
DESIGN AS  
ABSTRACTION

SWE 621

FALL 2022

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2022

IN CLASS EXERCISE

▸ What is an abstraction?

2

LaToza GMU SWE 621 Fall 2022

WHAT IS AN ABSTRACTION?

▸ The ability to interact with an idea while safely ignoring some of its details.

▸ A set of operations on shared state that make solving problems easier.

▸ Examples

▸ Data: String

▸ Collections: array, list, stack, queue, map, set, ...

▸ Big data: MapReduce, BigTable, Spanner

▸ AI: TensorFlow

▸ Web: HTTP request, HTTP response

▸ Business: Person, Party, Organization

3

LaToza GMU SWE 621 Fall 2022

LOGISTICS

▸ HW1 due today

▸ HW2 due in two weeks

4

LaToza GMU SWE 621 Fall 2022

ABSTRACTION AS MECHANISM FOR REUSE

▸ Abstractions serve as a mechanism for reuse of functionality

▸ Stakeholders in reuse

▸ Author: developer implementing the abstraction

▸ User: developer that is using the abstraction in their own code

▸ Often, a developer may be both an author and a user

▸ May have multiple authors, who may change over time

▸ For important abstractions, usually many more users than authors

5

LaToza GMU SWE 621 Fall 2022

CRAFTING ABSTRACTIONS

▸ Where do elements come from?

▸ Last time: from the domain model

▸ But... sometimes there are technical implementation
considerations that lead to better ways of grouping
functionality into elements

▸ Goal: choose elements that make solving the underlying
problem easier

6

LaToza GMU SWE 621 Fall 2022

IN-CLASS ACTIVITY

▸ Write a function to reverse a List

▸ Available operations on elements in linked list

▸ Class ListElem

▸ {

▸ public ListElem getNext()

▸ public void setNext(ListElem e)

▸ }

7

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY

▸ Write a function to reverse a list

▸ Available operations on a list

▸ class List {

▸ get(i)

▸ set(i)

▸ remove(i)

8

LaToza GMU SWE 621 Fall 2022

IN-CLASS ACTIVITY

▸ Write a function to reverse a List

▸ Available operations on elements in linked list

▸ getNext

▸ setNext

▸ getPrev

▸ setPrev

9

LaToza GMU SWE 621 Fall 2022

EXAMPLE: LIST

▸ State: an ordered set of
elements

▸ Key operations

▸ add

▸ set

▸ get

▸ contains

▸ remove

▸ size

10

								List<Integer>	l1	=	new	ArrayList<Integer>();	

								l1.add(0,	1);		//	adds	1	at	0	index	

								l1.add(1,	2);		//	adds	2	at	1	index	

								System.out.println(l1);		//	[1,	2]	

	

LaToza GMU SWE 621 Fall 2022

EXAMPLE: LIST

▸ User can be oblivious about how state is stored

▸ Could be linked list, could be array, could be stored
locally, could be stored on another computer

▸ Supports a wide range of typical interactions with a list

▸ Abstraction author has wide range of implementation
options

11

LaToza GMU SWE 621 Fall 2022

EXAMPLE: MAPREDUCE

▸ Organize computation into a map function that generates
a new list from an old list and a reduce function that
generates one (or a few) elements from a whole list

▸ Operations

▸ Map(k1,v1) → list(k2,v2)

▸ Reduce(k2, list (v2)) → list(v3)

12

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

LaToza GMU SWE 621 Fall 2022

EXAMPLE: MAPREDUCE
▸ Can distribute computation down to elements in the list to separate servers,

which can work in parallel.

▸ Infrastructure

▸ marshals distributed servers

▸ runs tasks in parallel

▸ manages communication

▸ provides redundancy and fault tolerance

▸ Lets abstraction users focus on the computation to be done and let
infrastructure worry about how to parallelize it

▸ Applicable for parallelizing a wide variety of typical computations

13

LaToza GMU SWE 621 Fall 2022

EXAMPLE: REACT COMPONENT

▸ State: properties (readonly, initialized by
parents), state (changes over time)

▸ Operations

▸ render

▸ event listeners

▸ set state

▸ Whenever state changes, render function is
automatically called.

▸ Components organized into hierarchical trees.
When data changes, generates new child
components.

