GUI Builders & No-Code

CS 695 / SWE 699: Programming Tools Fall 2023

Today

- Part 1 (Lecture)(~60 mins)
 - 10 min break!
- mins)
- Part 3: (In-Class Activity)(60 mins)

• Part 2: Tech Talk - Microsoft Power Automate (15

CS 695 / SWE 699 Fall 2023

Logistics

- HW 2 due today
- No class next week
- HW 3 due in 3 weeks

Overview

• Visual Programming

• GUI Builders

Visual Programming

Definitions

"Visual Programming Language"

"Any system where the user writes a program using two or more dimensions" [Myers, 1990]

- interaction, or allows programming with visual expressions" [Golin , 1990]
- world". [Lakin, 1989]

"A visual language manipulates visual information or supports visual

"A programming language that lets users create programs by manipulating program elements graphically rather than by specifying them textually".

"A set of spatial arrangements of text-graphic symbols with a semantic interpretation that is used in carrying out communication actions in the

Motivation from Psychology

determine cognitive categories

a tremendous mental workload to understand.

inference.

aid in search or cognition. [3]

[1] Sapir, E. (1929): 'The Status of Linguistics as a Science'. In E. Sapir (1958): Culture, Language and Personality (ed. D. G. Mandelbaum). Berkeley, CA: University of California Press [2] Christopher D. Wickens, "Engineering Psychology and Human Performance", 3rd Edition [3] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11:65-99, 1987.

- Language determines thought and that linguistic categories limit and 1
- In longer sentences meaning of each word may be clear, but the way in which they are strung together makes little sense imposes 2
- Most design tasks require 3 cognitive skills: search, recognition and
 - Diverse set of views (and studies) exist today about whether VPLs

Motivation

Some applications are (believed to be) very well suited to graphical development approaches

Scientific visualization Simulations User Interfaces Signal Processing Data Displays

(Claimed) Advantages of VPLs

- Fewer programming concepts
- Concreteness
- Explicit depiction of relationships
- Immediate visual feedback
- Parallel computation is a natural consequence of many visual programming paradigms

(Claimed) Disadvantages of VPLs

"Deutsch Limit" *

time.

Some situations in which text has superiority: Documentation, kind, and Expressing well-known and compact concepts that are inherently textual, e.g. algebraic formulas.

- The problem with visual programming is that you can't have more than 50 visual primitives on the screen at the same
- Naming to distinguish between elements that are of the same

Visual Programming Techniques

- Concreteness: expressing some aspect of a program using instances
 - e.g., display the effects of computation on individual instance
- Directness: small distance between goal and actions required of the user to achieve goal
 - e.g., direct manipulation of object properties
- Explicitness: don't require inference to understand semantics • e.g., depict dataflow edges between variables
- Livenesss: offer automatic display of effects of program edits on output
 - e.g., after every edit, IDE reruns code and regenerates output

GMU CS 695 / SWE 699 Fall 2023

History of VPLs

1960

1980

Techniques

- o Graphs
- o Flowcharts
- o Flowchart derivatives
- o FORMS
- o Demonstrational

Techniques

- o Graphs
- o Flowcharts
- o Flowchart derivatives
- o FORMS
- o Demonstrational
- o Data Flows
- o Spreadsheets
- o Matrices
- o Jigsaw Puzzles
- o Petri nets
- o Flowchart derivatives

- Visual Hierarchy
- o Procedures
- o Control Structures
- Programmable Graphics
- o Animations
- Video Imagery Exploitation
- o General purpose, declarative language
- Audio, video and image processing
- o Graphical models from behavioral models

- Collaborative Software Development

1990

Techniques/Goals

o 3D Rendering

- o Learning and Cognitive abilities in vision processes
- Handling Scalability, typing, and imperative design

GMU CS 695 / SWE 699 Fall 2023

2000

Techniques/Goals

- o Child Learning
- Xquery by FORMS
- o Spreadsheet Analysis
- o Visual Model Query
- o Layouts
- o Specification and Interchange
- o Mashups
- Web-based design
- o Programming for end-users (2003) / non-Professionals

