
Persistence
SWE 432, Fall 2019

Web Application Development

LaToza GMU SWE 432 Fall 2019

Today

• More on design considerations in identifying
resources and REST

• Persistence

!2

LaToza GMU SWE 432 Fall 2019

Review: Building a microservice w/
Express

!3

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

LaToza GMU SWE 432 Fall 2019

Review: Application Programming
Interface

• Microservice offers public interface for
interacting with backend
• Offers abstraction that hides

implementation details
• Set of endpoints exposed on micro

service

• Users of API might include
• Frontend of your app
• Frontend of other apps using your

backend
• Other servers using your service

!4

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

LaToza GMU SWE 432 Fall 2019

Review: Intermediaries

!5

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin

server or an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

LaToza GMU SWE 432 Fall 2019

Review: HTTP Actions
• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache
response

• PUT, DELETE: idempotent method that can be repeated
with same result
• Requests that fail can be retried indefinitely till they

succeed
• POST: creates new element

• Retrying a failed request might create duplicate copies
of new resource

!6

LaToza GMU SWE 432 Fall 2019

Support scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?
• What should you have done yesterday to

make sure you can scale quickly today?

!7

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2019

Support scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?
• What should you have done yesterday to

make sure you can scale quickly today?

!8

GET /loadCityList
PUT /updateDetails

Microservice API

GET /loadCities.jsp
PUT /updateDetails.jsp

cityinfo.org

http://cityinfo.org
http://cityinfo.org

LaToza GMU SWE 432 Fall 2019

Versioning
• Your web service just added a great new feature!

• You’d like to expose it in your API.
• But… there might be old clients (e.g., websites)

built using the old API.
• These websites might be owned by someone

else and might not know about the change.
• Don’t want these clients to throw an error

whenever they access an updated API.

!9

LaToza GMU SWE 432 Fall 2019

Cool URIs don’t change
• In theory, URI could last forever, being reused as server is

rearchitected, new features are added, or even whole technology stack
is replaced.

• “What makes a cool URI? 
A cool URI is one which does not change. 
What sorts of URIs change? 
URIs don't change: people change them.”
• https://www.w3.org/Provider/Style/URI.html
• Bad:

• https://www.w3.org/Content/id/50/URI.html (What does this path
mean? What if we wanted to change it to mean something else?)

• Why might URIs change?
• We reorganized our website to make it better.
• We used to use a cgi script and now we use node.JS.

!10

https://www.w3.org/Provider/Style/URI.html

LaToza GMU SWE 432 Fall 2019

URI Design
• URIs represent a contract about what resources your server

exposes and what can be done with them
• Leave out anything that might change

• Content author names, status of content, other keys that
might change

• File name extensions: response describes content type
through MIME header not extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology
(e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible
• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure
and new URI structure

!11

LaToza GMU SWE 432 Fall 2019

Support change
• Due to your popularity, your

backend data provider just backed
out of their contract and are now
your competitor.

• The data you have is now in a
different format.

• Also, you've decided to migrate
your backend from PHP to node.js
to enable better scaling.

• How do you update your backend
without breaking all of your clients?

!12

Microservice API

GET /loadCities.jsp
PUT /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2019

Support change
• Due to your popularity, your

backend data provider just backed
out of their contract and are now
your competitor.

• The data you have is now in a
different format.

• Also, you've decided to migrate
your backend from PHP to node.js
to enable better scaling.

• How do you update your backend
without breaking all of your clients?

!13

Microservice API

GET /loadCities
PUT /updateDetails

cityinfo.org

LaToza GMU SWE 432 Fall 2019

Nouns vs. Verbs
• URIs should hierarchically identify nouns describing

resources that exist
• Verbs describing actions that can be taken with

resources should be described with an HTTP action

• PUT /cities/:cityID (nouns: cities, :cityID)(verb: PUT)
• GET /cities/:cityID (nouns: cities, :cityID)(verb: GET)

• Want to offer expressive abstraction that can be
reused for many scenarios

!14

LaToza GMU SWE 432 Fall 2019

Support reuse

• You have your own frontend for
cityinfo.org. But everyone now wants
to build their own sites on top of your
city analytics.

• Can they do that?

