Persistence

SWE 432, Fall 2019
Web Application Development

Today

 More on design considerations in identitying
resources and REST

e Persistence

LaToza GMU SWE 432 Fall 2019

Review: Building a microservice w/
Express

Microservice API

GET /loadCities.jsp

GET /updateDetails.|sp

LaToza GMU SWE 432 Fall 2019

Review: Application Programming
Interface

Microservice AP * Microservice offers public interface for
interacting with backend

e (Qffers abstraction that hides
implementation details

e Set of endpoints exposed on micro
GET /loadCities.jsp service

GET /updateDetails.jsp

e Users of APl might include
e Frontend of your app

* Frontend of other apps using your
packend

e QOther servers using your service

LaToza GMU SWE 432 Fall 2019

Review: Intermediaries

Web “Front End” Intermediary “Origin” server

—
HTTP Request

?7?7?

—
HTTP Response

e Client interacts with a resource identified by a URI

* But it never knows (or cares) whether it interacts with origin
server or an unknown intermediary server

* Might be randomly load balanced to one of many servers

 Might be cache, so that large file can be stored locally
* (e.g., GMU caching an OSX update)
 Might be server checking security and rejecting requests

LaToza GMU SWE 432 Fall 2019

LaToza

Review: HTTP Actions

e GET: safe method with no side effects

 Requests can be intercepted and replaced with cache

response

 PUT, DELETE: idempotent method that can be repeated

with same result

* Requests that fail can be retried indetinitely till they
succeed

e POST: creates new element

e Retrying a failed request might create duplicate copies

of new resource

)

02 The page you are trying to view contains POSTDATA. If you resend the data, any action the form
carried out (such as a search or online purchase) wil be repeated. To resend the data, cick OK.

Otherwise, click Cancel.

OK

[Cancel

GMU SWE 432 Fall 2019

Support scaling

cityinfo.org
o Yesterday, cityinfo.org had 10 daily active [¥ieere oAz
users. Today, it was featured on several
news sites and has 10,000 daily active

Uusers.

e Yesterday, you were running on a single

server. Today, you need more than a single BEERICEECIERES
servetr. GET /updateDetails.jsp

 (Can you just add more servers”?

 What should you have done yesterday to
make sure you can scale quickly today?

LaToza GMU SWE 432 Fall 2019

Support scaling

cityinfo.org
Microservice API

e Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

e Yesterday, you were running on a single
server. Today, you need more than a single & e e

Server. PUT /updateDetails.jsp

 (Can you just add more servers”?

 What should you have done yesterday to
make sure you can scale quickly today?

LaToza GMU SWE 432 Fall 2019

http://cityinfo.org
http://cityinfo.org

LaToza

Versioning

e Your web service just added a great new feature!
 You'd like to expose it in your API.

* But... there might be old clients (e.g., websites)
built using the old API.

* [These websites might be owned by someone
else and might not know about the change.

e Don’t want these clients to throw an error
whenever they access an updated API.

GMU SWE 432 Fall 2019

Cool URIs don’t change

* Intheory, URI could last forever, being reused as server is
rearchitected, new features are added, or even whole technology stack

IS replaced.

« “What makes a cool URI?
A cool URI is one which does not change.

What sorts of URIs change?
URIs don't change: people change them.”

e hitps://www.w3.org/Provider/Style/URI.html

e Bad:

o https://www.w3.org/Content/id/50/URI.html (What does this path
mean? What if we wanted to change it to mean something else?)

 Why might URIs change?”
 We reorganized our website to make it better.
 We used to use a cgi script and now we use node.JS.

LaToza GMU SWE 432 Fall 2019 10

https://www.w3.org/Provider/Style/URI.html

LaToza

URI Design

URIs represent a contract about what resources your server
exposes and what can be done with them

Leave out anything that might change

e Content author names, status of content, other keys that
might change

* File name extensions: response describes content type
through MIME header not extension (e.qg., .jpg, .mp3, .pdf)

e Server technology: should not reference technology
(e.g., .ctm, .jsp)

Endeavor to make all changes backwards compatible
 Add new resources and actions rather than remove old

It you must change URI structure, support old URI structure
and new URI structure

GMU SWE 432 Fall 2019

11

LaToza

Support change

Due to your popularity, your
backend data provider just backed
out of their contract and are now
your competitor.

