
Program Synthesis
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today

• Part 1 (Lecture)(~60 mins)
• 10 min break!

• Part 2: Tech Talk - GitHub CoPilot (15 mins)
• Part 3: (In-Class Activity)(60 mins)

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics

• HW 3 due today
• HW 4 due 11/29

3

LaToza CS 695 / SWE 699 Fall 2023

Overview

• What is program synthesis?
• Approaches to program synthesis
• LLM-based program synthesis
• Studies of LLM-based program synthesis

4

LaToza GMU CS 695 / SWE 699 Fall 2023

What is program synthesis?

• Developer specifies desired behavior, computer
synthesizes a program for this behavior.

5

LaToza GMU CS 695 / SWE 699 Fall 2023

Key Questions

• How do you generate a program?
• How do you specify what program behavior is?
• How does a developer check if it works?
• What happens if the program behavior is wrong?

6

LaToza GMU CS 695 / SWE 699 Fall 2023

Specification Approaches

• Input / output examples
• Unit tests
• Logical relations between inputs and outputs

(specifications)
• User demonstrations
• Keywords describing intent
• Partially complete programs with “holes”
• Natural language description

7

LaToza GMU CS 695 / SWE 699 Fall 2023

Synthesis approaches

• Enumerative search
• Genetic programming
• Large language models

8

Enumerative Search &
Genetic Programming

LaToza GMU CS 695 / SWE 699 Fall 2023

Search space
• Competing goals

• Expressive: include all programs of interest
• Restrictive: smaller search space

• Often expressed in terms of what language constructs are or
are not allowed

• Examples
• Expressions only with arithmetic operators
• Expressions with function invocations & operators
• Expressions, guarded by one of a specific set of conditionals
• Loop-free programs with conditionals
• Expressions with depth a maximum node depth of 4
• Arbitrary programs

10

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU CS 695 / SWE 699 Fall 2023

Some methods of reducing search space

• Expressing programs in less expressive domain
specific language

• e.g,. method invocations & conditionals controlling
when they exist; control

• Assembling code from existing code snippets
• Plastic surgery hypothesis: high redundancy in

code, so existing code snippets can often be
found (and perhaps slightly adapted)

11

LaToza GMU CS 695 / SWE 699 Fall 2023

Search techniques
• Brute force

• Enumerate all programs in the search space
• Version spaces

• Maintain list of satisfying boolean functions
• Order from most general to least general
• Refine as more constraints are added

• Probabilistic inference
• Estimate distribution elements in search space from data, use to bias search
• e.g., toString() is far more frequent than xizo(100032)

• Genetic programming
• Maintain population of programs, use selection, mutation, crossover to

evolve
• SAT solvers

• Represent constraints as logical formula, generate program that satisfies
constraint

12

Sumit Gulwani. 2010. Dimensions in program synthesis. Symposium on Principles and practice of declarative
programming (PPDP ’10), 13-24.

LaToza GMU CS 695 / SWE 699 Fall 2023

Genetic programming
• One of the oldest approaches, based on genetic

algorithms

• Uses analogy with biology
• DNA —> programs
• Keep population of programs
• Select highest scoring programs (e.g., best satisfy

constraints) for replication
• Use crossover & mutation to evolve programs

towards better solution

13

LaToza GMU CS 695 / SWE 699 Fall 2023

Defect Repair: GenProg
• 1. What is it doing wrong?

• We take as input a set of negative test cases that characterizes a fault. The
input program fails all negative test cases.

• 2. What is it supposed to do?
• We take as input a set of positive test cases that encode functionality

requirements. The input program passes all positive test cases.
• 3. Where should we change it?

• We favor changing program locations visited when executing the negative
test cases and avoid changing program locations visited when executing
the positive test cases.

• 4. How should we change it?
• We insert, delete, and swap program statements and control flow using

existing program structure. We favor insertions based on the existing
program structure.

• 5. When are we finished?
• We call the first variant that passes all positive and negative test cases a

primary repair. We minimize the differences between it and the original input
program to produce a final repair.

14

Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. 2010. Automatic program repair with evolutionary computation. Commun. ACM 53, 5 (May
2010), 109-116.