GMU CS 695 / SWE 699 Fall 2023

History of VPLs

Taxonomy of visual programming languages

Specification Technique:	Systems:
Textual Languages:	Pascal, Ada, Fortran, Lisp, Ada, etc.
	Tinker, Smallstar
Flowcharts:	Grail, Pict, FPL, IBGE, OPAL
Flowchart derivatives:	GAL, PIGS, SchemaCode, PLAY
Petri nets:	MOPS-2, VERDI
Data flow graphs:	Graphical Program Editor, PROGRAPH,
	Graphical Thinglab, Music System, HI-VISUAL,
	LabVIEW, Fabrik, InterCONS
Directed graphs:	AMBIT/G/L, State Transition UIMS, Bauer's Traces
Graph derivatives:	HiGraphs, Miro, StateMaster
Matrices:	ALEX, MPL
Jigsaw puzzle pieces:	Proc-BLOX
Forms:	Query by Example, FORMAL
Iconic Sentences:	SIL-ICON
Spreadsheets*:	VisiCalc, Lotus 1-2-3, Action Graphics, "Forms"
Demonstrational*:	Pygmalion, Rehearsal World, Peridot
None*:	I/O Pairs, Editing by Example

Brad A. Myers. "Taxonomies of Visual Programming and Program Visualization," Journal of Visual Languages and Computing. vol. 1, no. 1. March, 1990. pp. 97-123.

Dataflow Program Representations

- Represent computation as a network Nodes correspond to components Edges correspond to data flow between
- components

Figure 2a. Bidirectional diagram using two Slider controls to achieve a Fahrenheit-to-Centigrade converter.

Figure 2b. Internal diagram for the F/C component used in the diagram at left.

Figure 3. A Fabrik diagram computes the image for the slider in figure 2. The Mouse component sensitizes the slider image to support input as well as output.

Figure 5a. The Draw component automatically lays out diagrams as the user creates a drawing.

Fabrik 1988

Figure 4a. A simple scrollbar diagram. Logic is provided for rotating when the image is wider than high.

scaled and rotated.

Figure 5b. By editing the generative diagram, the top-left of the oval is tied to the bottom-right of the rectangle.

Figure 6. Streaming gateways provide iterative capability. Here numbers are converted to rectangles, resulting in a simple bar chart.

Pure Data (1996)

and All Collapse All

Quartz Composer (2005)

LaToza

GMU CS 695 / SWE 699 Fall 2023

NoFlo (2014)

Fastgen in 5 minutes

▶ demo	3	API / API Request dP https://postman-d	emo.fastgen.com/user/get			Documentation
Q Search	96 + k					
≓ APIs		(PO	ST API Route		Flow Controls	Switch
🖶 Workflows		API	Request		S For Loop	C Loop Data
🛢 Database						
			f condition		Variable	Calculation
📟 Logs		Che	ck IF age is greater than 18		Actions	
					🛢 DB Query	🔤 Email (SMTP)
			True		G HTTP Request	🗲 Create Event
		🛢 Database Query	HTTP Request	1911 E -	🚰 Sendgrid Email	ChatGPT
		Find existing user	Action Name		🚏 Slack Message	(B) Twilio SMS
			Method	2	G Mailchimp	S Linear Ticket
		Twillo SMS Welcome Reminder	GET V Enter request URL		@ Mailchimp Responses	Unear Ticl

Form Representations

- Program consists of a form, with a network of interconnected cells
- Developers define cell through combination of pointing, typing, gesturing
- Cells may define constraints describing relationships between cells

Forms/3

- Based on constraints between cells
- Supports graphics, animation, recursion
- Concreteness: resulting box is immediately seen
- Directness: demonstrates elements directly
- Level 4 liveness: immediate visual feedback

by typing textual specifications (e.g., "box 30 30").

