
Live Programming
CS 695 / SWE 699: Programming Tools

Fall 2023

LaToza CS 695 / SWE 699 Fall 2023

Today

• Part 1 (Lecture)(~45 mins)
• 10 min break!

• Part 2: One or Two Tech Talks (30 mins)
• CodePen
• Google Colab (?)

• Part 3: (In-Class Activity)(60 mins)

2

LaToza CS 695 / SWE 699 Fall 2023

Logistics

• HW 4 checkpoint due 11/1
• HW 4 due 11/29
• Tech talks should now all be on the dates originally

scheduled

3

LaToza CS 695 / SWE 699 Fall 2023

Overview

• What is live programming?
• Tools to make programming more live
• Computational Notebooks

4

Developers work in cycles
Edit

Run

5

Tools support
Live	programming	environment	

6

Live programming environments
 designed to enable fluid experience

7

8

Live programming environments
 designed to enable fluid experience

Frequent	and	short.		
				

9

Live programming environments
 designed to enable fluid experience

Frequent	and	short.		
				

Focus	on	the	edit	step.				

10

Live programming environments
 designed to enable fluid experience

Frequent	and	short.		
				

Focus	on	the	edit	step.				

No	interruptions.		

Bret	Victor, LEARNABLE	PROGRAMMING

Masuhara et al, Programming Experiences with a Live
Programming Environment for Data Structures
 

11

What is developers’ current edit-run behavior?

This	Photo	by	Unknown	Author	is	licensed	under	CC	BY-SA

12

http://stackoverflow.com/jobs/124180/lead-software-developer-windows-clients-lundalogik-ab
https://creativecommons.org/licenses/by-sa/3.0/

Fluidity in current edit-run cycles
Frequent	and	short.		

Focus	on	the	edit	step.		
	 	

No	interruptions.	

13

Frequent	and	short.		
			RQ1:	How	long	and	frequent	are	edit-run	cycles?	

Focus	on	the	edit	step.		

No	interruptions.		
			

14

Fluidity in current edit-run cycles

Frequent	and	short.		
			RQ1:	How	long	and	frequent	are	edit-run	cycles?	

Focus	on	the	edit	step.		
			RQ2:	How	do	developers	edit	and	run?	

No	interruptions.		
			

15

Fluidity in current edit-run cycles

Frequent	and	short.		
			RQ1:	How	long	and	frequent	are	edit-run	cycles?	

Focus	on	the	edit	step.		
			RQ2:	How	do	developers	edit	and	run?	

No	interruptions.		
		RQ3:	How	sequential	are	edit-run	cycles,	and	what	causes	
gaps	within	and	between	cycles?

16

Fluidity in current edit-run cycles

Observe-dev dataset

11	Professional	Developers 15	hours	of	debugging
13	hours	of	programming

2135	activities	in	debugging
1368	activities	in	programming

17

Observe-dev dataset
Browsing	a	file	of	code Editing	a	file	of	code Testing	Program Inspecting	Program Consulting		Resources

Others

Activities	

18

Observe-dev dataset
Consulting		Resources

Others

Activities

19

Browsing	a	file	of	code
Editing	a	file	of	code Testing	Program

Inspecting	Program

Edit
Run

Observe-dev dataset
Activities

20

Browsing	a	file	of	code
Editing	a	file	of	code Testing	Program

Inspecting	Program

Consulting		Resources

Others

Gaps

Edit
Run

Observe-dev dataset
Activities

21

Browsing	a	file	of	code
Editing	a	file	of	code Testing	Program

Inspecting	Program

Consulting		Resources

Others

Gaps

Edit
Run

22

Fluidity in current edit-run cycles

	1	minutes	long	(Debugging)	
	3	minutes	long	(Programming)	

RQ1:	How	long	and	frequent	are	edit-run	cycles?	

23

Fluidity in current edit-run cycles

	1	minutes	long	(Debugging)	
	3	minutes	long	(Programming)	

	7	cycles	(Debugging)	
	2	cycles(Programming)	

RQ1:	How	long	and	frequent	are	edit-run	cycles?	

RQ2:	How	do	developers	edit	and	run?	

24

Fluidity in current edit-run cycles

RQ2:	How	do	developers	edit	and	run?	

25

Fluidity in current edit-run cycles

RQ2:	How	do	developers	edit	and	run?	

26

Fluidity in current edit-run cycles

RQ2:	How	do	developers	edit	and	run?	

27

Fluidity in current edit-run cycles

RQ2:	How	do	developers	edit	and	run?	

28

Fluidity in current edit-run cycles

29

RQ3:	How	sequential	are	edit-run	cycles?
Fluidity in current edit-run cycles

30

RQ3:	How	sequential	are	edit-run	cycles?
Fluidity in current edit-run cycles

31

RQ3:	How	sequential	are	edit-run	cycles?
Fluidity in current edit-run cycles

RQ3:	What	causes	gaps	within	and	between	cycles?
Fluidity in current edit-run cycles

Scattered	Code

RQ3:	What	causes	gaps	within	and	between	cycles?
Fluidity in current edit-run cycles

Scattered	Code Unfamiliar	third-party	APIs

34

RQ3:	What	causes	gaps	within	and	between	cycles?
Fluidity in current edit-run cycles

Scattered	Code Unfamiliar	third-party	APIs

35

RQ3:	What	causes	gaps	within	and	between	cycles?
Fluidity in current edit-run cycles

Switch	to	other	Tools

Scattered	Code Unfamiliar	third-party	APIs

Switch	to	other	Tools Waiting	to	compile

36

RQ3:	What	causes	gaps	within	and	between	cycles?
Fluidity in current edit-run cycles

RQ1:	few	minutes	in	length	and	multiple	cycles	in	
debugging	and	programming.	