LaToza GMU CS 695 / SWE 699 Fall 2023

Example

15

LaToza GMU CS 695 / SWE 699 Fall 2023

Example

16

LaToza GMU CS 695 / SWE 699 Fall 2023

Example

17

LaToza GMU CS 695 / SWE 699 Fall 2023

Synthesis with
Prophet

18

Fan Long and Martin Rinard. 2016. An
analysis of the search spaces for generate
and validate patch generation systems. In
Proceedings of the 38th International
Conference on Software Engineering
(ICSE '16), 702-713.

LaToza GMU CS 695 / SWE 699 Fall 2023

Prophet mutation operators

19

Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate and validate patch generation
systems. In Proceedings of the 38th International Conference on Software Engineering (ICSE '16), 702-713.

LaToza GMU CS 695 / SWE 699 Fall 2023

Prophet results

20

LaToza GMU CS 695 / SWE 699 Fall 2023

Keyword constraints

21

Greg Little and Robert C. Miller. 2007. Keyword programming in java. International conference on Automated software engineering (ASE ’07), 84-93.

• Explore space of expressions, scoring by match of
identifiers in expression to provided keywords

• Use in scope variables as leafs in exploration

LaToza GMU CS 695 / SWE 699 Fall 2023

Programming by demonstration
• Program is a set of operations with effects recorded by

the user
• e.g., click a button, enter String in textbox

• User expresses constraints by recording multiple traces
• Goal is to generate program that has same output on

demonstrated examples but also work on other similar
situations

• Example
• User selects the first entry from Google search result,

pastes that into a form field on another website
• User demonstrates doing this once (or twice)
• Want a program that will work for all search results

returned by Google

22

LaToza GMU CS 695 / SWE 699 Fall 2023

Example: Flashfill

23

Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Commun. ACM 55, 8 (August 2012), 97-105. DOI: https://doi.org/10.1145/2240236.2240260

https://www.youtube.com/watch?v=w-k9WjRJvIY

LaToza GMU CS 695 / SWE 699 Fall 2023

Challenge: ambiguity

24

ways to extract 706 from 425-706-7709

LaToza GMU CS 695 / SWE 699 Fall 2023

Programming by demonstration

25

https://www.youtube.com/watch?v=lKIex_XAxWw

Large language models
for programming

LaToza GMU CS 695 / SWE 699 Fall 2023 27

https://www.youtube.com/watch?v=hPVatUSvZq0

LaToza GMU CS 695 / SWE 699 Fall 2023 28

https://www.youtube.com/watch?v=5L6Ys522snA

LaToza GMU CS 695 / SWE 699 Fall 2023 29

http://tagide.com/blog/education/the-end-of-programming-as-we-know-it/

LaToza GMU CS 695 / SWE 699 Fall 2023 30

http://tagide.com/blog/education/the-end-of-programming-as-we-know-it/

LaToza GMU CS 695 / SWE 699 Fall 2023 31

http://tagide.com/blog/education/the-end-of-programming-as-we-know-it/

LaToza GMU CS 695 / SWE 699 Fall 2023 32

http://tagide.com/blog/education/the-end-of-programming-as-we-know-it/

LaToza GMU CS 695 / SWE 699 Fall 2023

Discussion - Experiences Programming
with LLMs

33

Studies of LLM
programming tools

LaToza GMU CS 695 / SWE 699 Fall 2023 35

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

LaToza GMU CS 695 / SWE 699 Fall 2023 36

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

LaToza GMU CS 695 / SWE 699 Fall 2023 37

https://github.blog/2023-10-10-research-quantifying-github-copilots-impact-on-code-quality/

LaToza GMU CS 695 / SWE 699 Fall 2023 38

https://github.blog/2023-10-10-research-quantifying-github-copilots-impact-on-code-quality/

LaToza GMU CS 695 / SWE 699 Fall 2023 39

https://github.blog/2023-10-10-research-quantifying-github-copilots-impact-on-code-quality/