The data you have is now In a
different format.

Also, you've decided to migrate
your backend from PHP to node.|s
to enable better scaling.

How do you update your backend
without breaking all of your clients”

GMU SWE 432 Fall 2019

cityinfo.org
Microservice API

GET /loadCities.jsp

PUT /updateDetails.jsp

12

LaToza

Support change

Due to your popularity, your
backend data provider just backed
out of their contract and are now
your competitor.

The data you have is now In a
different format.

Also, you've decided to migrate
your backend from PHP to node.|s
to enable better scaling.

How do you update your backend
without breaking all of your clients”

GMU SWE 432 Fall 2019

cityinfo.org
Microservice API

GET /loadCities

PUT /updateDetails

13

LaToza

Nouns vs. Verbs

URIs should hierarchically identify nouns describing
resources that exist

Verbs describing actions that can be taken with
resources should be described with an HT TP action

PU’

" [cities/:city

GET /cities/:city

D (nouns: cities, :city

D (nouns: cities, :city

D)(verb: PUT)

D)(verb: GET)

Want to offer expressive abstraction that can be
reused for many scenarios

GMU SWE 432 Fall 2019

14

LaToza

Support reuse

* You have your own frontend for
cityinfo.org. But everyone now wants
to build their own sites on top of your
city analytics.

 (Can they do that?

GMU SWE 432 Fall 2019

cityinfo.org
Microservice API

GET /loadCities

PUT /updateDetails

15

http://cityinfo.org

LaToza

Support reuse

cityinfo.org
Microservice API

/topCities GET
/topCities/:citylD/descrip PUT, GET

[city/:citylD GET, PUT, POST, DELETE
[city/.citylD/averages GET

[city/:.citylD/weather GET
[city/.citylD/transitProvders GET, POST
[city/:citylD/transitProvders/:providerlD GET, PUT, DELETE

GMU SWE 432 Fall 2019

16

http://cityinfo.org

LaToza

What happens when a request has many
parameters?

« /topCities/:citylD/descrip PUT

 Shouldn't this really be something more like

 [topCities/:citylD/
descrip/:descriptionText/:submitter/:time/

GMU SWE 432 Fall 2019

17

LaToza

Solution 1: Query strings

PUT /topCities/Memphis?submitter=Dan&time=1025313

var express = require('express');
var app = express();

app.put('/topCities/:cityID', function(req, res){

});

res.send(descrip: ${reqg.query.descrip} submitter: ${req.query.submitter});

app.listen(3000);

Use req.query to retrieve

Shows up in URL string, making it possible to store full URL
* e.g., user adds a bookmark to URL
Sometimes works well for short params

GMU SWE 432 Fall 2019

18

Solution 2: JSON request body

* PUT /topCities/Memphis

{ "descrip"; "Memphis is a city of ...",
'submitter”: "Dan", "time": 1025313 }

* Best solution for all but the simplest parameters (and often
times everything)

* Use body-parser package and reqg.body to retrieve
$npm install body-parser

require('express’);
require('body-parser');

var express
var bodyParser

var app = express();

// parse application/json
app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){
res.send(descrip: ${req.body.descrip} submitter: ${req.body.submitter});
1)

app.listen(3000);

https://www.npmis.com/packaqge/body-parser
LaToza GMU SWE 432 Fall 2019

https://www.npmjs.com/package/body-parser

LaToza

Persistence

The user sent you some data.
You retrieved some data from a 3rd party servcie.

You generated some data, which you want to keep
reusing.

Where and how could you store this?

GMU SWE 432 Fall 2019

20

LaToza

What forms of data might you have

» Key /value pairs
 JSON obijects
 Tabular arrays of data

* Files

GMU SWE 432 Fall 2019

21

LaToza

Options for backend persistence

 Where it is stored
* On your server or another server you own
» SQL databases, NoSQL databases
* File system
e Storage provider (not on a server you own)
* NoSQL databases

e BLOB store

GMU SWE 432 Fall 2019

22

Storing state in a global variable

Global variables

var express = requjire('express');
var app = express(/);
var port = procesg.env.port || 3000;

var counter = 0;

app.get(*/", function (req, res) {
res.send('Hello World has been said ' + counter + ' times!');
counter++;

});

app. listen(port, function () {
console. log('Example app listening on port' + port);

});
e Pros/cons?

