Fall 2023

API & Language Migration

• You wrote code in Java, now you want to use it in a
Python project.

• React just introduced 3 new features. You want to
update your code to use these.

29

LaToza CS 695 / SWE 699 Fall 2023

Change
• What happens when an upstream system introduces a

change?
• Backwards compatible change: upstream system provides

everything they did before and more
• Nothing needs to change on downstream system
• Just have new functionality to be used

• Breaking change: upstream system no longer fulfills
contract it did before

• Method might be deprecated, renamed, or changed in its
behavior

• Burden of change
• Downstream system will not work until is updated to work

with new version

30

LaToza CS 695 / SWE 699 Fall 2023

Program transformation for API migration

• Describe a code pattern to find all the code you
want to update

• Describe a code pattern that describes what the
code should be updated to

31

LaToza GMU CS 695 / SWE 699 Fall 2023

Specifying program transformations

32

LaToza GMU CS 695 / SWE 699 Fall 2023

Comby.dev

• Tool for writing code transformations

33

LaToza GMU CS 695 / SWE 699 Fall 2023

Fixers: reusable transformations

34

Python 2 to 3 fixers

Security fixes

LaToza CS 695 / SWE 699 Fall 2023

Security fixes

• Code that is insecure can be characterized by
code patterns

• Find all of the code that matches an insecure
pattern

• Describe how it should be changed to fix it

36

LaToza CS 695 / SWE 699 Fall 2023 37

M. Hafiz, P. Adamczyk and R. Johnson. Systematically Eradicating Data Injection Attacks using Security-oriented Program Transformations. In ESSoS09: Symposium on Engineering Secure Software
and Systems. Leuven, Belgium. Feb, 2009

LaToza CS 695 / SWE 699 Fall 2023

Snyk Demo

38

10 min break

LaToza CS 695 / SWE 699 Fall 2023

Intuita CodeMods

40

https://www.intuita.io/

https://www.intuita.io/

LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity

• In groups of 2, try out CodeMod Studio.
• https://codemod.studio/
• Identify a JS migration problem (e.g., migrate old React

code to use newer features such as WebHooks)
• Read docs to understand how to build a CodeMod for your

problem.
• Build a CodeMod and try it out with sample code snippets.

41

https://codemod.studio/