LaToza GMU CS 695 / SWE 699 Fall 2023

Generating Boilerplate
These days not having Copilot is a pretty big productivity hit to me. The other day Copilot somehow
stopped offering completions for maybe an hour, and I was pretty shocked to realize how much I’ve
grown to rely on just hitting tab to complete the whole line. (I was writing Go at the time which is on
the boilerplatey side among the mainstream languages, so Copilot is particularly effective [...]”
“I use GTP-3 codex [sic] daily when working. It saves me time, helps me explore unfamiliar lan-
guages and APIs and generates approaches to solve problems. It can be shockingly good at coding in
narrow contexts. It would be a mistake to miss the developments happening in this area”
“[...] for a lot of quick programming questions, I’m finding I don’t even need a search engine. I just use
Github Copilot. For example, if I wanted to remember how to throw an exception I’d just write that as a
comment and let Copilot fill in the syntax. Between that and official docs, don’t need a ton else.”
“[...] It’s changing the way I write code in a way that I can already tell is allowing me to be much lazier
than I’ve previously been about learning various details of languages and libraries. [...]”
“[...] Github Copilot [...] pretty much replaced almost my entire usage of Stack Overflow.[...]”
“[...] GitHub Copilot really shines in rote work: when it can correctly infer what you are about to do, it
can and will assist you correctly. It’s not able to make big decisions, but in a pinch, it might be able to
give hints. [...] If used right, Copilot can give developers a significant velocity boost, especially in
greenfield projects where there is lots and lots of boilerplate to write. [...]”

40

LaToza GMU CS 695 / SWE 699 Fall 2023 41

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI EA '22). Association for Computing Machinery, New York, NY, USA, Article 332, 1–7. https://doi.org/10.1145/3491101.3519665

LaToza GMU CS 695 / SWE 699 Fall 2023

Challenges with CoPilot

“I would go with Intellisense for now since it gives me more
control over the code I am writing”
"Yes, I got rid of the whole snippet as I didn’t want to conform
to the code generated by AI as it may have unwanted bugs.”
•Only trusted for simple tasks, due to the difficulty to
understand generated code, fear of unknown bugs, failure to
match the coding style

42

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI EA '22). Association for Computing Machinery, New York, NY, USA, Article 332, 1–7. https://doi.org/10.1145/3491101.3519665

LaToza GMU CS 695 / SWE 699 Fall 2023

CoPilot vs. StackOverflow
"For certain tasks that follow very routine structures, and which I always have to look up
on Stack Overflow, a tool like Copilot eliminates a lot of the tedious searching on
Google”.

“I’m not fully confident that Copilot will suggest the best solution. By reading Stack
Overflow, the helpful thing is that there will always be someone who would just post a
better solution, and people will discuss and compare. I feel like that is missing from
Copilot.”

“Not exactly sure what this does. I’ll figure it out later”.

"It made debugging the code more difficult as I hadn’t written the code directly and didn’t
have an initial intuition about where the bugs might be. Especially with a final bug in my
program I really had no idea why it was happening and had to refactor the code.”

43

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI EA '22). Association for Computing Machinery, New York, NY, USA, Article 332, 1–7. https://doi.org/10.1145/3491101.3519665

LaToza GMU CS 695 / SWE 699 Fall 2023

Giving up on CoPilot
“I think getting rid of the whole code is easier than reading the
code and making the changes.”

CoPilot generated a regex that was hard to fix. Instead of
finding a different approach, participant spent 20 minutes
unsuccessfully trying to fix it

44

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI EA '22). Association for Computing Machinery, New York, NY, USA, Article 332, 1–7. https://doi.org/10.1145/3491101.3519665

LaToza GMU CS 695 / SWE 699 Fall 2023

Acceleration vs. Exploration
• Acceleration - use

CoPilot to complete
code faster

• Exploration - find
starting points,
explore options

45

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with Code-
Generating Models. Proc. ACM Program. Lang. 7, OOPSLA1, Article 78 (April 2023), 27 pages. https://doi.org/10.1145/3586030