!15

Microservice API

GET /loadCities
PUT /updateDetails

cityinfo.org

http://cityinfo.org

LaToza GMU SWE 432 Fall 2019

Support reuse

!16

Microservice API
cityinfo.org

/topCities GET
/topCities/:cityID/descrip PUT, GET

/city/:cityID GET, PUT, POST, DELETE
/city/:cityID/averages GET
/city/:cityID/weather GET
/city/:cityID/transitProvders GET, POST
/city/:cityID/transitProvders/:providerID GET, PUT, DELETE

http://cityinfo.org

LaToza GMU SWE 432 Fall 2019

What happens when a request has many
parameters?

• /topCities/:cityID/descrip PUT

• Shouldn't this really be something more like
• /topCities/:cityID/

descrip/:descriptionText/:submitter/:time/

!17

LaToza GMU SWE 432 Fall 2019

Solution 1: Query strings
• PUT /topCities/Memphis?submitter=Dan&time=1025313

• Use req.query to retrieve
• Shows up in URL string, making it possible to store full URL

• e.g., user adds a bookmark to URL
• Sometimes works well for short params

!18

var	express	=	require('express');	
var	app	=	express();	

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`);
});

app.listen(3000);	

LaToza GMU SWE 432 Fall 2019

Solution 2: JSON request body
• PUT /topCities/Memphis  

{ "descrip": "Memphis is a city of ...",  
 "submitter": "Dan", "time": 1025313 }

• Best solution for all but the simplest parameters (and often
times everything)

• Use body-parser package and req.body to retrieve

!19

$npm	install	body-parser	

https://www.npmjs.com/package/body-parser

var express = require('express');
var bodyParser = require('body-parser');

var app = express();

// parse application/json
app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`);
});

app.listen(3000);

https://www.npmjs.com/package/body-parser

LaToza GMU SWE 432 Fall 2019

Persistence
• The user sent you some data.
• You retrieved some data from a 3rd party servcie.
• You generated some data, which you want to keep

reusing.

• Where and how could you store this?

!20

LaToza GMU SWE 432 Fall 2019

What forms of data might you have
• Key / value pairs

• JSON objects

• Tabular arrays of data

• Files

!21

LaToza GMU SWE 432 Fall 2019

Options for backend persistence
• Where it is stored

• On your server or another server you own

• SQL databases, NoSQL databases

• File system

• Storage provider (not on a server you own)

• NoSQL databases

• BLOB store

!22

LaToza GMU SWE 432 Fall 2019

Storing state in a global variable

• Global variables
var express = require('express');  
var app = express(); 
var port = process.env.port || 3000;  
 
var counter = 0;  
app.get('/', function (req, res) { 
 res.send('Hello World has been said ' + counter + ' times!');  
 counter++; 
}); 
 
app.listen(port, function () { 
 console.log('Example app listening on port' + port);  
});

• Pros/cons?
• Keep data between requests
• Goes away when your server stops

• Should use for transient state or as cache

!23

LaToza GMU SWE 432 Fall 2019

NoSQL
• non SQL, non-relational, "not only" SQL databases

• Emphasizes simplicity & scalability over support for relational queries

• Important characteristics

• Schema-less: each row in dataset can have different fields (just like
JSON!)

• Non-relational: no structure linking tables together or queries to "join"
tables

• (Often) weaker consistency: after a field is updated, all clients
eventually see the update but may see older data in the meantime

• Advantages: greater scalability, faster, simplicity, easier integration with
code

• Several types. We'll look only at key-value.

!24

LaToza GMU SWE 432 Fall 2019

Key-Value NoSQL

!25

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

LaToza GMU SWE 432 Fall 2019

Firebase Cloud Firestore
• Example of a NoSQL datastore
• Google web service

• https://firebase.google.com/docs/firestore/
• “Realtime” database

• Data stored to remote web service
• Data synchronized to clients in real time

• Simple API
• Offers library wrapping HTTP requests & responses
• Handles synchronization of data

• Can also be used on frontend to build web apps with
persistence without backend

!26

https://firebase.google.com/docs/firestore/

LaToza GMU SWE 432 Fall 2019

Setting up Firebase Cloud Firestore
• Detailed instructions to create project, get API key

• https://firebase.google.com/docs/firestore/
quickstart

!27

https://firebase.google.com/docs/firestore/quickstart
https://firebase.google.com/docs/firestore/quickstart

LaToza GMU SWE 432 Fall 2019

Setting up Firebase Realtime Database

• Go to https://console.firebase.google.com/, create
a new project

• Install firebase module

!28

npm install firebase-admin --save

• Go to IAM & admin > Service accounts, create a new private
key, save the file.

