Information Visualization

SWE 432, Fall 2017
Design and Implementation of Software for the Web
Today

• What types of information visualization are there?
 • Which one should you choose?
• What does usability mean for information visualizations?
Cholera Epidemic in London, 1854

- >500 fatal attacks of cholera in 10 days
- Concentrated in Broad Street area of London
- Many died in a few hours
- Dominant theory of disease: caused by noxious odors
- Afflicted streets deserted by >75% inhabitants
Investigation and aftermath

- Based on visualization, did case by case investigation
- Found that 61/83 positive identified as using well water from Broad Street pump
- Board ordered pump-handle to be removed from well
- Epidemic soon ended
- Solved centuries old question of how cholera spread
Methods used by Snow

- Placed data in appropriate **context** for assessing cause & effect
 - Plotted on map, included well location
 - Reveals proximity as cause
- Made quantitative **comparisons**
 - Fewer deaths closer to brewery, could investigate cause
- Considered **alternative** explanations & contrary cases
 - Investigated cases not close to pump, often found connection to pump
- Assessment of possible **errors** in numbers
Mapping data to visual form
Designing an information visualization

Data

Raw Data

Data Tables

Visual Structures

Views

Visual Form

Human Interaction

Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + metadata
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, ...)

Data Transformations

Visual Mappings

View Transformations

task
Types of raw data

- Nominal - unordered set
- Ordinal - ordered set
- Quantitative - numeric range
Data transformations

- Classing / binning: Quantitative —> ordinal
 - Maps ranges onto **classes** of variables
 - Can also count # of items in each class w/ histogram
- Sorting: Nominal —> ordinal
 - Add order between items in sets
- Descriptive statistics: mean, average, median, max, min, …
Visual structures

- 3 components
 - spatial substrate
 - marks
 - marks’ graphical properties
Spatial substrate

- Axes that divide space
- Types of axes - unstructured, nominal, ordinal, quantitative
- Composition - use of multiple orthogonal axes (e.g., 2D scatterplot, 3D)
Marks

- Points (0D)
- Lines (1D)
- Areas (2D)
- Volumes (3D)
Marks’ graphical properties

- Quantitative (Q), Ordinal (O), Nominal (N)
- Filled circle - good; open circle - bad

<table>
<thead>
<tr>
<th>Spatial</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent (Position)</td>
<td>Gray Scale</td>
</tr>
<tr>
<td>Size</td>
<td>Color</td>
</tr>
<tr>
<td>Orientation</td>
<td>Texture</td>
</tr>
<tr>
<td>Differential</td>
<td>Shape</td>
</tr>
</tbody>
</table>
Effectiveness of graphical properties

- Quantitative (Q), Ordinal (O), Nominal (N)
- Filled circle - good; open circle - bad
Animation

- Visualization can change over time
- Could be used to encode data as a function of time
 - But often not effective as makes direct comparisons hard
- Can be more effective to animate transition from before to after as user configures visualization
Examples of visualizations
Time-series data
Stacked graph

• Supports visual summation of multiple components
Small multiples

• supports separate comparison of data series
• may have better legibility than placing all in single plot
Maps
Choropleth map

• Groups data by area, maps to color
Cartograms

- Encodes two variables with size and color
Hierarchies
Node link diagram
Dendrogram

• leaf nodes of hierarchy on edges of circle
Treemaps
Networks
Force-directed layout

- edges function as springs, find least energy configuration
Arc diagram

- can support identifying cliques & bridges w/ right order
Adjacency matrix
Design considerations
Tufte’s principles of graphical excellence

• show the **data**
• induce the viewer to think about the substance rather than the methodology
• avoid distorting what the data have to say
• present **many** numbers in a small space
• make large data sets **coherent**
• encourage the eye to **compare** different pieces of data
• reveal data at several levels of detail, from overview to fine structure
• serve reasonable clear **purpose**: description, exploration, tabulation, decoration
Distortions in visualizations

• Visualizations may distort the underlying data, making it harder for reader to understand truth
• Use of design variation to try to falsely communicate data variation
Example

- **Operating Revenues**:
 - 1970: $3,549,385
 - 1971: $4,520,362
 - 1972: $4,916,444
 - 1973: $6,814,503
 - 1974: $(11,014)

- **Net Income (Loss)**:
 - 1970: $(11,014)
 - 1971: $397,747
 - 1972: $521,943
 - 1973: $1,435,102
 - 1974: $1,647,001

- **Exploration & Development Expenditures**:
 - 1970: $351,341
 - 1971: $85,149
 - 1972: $75,243
 - 1973: $329,421
 - 1974: $1,226,007
Example
Example (corrected)
Example
Weighted Electoral Map
Data-ink

- Data-ink - non-redundant ink encoding data information

Data-ink ratio = \frac{\text{Data-ink}}{\text{Total ink used to print the graphic}}

= proportion of a graphic’s ink devoted to the non-redundant display of data-information

= 1.0 – proportion of a graphic that can be erased
Examples of data-ink ratio

![Graph showing relationship between actual and predicted rates]

~0

1.0
Design principles for data-ink

- (a.k.a. aesthetics & minimalism / elegance & simplicity)
- **Above all else show the data**
 - Erase non-data-ink, within reason
 - Often not valuable and distracting
 - Redundancy not usually useful
Example
Example (revised)
Interacting with visualizations
Interactive visualizations

• Users often use iterative process of making sense of the data
• Answers lead to new questions
• Interactivity helps user constantly change display of information to answer new questions
• Should offer visualization that offers best view of data moment to moment as desired view changes
Information Visualization Tasks

- Overview: gain an overview of entire collection
- Zoom: zoom in on items of interest
- Filter: filter out uninteresting items
- Details on demand: select an item or group and get details
- Relate: view relationships between items
- History: support undo, replay, progressive refinement
- Extract: allow extraction of sub-collections through queries
In Class Activity
Design an information visualization

• In groups of 2 or 3
 • Select a set of data to visualize and two or more representative questions to answer using this data
• Design an interactive information visualization
 • Create sketches showing the design of the information visualization
 • Should have multiple views of data, interactions to configure and move between views