
PROGRAMMING STYLES
SWE 621

FALL 2022

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2022

LOGISTICS

▸ HW4 due today

▸ HW5 due on 11/21

2

LaToza GMU SWE 621 Fall 2022

REVIEW OF LAST WEEK'S ACTIVITY

3

LaToza GMU SWE 621 Fall 2022

PROGRAMMING STYLE
▸ A set of constraints on how code is written which help

achieve specific requirements or quality attributes

▸ Describe alternative ways in which code might be
written

▸ make it object-oriented

▸ make it functional

▸ lazily load data from input source

▸ give each element a separate thread

▸ Like architectural styles and design patterns, has
consequences that adopting programming style help
achieve

▸ But not always as well-defined and enumerated

4

LaToza GMU SWE 621 Fall 2022

EXERCISES IN PROGRAMMING STYLE
▸ Presentation is centered around an example problem

▸ Each program offers the same baseline behavior (sometimes adding an additional
feature)

▸ Can directly compare and contrast how the same problem is solved each style

▸ Directly illustrates the diversity of ways of programming

▸ Many different ways to solve the same problem

▸ Some are related to programming language features (e.g., OO, functional,
reflection)

▸ But many modern languages support a range of language features that support
a diversity of styles

▸ Can write something in a procedural style (i.e., ignoring OO features) even in
Java

▸ Examples written in Python

5

LaToza GMU SWE 621 Fall 2022

EXAMPLE PROBLEM: TERM FREQUENCY

▸ Given a text file, print
the 25 most frequent
words and
corresponding
frequencies

▸ Sort from most frequent
to least frequent

▸ Normalize for
capitalization and ignore
"stop" words (e.g., the,
for, ...)

6

Input

Output

Tigers live mostly in India

Wild lions live mostly in Africa

live - 2 
mostly - 2 
africa - 1 
india - 1 
lions - 1 
tigers - 1 
wild - 1

LaToza GMU SWE 621 Fall 2022

SOME TYPES OF PROGRAMMING STYLES

▸ Basic styles

▸ Functional styles

▸ Reflection styles

▸ Data-centric styles

▸ Concurrency styles

7

LaToza GMU SWE 621 Fall 2022

EXAMPLES OF PROGRAMMING STYLES

8

https://github.com/crista/exercises-in-programming-style

• 5-cookbook/procedural https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook

• 6-pipeline https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline

• 7-code golf https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py

• 8-infinite mirror / recursive https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror

• 10-things/OO https://github.com/crista/exercises-in-programming-style/tree/master/11-things

• 15-hollywood/inversion of control https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood

• 16-b board /publish subscribe https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board

• 19-aspects https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects

• 20-plugins https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins

• 26-persistent tables/relational https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-

tables

• 28-lazy rivers/streams https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py

• 31-map reduce https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

https://github.com/crista/exercises-in-programming-style
https://github.com/crista/exercises-in-programming-style/tree/master/05-cookbook
https://github.com/crista/exercises-in-programming-style/tree/master/06-pipeline
https://github.com/crista/exercises-in-programming-style/blob/master/07-code-golf/tf-07.py
https://github.com/crista/exercises-in-programming-style/tree/master/08-infinite-mirror
https://github.com/crista/exercises-in-programming-style/tree/master/11-things
https://github.com/crista/exercises-in-programming-style/tree/master/15-hollywood
https://github.com/crista/exercises-in-programming-style/tree/master/16-bulletin-board
https://github.com/crista/exercises-in-programming-style/tree/master/19-aspects
https://github.com/crista/exercises-in-programming-style/tree/master/20-plugins
https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables
https://github.com/crista/exercises-in-programming-style/tree/master/26-persistent-tables
https://github.com/crista/exercises-in-programming-style/blob/master/28-lazy-rivers/tf-28.py
https://github.com/crista/exercises-in-programming-style/tree/master/31-map-reduce

LaToza GMU SWE 621 Fall 2022

COOKBOOK / PROCEDURAL

▸ Complexity tamed by dividing problem into procedures

▸ Procedures take input, but don't necessarily produce output relevant to
problem (e.g., output status codes)