RQ2:	focus	on	the	edit	step.	Edit	one	file	per	cycle.	Run	
program	manually.	

RQ3:	Mostly	sequential.	However,	there	were	needs	that	
caused	gaps	between	and	within	cycles.	

37

Fluidity in current edit-run cycles

LaToza CS 695 / SWE 699 Fall 2023

What is live programming
• Programming environments that tighten the

feedback loop between programming and output
• Reduce Norman's "Gulf of Evaluation" -

understanding the consequences of taking an
action

• Make programming more like direct manipulation,
with small incremental, reversible changes with
immediate feedback

• Support tinkering, exploratory programming, and
learning by doing

38

LaToza CS 695 / SWE 699 Fall 2023

Benefits of live programming
• minimizing the latency between a programming

action and seeing its effect on program execution
• allowing performances in which programmer

actions control the dynamics of the audience
experience in real time

• simplifying the “credit assignment problem” faced
by a programmer when some programming actions
induce a new runtime behavior (such as a bug)

• supporting learning

39

Steven L. Tanimoto. 2013. A perspective on the evolution of live programming. In Proceedings of the 1st International Workshop on Live Programming (LIVE '13). IEEE Press, 31–34.

LaToza CS 695 / SWE 699 Fall 2023

Demo: Learnable Programming

• http://worrydream.com/#!/LearnableProgramming

40

http://worrydream.com/#!/LearnableProgramming

LaToza CS 695 / SWE 699 Fall 2023

Ways to make programming more live

• Run the program whenever possible
• Show more information about the program

execution

41

LaToza CS 695 / SWE 699 Fall 2023

Run the program whenever possible

• Run the program whenever possible

• Quickly see what the output is

42

LaToza CS 695 / SWE 699 Fall 2023

Demo: JS Bin

• https://jsbin.com/

43

https://jsbin.com/

LaToza CS 695 / SWE 699 Fall 2023

Challenges

• Program may not be syntactically valid
• Running the program may take a long time
• Running the program may require user input

• --> easiest for small snippets
• --> edit & continue possible for larger programs

44

LaToza CS 695 / SWE 699 Fall 2023

Ways to show more about execution state

• Expression values
• Data structure relationships
• Summary of function calls

45

LaToza CS 695 / SWE 699 Fall 2023

Demo: Projection Boxes

• https://cseweb.ucsd.edu/~lerner/pb/

46

https://cseweb.ucsd.edu/~lerner/pb/

LaToza CS 695 / SWE 699 Fall 2023

Data structure relationships

• Show runtime objects in memory and reference
relationships between them

• Show how operations with collections, wrapped
objects, sorts, and searches work

47

LaToza CS 695 / SWE 699 Fall 2023

Demo: Python Tutor

• https://pythontutor.com/articles/java-visualizer.html

48

https://pythontutor.com/articles/java-visualizer.html

LaToza CS 695 / SWE 699 Fall 2023

Challenges
• Code executes more than once

• How do you show the write code for
• Execution state is very, very large for real world

programs
• What to show or not show?
• How do users find the right execution state?

• Expression values may be objects, not just
primitives

• What do you show about an object with 50 fields?

49

LaToza GMU SWE 795 Fall 2019

Demo: SeeCodeRun

50

LaToza GMU SWE 795 Fall 2019

Computational Notebooks
• Combine rich text and code to

explain process of exploring and
analyzing data

• Combine code and output to
quickly show results of analysis
scripts

• Contain cells: code, output, table,
other media

• Offer execution model of running
individual cells, with shared state

• Examples: Jupyter Notebooks,
Mathematica, Databricks, Apache
Zeppelin, Sage Notebooks

51

LaToza GMU SWE 795 Fall 2019

Demo: JupyterLab

52

https://www.youtube.com/watch?v=7wf1HhYQiDg

LaToza GMU SWE 795 Fall 2019

Use of computational notebooks

• Scratch pads - preliminary, short lived explorations
to answer specific questions, debug code, test out
example code

• Production pipeline - used as early version of code,
to be extracted into production

• Sharing - teachers to students, computational
research, data analysis

53

Kery, M. B., Radensky, M., Arya, M., John, B. E., & Myers, B. A. (2018). The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (p. 174). Retrieved from Kery-The-Story-in-the-Notebook-Exploratory-Data-Science-using-a-Literate-Programming-Tool.pdf

LaToza GMU SWE 795 Fall 2019

Organizing notebooks
• Cells can be organized in many ways while iterating

on various versions of code
• Top to bottom - most recent last
• Inline changes to code

• Create regions where there are multiple versions of
an analysis, followed by other regions that build on
previous steps

• Manage content - too many cells forces constant
scrollings; distant related code cells hard to
comprehend

54

Kery, M. B., Radensky, M., Arya, M., John, B. E., & Myers, B. A. (2018). The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (p. 174). Retrieved from Kery-The-Story-in-the-Notebook-Exploratory-Data-Science-using-a-Literate-Programming-Tool.pdf

LaToza GMU SWE 795 Fall 2019

Challenges with Notebooks

55

Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus Barik. 2020. What's Wrong with Computational Notebooks? Pain Points, Needs, and Design Opportunities. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (CHI '20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376729

10 min break

Tech Talks

LaToza CS 695 / SWE 699 Fall 2023

In-Class Activity

• In groups of 2 or 3, try out CodePen.io or SeeCode.run
• Build a simple calculator (e.g., buttons to add, subtract, multiple,

delete)
• Reflect on your experiences with live programming tool

• What were you able to accomplish (totally ok if didn't finish)
• What worked well
• What didn't work well

• Submission
• Submit (1) pdf or doc with reflection and (2) source code through

Blackboard. 1 submission per group. Due 7pm today.

58

http://CodePen.io