 Keep data between requests
* Goes away when your server stops
* Should use for transient state or as cache

LaToza GMU SWE 432 Fall 2019

23

NoSQL

 non SQL, non-relational, "not only" SQL databases
 Emphasizes simplicity & scalability over support for relational queries
* Important characteristics

 Schema-less: each row in dataset can have different fields (just like
JSON!)

* Non-relational: no structure linking tables together or queries to "join’
tables

o (Often) weaker consistency: after a field is updated, all clients
eventually see the update but may see older data in the meantime

 Advantages: greater scalability, faster, simplicity, easier integration with
code

* Several types. We'll look only at key-value.

LaToza GMU SWE 432 Fall 2019

24

LaToza

Key-Value NoSQL

Key <Key=CustomeriD>
Value

Customer

BillingAddress

Orders
Order

ShippingAddress

OrderPayment

Orderitem

Froauct

https://www.thoughtworks.com/insights/blog/nosqgl-databases-overview

GMU SWE 432 Fall 2019

25

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

LaToza

Firebase Cloud Firestore

 Example of a NoSQL datastore
* (Google web service

» https://firebase.google.com/docs/firestore/

e “Realtime” database

e Data stored to remote web service

 Data synchronized to clients in real time

 Simple AP

e QOffers library wrapping HTTP requests & responses
 Handles synchronization of data

e Can also be used on frontend to build web apps with

persistence without backena

GMU SWE 432 Fall 2019

26

https://firebase.google.com/docs/firestore/

LaToza

Setting up Firebase Cloud Firestore

* Detalled instructions to create project, get APl key

o https://firebase.google.com/docs/firestore/
guickstart

Welcome to Firebase!

Tools from Google for developing great apps, engaging with
your users, and earning more through mobile ads.

i

Q Learn more Documentation [Support

GMU SWE 432 Fall 2019

27

https://firebase.google.com/docs/firestore/quickstart
https://firebase.google.com/docs/firestore/quickstart

Setting up Firebase Realtime Database

* Go to https://console.firebase.google.com/, create
a new project

PY |nsta|| flrebase mOdule npm install firebase-admin --save

* Goto |IAM & admin > Service accounts, create a new pri
key, save the file.

* |Include Firebase in your web app

const admin = require(' firebase-admin');
let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
credential: admin.credential.cert(serviceAccount)

});

let db = admin.firestore();

LaToza GMU SWE 432 Fall 2019 28

https://console.firebase.google.com/

Permissions

* “Test mode” - anyone who
has your app can read/write
all data in your database

 (Good for development,
bad for real world

* “"Locked mode” - do not allow
everyone to read/write data

* Best solution, but requires
learning how to configure
security

LaToza

GMU SWE 432 Fall 2019

Security rules for Cloud Firestore X

Once you have defined your data structure you will have to write rules to secure your data.
earn more (4

O Start in locked mode
Make your database private by

denying all reads and writes

(@) Startin test mode
Get set up quickly by allowing all
i r database

Anyone with your database reference will be
able to read or write to your database

Enabling Cloud Firestore Beta will preclude you from using Cloud Datastore with this

Ty R (S Cancel
project, no y from the associated App Eng 3]

29

Firebase Console

» See data values, updated in realtime

e (Can edit data values

https://console.firebase.google.com

e .
A Project Overview o Database #~ Cloud Firestore BETA ~

Develop Data Rules Indexes Usage

Authentication

Database
M > users > G000840381

Storage

Hosting ~ swe432foobar B users = B 6000840381
Functions

<+ Add collection <+ Add document -+ Add collection
ML Kit

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

Analytics

30

https://console.firebase.google.com

Firebase data model: JSON

 Collections of JSON
documents

e Hierarchic tree of
key/value pairs

 Can view as one big
object

* Or describe path to
descendent anad
view descendent as
object

Collection: users

Add a docr.ment

Parent patb
/users

Document ID @

xvhBItRBBGJPVVZUBXpF

Field Type
someField = string
Field Type

someOtherField string

.. @) Add field

w

w

Value

someValue

Value

someOtherValue

LaToza GMU SWE 432 Fall 2019

31

LaToza

M > users > G000840381

~ swed32foobar

=

<+ Add collection

users

JSON is JSON...