Margaret M. Burnett, "Visual Programming" In the Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), 1999

I	Enter Formula:
1	Formula for: square Accept Cancel Clear
	Undo Redo Clone Display
	Graphics Area:
	10 -
	box circ line
Q	UARE 🔲) * (height SQUARE 🛄)

Figure 2: Defining the area of a square using spreadsheet-like cells and formulas in Forms/3. Graphical types are supported as first-class values, and the programmer can enter cell square's formula either by sketching a square box or

GMU CS 695 / SWE 699 Fall 2023

Forms/3 Example

http://web.engr.oregonstate.edu/~burnett/Forms3/LED.html

Test1
if (inlist input (2 3 5 6 7 8 9 0)) then horizontal if (inlist input (1 2 3 4 7 8 9 0)) then vertical alist input (4 5 6 8 9 0)) vertical
if (inlist input (2 3 4 5 6 8 9)) then horizontal if (inlist input (1 3 4 5 6 7 8 9 0))
then vertical nlist input (2 6 8 0)) vertical
if (inlist input (2 3 5 6 8 9 0)) then horizontal
tal line 80 O

Forms/3 Example

Discussion

• Given potential advantages, why isn't all language?

programming now done in a visual programming

Cognitive Dimensions of Notations

- Analytical technique for assessing usability of notation through a set of heuristics
 - Also terminology for describing usability problems

Abstraction gradient	What are the minimum encapsulated?
Closeness of mapping	What 'programming gar
Consistency	When some of the langu
Diffuseness	How many symbols or g
Error-proneness	Does the design of the n
Hard mental operations	Are there places where track of what's happenin
Hidden dependencies	Is every dependency ov only symbolic?
Premature commitment	Do programmers have to
Progressive evaluation	Can a partially-complete
Role-expressiveness	Can the reader see how
Secondary notation	Can programmers use 1 beyond the 'official' ser
Viscosity	How much effort is requ
Visibility	Is every part of the code it at least possible to dispersed, is it at least p

T. Green and M. Petre, Usability analysis of visual programming environments: a 'cognitive dimensions' framework. Journal of Visual Languages and Computing 7(2): 131-174, June GMU CS 695 / SWE 699 Fall 2023

im and maximum levels of abstraction? Can fragments be

mes' need to be learned?

uage has been learnt, how much of the rest can be inferred?

graphic entities are required to express a meaning?

notation induce 'careless mistakes'?

the user needs to resort to fingers or penciled annotation to keeping?

vertly indicated in both directions? Is the indication perceptual or

to make decisions before they have the information they need? The program be executed to obtain feedback on "How am I doing"?

each component of a program relates to the whole?

layout, color, or other cues to convey extra meaning, above and mantics of the language?

uired to perform a single change?

le simultaneously visible (assuming a large enough display), or is compare any two parts side-by-side at will? If the code is possible to know in what order to read it?

Diffuseness / Terseness

- to express a meaning?
- Simple rocket simulation program
- Basic: 22 LOC, 140 words (fits on screen)
- LabView: 45 icons, 59 wires (fits on screen)
- Prograph: 52 icons, 79 connectors, 11 screens

T. Green and M. Petre, Usability analysis of visual programming environments: a 'cognitive dimensions' framework. Journal of Visual Languages and Computing 7(2): 131-174, June 1996

How many symbols or graphic elements is required

Error-proneness

- Does the design of the notation induce slips?
- Compared to textual language, VPLs
 - Do not need delimiters & separators
 - Fewer identifiers are needed, easier to reference
 - Constructs inserted automatically (e.g., loops)

- How much effort is required to make a simple change?
- Basic: 63.3 s
- LabView: 508.3 s
- Prograph: 193.6 s
- tweaked

Viscosity

• Edit Rocket program to take account of air resistance

• VPLs required many wires to be rebuilt, layout to be

Visibility

- Is every (relevant) part of the code simultaneously visible?
- LabView does not show both branches of conditional at same time (!)
 - Particular problem for nested conditionals
- Prograph has poor support for deep nesting of routines

VPLs Discussion

- easy
 - e.g., tracking data flow
 - Often involves structured editor targeted to specific domain, which may not support full range of programs
- But may make other tasks harder
- Often limited focus on scalability
- May be possible to get benefits of task-specific representations without drawbacks through task specific editor rather than language