▸ Procedures instead often share state through global variables

▸ Problem is solved by repeatedly applying procedures to update shared
state

▸ Consequences

▸ Not idempotent - repeatedly calling procedure generates new output

▸ Global variables can be hard to debug and reason about

9

LaToza GMU SWE 621 Fall 2022

PIPELINE

▸ Problem decomposed into functions, which take input and
produce output

▸ No shared state between functions

▸ Problem solved by composing functions (f(g(x)))

▸ Consequences

▸ Easy to test, easy to parallelize (e..g, MapReduce)

10

LaToza GMU SWE 621 Fall 2022

CODE GOLF

▸ As few lines as possible

▸ Consequences

▸ Sometimes: hard to understand, bugs

▸ But also sometimes: easy to understand, elegant

▸ Helpful when used appropriately

11

LaToza GMU SWE 621 Fall 2022

INFINITE MIRROR / RECURSIVE

▸ Problem is solved using induction, specifying a base case
(n0) and inductive step (n + 1)

▸ Consequences

▸ Can lead to stack overflow for languages that don't
support tail recursion optimization

12

LaToza GMU SWE 621 Fall 2022

THINGS / OO

▸ Problem decomposed into things that make sense for
problem domain

▸ Thing exposes operations and has state

▸ State is hidden and accessed only through operations

13

LaToza GMU SWE 621 Fall 2022

HOLLYWOOD / INVERSION OF CONTROL

▸ Elements are never called on directly

▸ Provide interfaces to register for callbacks (i.e., use
Observer)

▸ Consequences

▸ Inverts dependency relationship

▸ Promotes extensibility

14

LaToza GMU SWE 621 Fall 2022

B BOARD / PUBLISH SUBSCRIBE

▸ Elements never called directly

▸ Central infrastructure for publishing and subscribing to
events (bulletin board)

15

LaToza GMU SWE 621 Fall 2022

ASPECTS

▸ Aspects are added to functions / procedures without any
edits to code

▸ External binding mechanism binds abstractions to aspects

▸ Consequences

▸ Can reify scattered concerns in many methods into one
place (e.g., tracing, logging, security)

▸ Can inject dependencies

16

LaToza GMU SWE 621 Fall 2022

PLUGINS

▸ Main program and plugins separately compiled

▸ Plugins loaded dynamically by main program, using
external config

▸ Main program uses plugins without knowing
implementation

▸ Consequences

▸ Enables adding 3rd party behavior to a program

17

LaToza GMU SWE 621 Fall 2022

PERSISTENT TABLES

▸ Data exists before and after execution of program and
shared between programs

▸ Data is stored in way that makes it easier and faster to
explore

▸ Problem is solved through queries against data

▸

18

LaToza GMU SWE 621 Fall 2022

LAZY RIVERS / PIPES & FILTERS

▸ Data is available on streams

▸ Functions are filters / transformers from one kind of data
stream to another

19

LaToza GMU SWE 621 Fall 2022

MAP / REDUCE

▸ Input data divided into blocks

▸ Map function applies a given worker function to each
block of data, potentially in parallel

▸ Reduce function takes the results of many workers
functions and recombines them into coherent output

20

LaToza GMU SWE 621 Fall 2022

SUMMARY

▸ Many choices about how to implement a solution

▸ Programming styles offer a vocabulary for talking about
alternative implementations

▸ Makes explicit the constraints which lead to a specific style
of programming

▸ Can consider explicitly the consequences of following
these constraints

21

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY

22

LaToza GMU SWE 621 Fall 2022

SKETCH IMPLEMENTATION IN LAZY-RIVER STYLE

▸ Work in groups of 2 or 3, pick an OO language (e.g., Java, Python, C#)

▸ Sketch an implementation of the following

▸ Given a text file, output all words alphabetically, along with the
page numbers on which they occur. Ignore all words that occur
more than 100 times. Assume a page is a sequence of 45 lines.

▸ abatement - 89 
abhorrence - 101, 145, 152, 241, 274, 281 
abhorrent - 253 
abide - 158, 292

▸ Does not need to compile and run, just looking for a sketch that
illustrates following the programming style for this problem

23