>

|l users —

<+ Add document

G000840381 >

GMU SWE 432 Fall 2019

G000840381

Add collection

Add field

email: "bitdiddle@masonlive.gmu.edu
location

city: "Fairfax"

state: "Virginia"

name : "Ben Bitdiddle"

32

LaToza

Demo: Simple test program

» After successfully completing previous steps,
should be able to replace config and run this
script. Can test by viewing data on console.

const admin = require('firebase-admin');
let serviceAccount = require('[YOUR JSON FILE PATH HERE');

admin.initializeApp({
credential: admin.credential.cert(serviceAccount)

});
let db = admin.firestore();
let docRef = db.collection('users').doc('alovelace');
let setAda = docRef.set({
first: 'Ada’,

last: 'Lovelace’,
born: 1815

GMU SWE 432 Fall 2019

33

LaToza

Structuring Data

* | want to build a chat app with a database

 App has chat rooms: each room has some users in
it, and messages

e How should | store this data in Firebase”? What are
the collections and documents”?

GMU SWE 432 Fall 2019

34

LaToza

Structuring data

* Should be considering what types of records
clients will be requesting.

* Do not want to force client to download data that
do not need.

e Better to think of structure as lists of data that
clients will retrieve

GMU SWE 432 Fall 2019

35

Storing Data: Set

(because firebase is asynchronous)

async” function writeUserData(userID, newName, newEmail) {
return database.collection("users").doc(userID).set({
name: newName,

) email: newkEmai¥l (Create this one USG/Setéval
’ by 1D
¥
Get the users
collection
A > users > G000840381
~ swed32foobar Il users - s B 000840381

<+ Add collection <+ Add document <+ Add collection

> | Seeosdess >+ Addfield

LaToza GMU SWE 432 Fall 2019 36

LaToza

Storing Data: Add

« Where does this ID come from?
e [t MUST be unigue to the document

 Sometimes easier to let Firebase manage the IDs

for you - it will create a new one uniquely
automatically

async function addNewUser(newName, newEmail) <
return database.collection("users").add({
name: newName,
email: newEmail
});
}

async function demo(){

let ref = await addNewUser("Foo Bar","fbar@gmu.edu")
console. log("Added user ID " + ref.id)

}

GMU SWE 432 Fall 2019

37

LaToza

Storing Data: Update

o (Can either use “set” (with {merge:true}) or “update”
to update an existing document (set will possibly
create the document if it doesn’t exist)

database.collection("users").doc(userID).update({
name: newName

});

GMU SWE 432 Fall 2019

38

Storing Data: Delete

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0T").delete();
Removes a document

database.collection("users").doc(userID).update({
name: firebase.firestore.FieldValue.delete()

});
Removes a field

 (Can delete a key by setting value to null

e |f you want to store null, first need to convert
value to something else (e.g., 0, ")

LaToza GMU SWE 432 Fall 2019

39

LaToza

Fetching Data (One Time)

async function getUser(userId){
return database.collection("users").doc(userld).get();
I3

async function demo(){

let user = await getUser("G000840381");
console. log(user.data());

Can also call get directly on the collection

GMU SWE 432 Fall 2019

40

LaToza

L|sten|ng to data changes

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {
console.log(Received doc snapshot: ${docSnapshot});

/] «..
}r err => {
console.log(Encountered error: ${err});

}):

"When values changes, invoke function”

Specify a subtree by creating a reference to a path. This listener will be
called until you cancel it

 Read data by listening to changes to specific
subtrees

* Events will be generated for initial values and then
for each subsequent update

GMU SWE 432 Fall 2019

41

LaToza

Ordering data

 Data is by, default, ordered by document ID in
ascending order

e e.g., numeric index IDs are ordered from O...n

* e.g., alphanumeric |Ds are ordered in alphanumeric
order

e Can getonly first (or last) n elements

let firstThree = citiesRef.orderBy(name').limit(3);

 (Can use where statements to query

citiesRef.where('population', '>', 2500000).orderBy('population');

GMU SWE 432 Fall 2019

42