Often offers a representation that makes specific tasks

GUI Builders

- User interfaces are visual
 - Why not edit interfaces visually?
 - Enables direct manipulation drag and drop to create element, change properties to style, immediately see new feedback

GUI Builders

HyperCard (1987)

https://www.loom.com/share/6c57bdb7e4d0488eb2f9f8949b028ef8?t=491

HyperCard (1987)

SmallCalculato
7 8 9 4 5 6 1 2 3 0 New Butto

SmallCalculator	Script o
Button Info	
Button Name: Card button number: 15 Style: Round Rect ▼ Card part number: 16 Family: None ▼ Card button ID: 19	Scripting language: <u>HyperTalk</u> Length: 103 on mouseUp get the value of card fiel put the value of it into c end mouseUp
= Show Name □ Auto Hilite ☑ Enabled Preview	
Text Style Icon LinkTo OK Script Contents Tasks Cancel	

corresponds to parameters (or slots) that the user can fill in using menu options and dialog boxes.

Visual Basic (1991)

Elements of a GUI Builder

~	licrosoft Visual Basic [
<u>F</u> ile <u>E</u> dit (<u>V</u> iew <u>I</u> nsert <u>R</u> un <u>T</u> ools	Add-Ins Help	
5 4	<u></u>		<u></u> ¥
×	🚰 LoanSheet	Loan	<u>×</u>
N 🔛	<u>Options</u> <u>D</u> own Payme	nt <u>L</u> oan Length	rm View Code
A abl	Purchase Amount		.FRM LoanSheet
듣듯	Down		
	Years in Loan		
	: Maximum		
1 D 🛔			
Ö 🗆	i Minimum		
	Interest Rates		
10	: Maximum % c	LoanSheet	
	Minimum % c	Properties - Lo	banSheet 🗾
		IgrdPaymen	ts Grid 🖃
	Show Paymer	Private Sub grdPayments_Click()	True 🔺
		' Only act if a cell contains a payment. If grdPayments.Text <> "" And AmortFlag	
	Show Amortiza	I Enchle the Show Amortization butto	4815
		andColaiment Enchlod - True	
		Flee	False
		L Dischle the Show Amertination butt	
		cmdCalcimort Enabled = False	2655
		End If	(None)
		End Sub	
			grdPayments
			17 💌
Start S	🗞 Loan - Microsoft Visual B	a	10:43 PM
	 Coart - Microsoft Visual E 	G	10.43 FM

CS 695 / SWE 699 Fall 2023

Profile-clone-sass	° omer/topbar-connections ৵ ি ি Co	ommit (2) 😋 Sync Updated 1 min ago ····
🖵 Top Bar		
ar		℃ 🗁 ~ 75% ~ 🖵 ~ 1352 × 452
ents + Add …		Properties X
Window		Topbar (no classes)
B Canvas		<c co="" johndoe<br="">ApiUser</c>
# TopBar	Top Bar	
	> TopBar	
		Some bio information
	Connect © USA	email*
	Se John Doe ⊡ john@doe.com	
	John-doe	john@doe.com
		Iocation*
	066 × 287	
	900 × 267	USA
		John Doe
	Code Log	~
		Add items 0
	8 username: 'john-doe',	
		(empty scong)
		vrl*
	19 technologies: ['js', 'node', 'react', 'python'],	vsername*
	20 },	

TS top-bar.board.tsx M 🔍

Q

f

G

÷

82

8

3

```
src > _wcs > boards > top-bar > TS top-bar.board.tsx > [@] JohnDoe > B organi
      import { createBoard } from '@wixc3/react-board';
  1
      import { TopBar } from '../../components/pages/to
  2
      import type { ApiUser } from '../../shared/model/ _____
      const JohnDoe: ApiUser = {
  -5
          avatar: 'https://i.pravatar.cc/64?u=john-doe',
  6
          bio: 'Some bio information',
          username: 'john-doe',
          location: 'USA',
  9
 10
          name: 'John Doe',
          email: 'john@doe.com',
 11
12
          followers: 19,
 13
          following: 20,
 14
          twitter: "',
 15
          url: "',
          organization appe Ducks',
 16
 17
          organizations: 1,
 18
          techs: {
              technologies: ['js', 'node', 'react', 'pytho
 19
 20
          },
 21
      };
 22
 23
      export default createBoard({
          name: 'Top Bar',
 24
          Board: () => <TopBar user={JohnDoe} />,
 25
 26
          environmentProps: {
 27
              windowHeight: 452,
              windowWidth: 1352,
 28
 29
          },
 30
     });
 31
```