14

https://reactjs.org/

class Timer extends React.Component {

 constructor(props) {

 super(props);

 this.state = { seconds: 0 };

 }

 tick() {

 this.setState(state => ({

 seconds: state.seconds + 1

 }));

 }

 componentDidMount() {

 this.interval = setInterval(() =>
this.tick(), 1000);

 }

 componentWillUnmount() {

 clearInterval(this.interval);

 }

 render() {

 return (

 <div>

 Seconds: {this.state.seconds}

 </div>

);

 }

}

ReactDOM.render(<Timer />, mountNode);

https://reactjs.org/

LaToza GMU SWE 621 Fall 2022

EXAMPLE: REACT COMPONENT

▸ React components do not need to worry about incrementally
changing output in response to every event

▸ Would be complicated to figure out for every possible state
change how to update output

▸ Instead, simply generate all new output whenever state no longer
consistent with output

▸ Components focus on state and output for single element of interface

▸ Can be reused in many contexts because loosely coupled to
parent and other ancestors

15

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY

▸ Form a group of 2

▸ What's an abstraction you use frequently?

▸ What state does it have?

▸ What are the key operations?

▸ How does the abstraction simplify typical scenarios that
occur?

16

LaToza GMU SWE 621 Fall 2022

BENEFITS OF GOOD ABSTRACTIONS

▸ Interoperability - can pass common data structures around

▸ Really important for library interop

▸ Can think about the problem without having to think about some low
level details

▸ How is your data stored

▸ How computation is distributed to different servers in cluster

▸ Can predict behavior of operations, without reading implementation

▸ If common abstraction, that users are likely to be familiar with already

17

LaToza GMU SWE 621 Fall 2022

CHARACTERISTICS OF A GOOD ABSTRACTION

▸ Should do one thing and do it well

▸ If hard to name, that's a bad sign

▸ Implementation should not leak into abstraction

▸ If there's details that do not need to be exposed, do not

▸ Names matter

▸ Be self-explanatory, consistent, regular

18

LaToza GMU SWE 621 Fall 2022

CHALLENGES

▸ What operations to include? (a.ka., interface)

▸ Choices of operations has many consequences

▸ Not supporting necessary operations with state may make it
impossible to use it in desired way, or lead to inefficient client code

▸ Supporting fewer operations may cause client code to be repetitive

▸ Operation choices may constrain design space of implementations

▸ If different users have slightly different needs, how do you balance
conflicts?

19

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY

▸ What's the most annoying abstraction you've ever used?

▸ What made it so hard to use?

20

LaToza GMU SWE 621 Fall 2022

HOW TO DESIGN A GOOD ABSTRACTION

21

Adapted from How to Design a Good API and Why it Matters, Joshua Bloch
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

LaToza GMU SWE 621 Fall 2022

GATHER REQUIREMENTS

▸ Often get proposed solutions instead

▸ Your job is to extract true requirements

▸ Should exist as scenarios where you abstraction will be
used

▸ What does user want to accomplish in this scenario?

22

LaToza GMU SWE 621 Fall 2022

START WITH SHORT 1 PAGE DRAFT

▸ Focus on key ideas rather than completeness

▸ Bounce draft off as many people as possible

▸ What additional scenarios do they suggest?

▸ How well does your abstraction support these scenarios?

▸ How can it support these better?

23

LaToza GMU SWE 621 Fall 2022

RULE OF THREES

▸ Should try out abstraction with at least three scenarios

▸ Iterate design based on scenarios, ideally before publicly
releasing

▸ How can you make these typical scenarios easier for users?

▸ How can you enable more efficient implementations?

24

LaToza GMU SWE 621 Fall 2022

SUMMARY

▸ Abstractions shape how you write code and think about a problem

▸ Design abstractions that cleanly capture typical operations on element
at the right level of detail

▸ Good abstractions reduce boilerplate and let you focus on core
problems.

▸ May require refactoring, as you have deeper insight into how to
represent key ideas more clearly

▸ Important to keep abstractions consistent across team. Having similar
but competing abstractions leads to confusion and conversion
boilerplate.

25

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY, STEP 1: BUILD ABSTRACTION
▸ Build abstraction(s) for a company org chart.

▸ Each employee has a 0 or 1 bosses and 0 to n

subordinates

▸ Employee may direct one or more operating units,

divisions, groups, or teams

▸ Operating units contain divisions

▸ Divisions contain groups

▸ Groups contain teams

▸ Include operations to support common operations that might
occur in an organization chart.

▸ Deliverable: for each element you create, describe member
elements in a class implementing this abstraction including

▸ State: what member variables does it contain

▸ Operations: what methods does it define and what is their

signature
26

LaToza GMU SWE 621 Fall 2022

STEP 2: USE ABSTRACTION

▸ Switch groups

▸ Using one of the abstractions of your group members,
sketch an algorithm to promote a division to an operating
unit. Each group inside division remains a group.

▸ Deliverable: sketch (pseudocode) of algorithm

27

LaToza GMU SWE 621 Fall 2022

DESIGN ACTIVITY: DISCUSSION

▸ What did you learn about the practice of design from this
activity?

28