• Include Firebase in your web app
const admin = require('firebase-admin');

let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
 credential: admin.credential.cert(serviceAccount)
});

let db = admin.firestore();

https://console.firebase.google.com/

LaToza GMU SWE 432 Fall 2019

Permissions
• “Test mode” - anyone who

has your app can read/write
all data in your database
• Good for development,

bad for real world
• “Locked mode” - do not allow

everyone to read/write data
• Best solution, but requires

learning how to configure
security

!29

LaToza GMU SWE 432 Fall 2019

Firebase Console
• See data values, updated in realtime
• Can edit data values

!30

https://console.firebase.google.com

https://console.firebase.google.com

LaToza GMU SWE 432 Fall 2019

Firebase data model: JSON
• Collections of JSON

documents

• Hierarchic tree of
key/value pairs

• Can view as one big
object

• Or describe path to
descendent and
view descendent as
object

!31

Collection: users

Document name: Random

LaToza GMU SWE 432 Fall 2019

JSON is JSON…

!32

LaToza GMU SWE 432 Fall 2019

Demo: Simple test program
• After successfully completing previous steps,

should be able to replace config and run this
script. Can test by viewing data on console.

!33

const admin = require('firebase-admin');

let serviceAccount = require('[YOUR JSON FILE PATH HERE');

admin.initializeApp({
 credential: admin.credential.cert(serviceAccount)
});

let db = admin.firestore();

let docRef = db.collection('users').doc('alovelace');

let setAda = docRef.set({
 first: 'Ada',
 last: 'Lovelace',
 born: 1815
});

LaToza GMU SWE 432 Fall 2019

Structuring Data
• I want to build a chat app with a database
• App has chat rooms: each room has some users in

it, and messages
• How should I store this data in Firebase? What are

the collections and documents?

!34

LaToza GMU SWE 432 Fall 2019

Structuring data
• Should be considering what types of records

clients will be requesting.

• Do not want to force client to download data that
do not need.

• Better to think of structure as lists of data that
clients will retrieve

!35

LaToza GMU SWE 432 Fall 2019

Storing Data: Set

!36

async function writeUserData(userID, newName, newEmail) {
 return database.collection("users").doc(userID).set({
 name: newName,
 email: newEmail
 });
}

(because firebase is asynchronous)

Get the users
collection

Set the valCreate this one user
by ID

LaToza GMU SWE 432 Fall 2019

Storing Data: Add
• Where does this ID come from?

• It MUST be unique to the document

• Sometimes easier to let Firebase manage the IDs
for you - it will create a new one uniquely
automatically

!37

async function addNewUser(newName, newEmail) {
 return database.collection("users").add({
 name: newName,
 email: newEmail
 });
}
async function demo(){
 let ref = await addNewUser("Foo Bar","fbar@gmu.edu")
 console.log("Added user ID " + ref.id)
}

LaToza GMU SWE 432 Fall 2019

Storing Data: Update
• Can either use “set” (with {merge:true}) or “update”

to update an existing document (set will possibly
create the document if it doesn’t exist)

!38

 database.collection("users").doc(userID).update({
 name: newName
});

LaToza GMU SWE 432 Fall 2019

Storing Data: Delete

• Can delete a key by setting value to null

• If you want to store null, first need to convert
value to something else (e.g., 0, '')

!39

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0T").delete();

Removes a document

database.collection("users").doc(userID).update({
 name: firebase.firestore.FieldValue.delete()
});

Removes a field

LaToza GMU SWE 432 Fall 2019

Fetching Data (One Time)

!40

async function getUser(userId){
 return database.collection("users").doc(userId).get();
}
async function demo(){
 let user = await getUser("G000840381");
 console.log(user.data());
}

Can also call get directly on the collection

LaToza GMU SWE 432 Fall 2019

Listening to data changes

• Read data by listening to changes to specific
subtrees

• Events will be generated for initial values and then
for each subsequent update

!41

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {
 console.log(`Received doc snapshot: ${docSnapshot}`);
 // ...
}, err => {
 console.log(`Encountered error: ${err}`);
});

“When values changes, invoke function”
Specify a subtree by creating a reference to a path. This listener will be
called until you cancel it

LaToza GMU SWE 432 Fall 2019

Ordering data
• Data is by, default, ordered by document ID in

ascending order

• e.g., numeric index IDs are ordered from 0…n

• e.g., alphanumeric IDs are ordered in alphanumeric
order

• Can get only first (or last) n elements

• Can use where statements to query

!42

let firstThree = citiesRef.orderBy('name').limit(3);

citiesRef.where('population', '>', 2500000).orderBy('population');