- Web apps dynamically generate HTML based on data
 - Lists of elements, conditional behavior
- Keeping code and GUI builder in sync
 - What happens if code includes something that can't be represented in GUI builder properties (e.g., an animation)
- --> Need to abstract an immutable concrete value set in a property editor into a relationship that is dynamically computed from other variables
 - Potential for ambiguity, where there's multiple ways to arrive at a specific concrete value

Challenges

current file: Untitled * C Redo Clean Up Run 🕨 OUndo equiTriPt [x3, y3] [x2, y2] = [(x3 + x2 + sqrt 3! * (y3 - y2))/2!, (y3 + y2 - sqrt 3! * (x3 - x2)]oneThirdPt [x2, y2] [x, y] = 6 [x / 1.5! + x2 / 3!, y / 1.5! + y2 / 3!]point = [69, 308] 9 10 11 point2 = [642, 301] 12 makeKochPts depth pt1 pt2 = 13 let oneThirdPt2 = oneThirdPt pt1 pt2 in 14 15 let oneThirdPt3 = oneThirdPt pt2 pt1 in 16 let equiTriPt2 = equiTriPt oneThirdPt2 oneThirdPt3 in 17 if depth < 2 then [pt1, oneThirdPt3, equiTriPt2, oneThirdPt2] 18 19 else let makeKochPts2 = makeKochPts (depth - 1) pt1 oneThirdPt3 in 20 let makeKochPts3 = makeKochPts (depth - 1) oneThirdPt3 equiTriPt2 21 22 let makeKochPts4 = makeKochPts (depth - 1) equiTriPt2 oneThirdPt2 let makeKochPts5 = makeKochPts (depth - 1) oneThirdPt2 pt2 in 23 24 concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5] 25 26 depth = $2\{1-5\}$ 27 28 topPts = makeKochPts depth point point2 29 30 botPt = equiTriPt point point2 31 32 rightPts = makeKochPts depth point2 botPt 33 34 leftPts = makeKochPts depth botPt point 35 36 snowflakePts = concat [topPts, rightPts, leftPts] 37 38 polygon1 = let pts = snowflakePts in 39 let [color, strokeColor, strokeWidth] = [114, 360, 2] in 40 41 polygon color strokeColor strokeWidth pts 42 43 svg (concat [

[polygon1] 44

P.O.C. 111 1.0.010

	\bigcirc	0	:05/3:19 Volume:	0
Il songs	Name	Artist	Duration	
New Playlist Name	Run (Terrifying Night)	Admiralbob77	3:21	
	Entranced Beauty the Beauty	Carosone	3:39	
	Close to Mike Jazz Mix (ft. old Dog)	CiggiBurns	3:19	4))
	Tattoo (Candy Flowers Edit)	CoffeeEurope	3:30	1
	Mad Dirty Naked	CSoul	3:22	
	FeedForward (DuckBack Mix)	Duckett	2:52	
	Wake up Kiss	Hansatom	3:11	
	CSoul Oriental Express	JeffSpeed68	3:36	
	Surrender	One Project	3:52	
	Made from Corn	Only Meth	3:44	

←Undo Redo → sketch Add Field song_info button player svg dom physics on find emit >(native (native (native

InterState Runtime

InterState Editor

10 min break

Tech Talk: Microsoft Power Automate

In-Class Activity

- In groups of 2, try out Microsoft Power Automate https://powerautomate.microsoft.com/en-us/#home-signup Setup the free trial for the Web version of Power Automate Read docs to understand how to build a Power Automate

- App.
 - Pick a data processing problem based on examples in docs Build a Power Automate App and try it out.