LaToza GMU CS 695 / SWE 699 Fall 2023

Acceleration
• Requires first decomposing problem into

subproblems
• Accept end of line suggestions for small logical

units - function calls or argument completions
• Long suggestions break flow and are dismissed
• Validated by checking for presence of key function

calls or variable names developer expects to see
• Otherwise, rejected

46

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with Code-
Generating Models. Proc. ACM Program. Lang. 7, OOPSLA1, Article 78 (April 2023), 27 pages. https://doi.org/10.1145/3586030

LaToza GMU CS 695 / SWE 699 Fall 2023

Exploration
• Requires developer to first trust the model
• Prompt with comments rather than code
• Rewrite when suggestions don't match expectations
• Frequently remove comments after completing task
• Explore multiple suggestions through multi selection pane,

taking parts or combining parts
• Give more confidence when repeats variations of a similar

approach
• Carefully examined and validate suggestions with code

examination, testing, documentation
• Willing to accept and edit

47

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with Code-
Generating Models. Proc. ACM Program. Lang. 7, OOPSLA1, Article 78 (April 2023), 27 pages. https://doi.org/10.1145/3586030

LaToza GMU CS 695 / SWE 699 Fall 2023 48

Jenny T. Liang, Chenyang Yang, Brad A. Myers. A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges. International Conference on Software Engineering (ICSE), 2024

https://www.cs.cmu.edu/~cyang3/
https://www.cs.cmu.edu/~bam/

LaToza GMU CS 695 / SWE 699 Fall 2023 49

Jenny T. Liang, Chenyang Yang, Brad A. Myers. A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges. International Conference on Software Engineering (ICSE), 2024

https://www.cs.cmu.edu/~cyang3/
https://www.cs.cmu.edu/~bam/

LaToza GMU CS 695 / SWE 699 Fall 2023

Successful use cases
• Repetitive code - boilerplate, endpoints
• Code with simple logic - independent util functions,

sorting algorithms, small functions
• Autocomplete
• Quality assurance - log messages, test cases
• Proof of concept - only had fuzzy idea how to

approach
• Learning - new programming languages or libraries
• Recalling - syntax of languages and API methods

50

Jenny T. Liang, Chenyang Yang, Brad A. Myers. A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges. International Conference on Software Engineering (ICSE), 2024

https://www.cs.cmu.edu/~cyang3/
https://www.cs.cmu.edu/~bam/

LaToza GMU CS 695 / SWE 699 Fall 2023

User Input Strategies

• Clear and explicit explanations in code
• Adding code for additional context
• Breaking down instructions of desired behavior into

step by step parts
• Prompt engineering - simpler sentences, different

language

51

Jenny T. Liang, Chenyang Yang, Brad A. Myers. A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges. International Conference on Software Engineering (ICSE), 2024

https://www.cs.cmu.edu/~cyang3/
https://www.cs.cmu.edu/~bam/

LaToza GMU CS 695 / SWE 699 Fall 2023 52

Jenny T. Liang, Chenyang Yang, Brad A. Myers. A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges. International Conference on Software Engineering (ICSE), 2024

https://www.cs.cmu.edu/~cyang3/
https://www.cs.cmu.edu/~bam/

LaToza GMU CS 695 / SWE 699 Fall 2023

Improving interactions
• User feedback - correct outputted code
• Better under code context from other files
• Flip between acceleration and exploration mode
• Chat to refine code behavior
• Ensure code runs
• More explanation, links to documentation
• More suggestions
• Account for non-functional requirements such as

performance

53

Jenny T. Liang, Chenyang Yang, Brad A. Myers. A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges. International Conference on Software Engineering (ICSE), 2024

https://www.cs.cmu.edu/~cyang3/
https://www.cs.cmu.edu/~bam/

10 min break

Tech Talk: GitHub
CoPilot

LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity

• In groups of 2, try out GitHub CoPilot
• https://github.com/features/copilot
• Setup the free trial
• Setup VS Code
• Build a simple front end web app game

• Build tetris
• Reflect on your experiences with CoPilot

• What were you able to accomplish (totally ok if didn't finish)
• What worked well
• What didn't work well

• Submission
• Submit (1) pdf or doc with reflection and (2) zip file with source code through

Blackboard. 1 submission per group. Due 7pm today.

56

https://github.com/features/copilot

