
FOLLOWING A DESIGN
SWE 621
FALL 2022

© THOMAS LATOZA

LaToza GMU SWE 621 Fall 2022

LOGISTICS

▸ HW4 due next week

2

LaToza GMU SWE 621 Fall 2022

FOLLOWING A DESIGN
▸ So far we've considered how design choices can help system achieve

quality attributes

▸ abstractions, architectural styles, design patterns

▸ by minimizing risk, by following domain model, hiding decisions likely
to change

▸ What happens when a developer makes a code change that fails to
follow the constraints imposed by the design decision?

▸ How do you prevent developers from not following design decisions?

▸ What happens when the design decision should change?

▸ Requirement changes may lead to decisions no longer being effective.

▸ May find better design choices as better understand problem.

3

LaToza GMU SWE 621 Fall 2022

EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

▸ ATM Simulator

▸ Describes
behavior of
ATM machine
as user
interacts with
machine

4

LaToza GMU SWE 621 Fall 2022

V1: STATE PATTERN

▸ Decisions

▸ Use the state
pattern

▸ Put data in
context class

▸ Make context a
property of
ATMState

▸ Use command
line for UI

5

LaToza GMU SWE 621 Fall 2022

V1: STATE PATTERN

▸ ATMContext stores variables used by ATMState subclasses

▸ Need to be shared between subclasses

▸ Everything needs references to context class

▸ ATMContext contains many methods that only forward the call
to the current state

▸ ATMContext does not check whether a particular event is
supported by the current state

▸ Potential for defects

6

LaToza GMU SWE 621 Fall 2022

V2: FLYWEIGHT

▸ Goals

▸ Memory
usage:
instantiate
each state
class only
once

▸ Performance:
reduce
startup time
for simulator

7

LaToza GMU SWE 621 Fall 2022

V2: FLYWEIGHT

▸ Each state class is only created once

▸ Removed the context property from ATMState, added
context parameter in each event method

8

LaToza GMU SWE 621 Fall 2022

V3: MULTIPLE INSTANCES

▸ Goals

▸ Parallelism:
enable each
simulator to
run in a
separate
thread

▸ UI: support
multiple
simulators

9

LaToza GMU SWE 621 Fall 2022

V3: MULTIPLE INSTANCES

▸ Replaced command line with GUI, each containing
multiple windows

▸ Each window associated with ATMContext

▸ GUI connected to ATMContext with pipes and filters

▸ Whenever a user enters data, can read from IOStream
from GUI just as if it were the command line

10

LaToza GMU SWE 621 Fall 2022

V4: DELEGATION-BASED APPROACH

▸ Goals

▸ Configurability: allow for adding new states and
transitions at runtime (e.g., machine runs out of paper)

▸ Separation of concerns: decouple state machine further

11

LaToza GMU SWE 621 Fall 2022

V4: DELEGATION-BASED APPROACH

12

LaToza GMU SWE 621 Fall 2022

V4: DELEGATION BASED APPROACH

▸ Use delegation rather than inheritance

▸ States no longer subclass FSMState

▸ Transitions are now first class

▸ Transitions delegate behavior to Action

13

LaToza GMU SWE 621 Fall 2022

V5: DECOUPLING

▸ Goals

▸ Reduce use of
static

14

▸ Introduce FSM, which separates responsibility of storing FSM
from dispatching events

LaToza GMU SWE 621 Fall 2022

SUMMARY OF EVOLUTION

15

▸ Later decisions revised earlier

LaToza GMU SWE 621 Fall 2022

SUMMARY OF EVOLUTION

▸ Design decisions changed over time

▸ Driven by making a particular usage or scenario easier

▸ Reasons may not be apparent without knowing these scenarios

▸ Easy to lose track of decisions

▸ Constant change makes it harder to stay up to date with the current
version of each design decision

▸ Risk that might make change inconsistent with design

▸ Risk that when changing a decision might not update everything
required

16

LaToza GMU SWE 621 Fall 2022

SOFTWARE EVOLUTION

▸ As requirements are added and change, code must
implement these changes.

▸ This requires making changes to system that are either

▸ consistent with the existing design

▸ changing decisions to better accommodate these new
requirements, updating the relevant implementation

17

LaToza GMU SWE 621 Fall 2022

ARCHITECTURAL EROSION

▸ Software architectural erosion (or decay): the gap between
the architecture as designed as an as built

▸ e.g., intended to be a pipes and filters architecture, but
isn't entirely

▸ Consequences of design decision are no longer achieved

▸ if decision helped enable maintainability, it does no longer

▸ May sometimes lead to behaviorally observable defects, but
not always

18

LaToza GMU SWE 621 Fall 2022

CODEBASES TEND TO DECAY OVER TIME

▸ Study of large software system, as observed through commit
data

▸ Over time

▸ Increase in # of files touched per commit

▸ Increase in # of modules touched per commit

▸ These increases lead to increased effort to make change

▸ Relationship between edits and defects introduced

19

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1–12, Jan 2001.

LaToza GMU SWE 621 Fall 2022

AN EXAMPLE

▸ You've built a system following the publish / subscribe
architectural style.

▸ Wanted to enable adding and removing components without
impacting existing code

▸ Constraints

▸ Components do not know why an event is published

▸ Subscribing components do not know who published event,
depending on event type rather than specific publisher

20

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY

▸ Imagine a publish subscribe system which contains the
following events

▸ UserInput, ScreenResize, AppStart, AppClosing

▸ Imagine a developer who implements functionality which
should execute whenever the screen resizes.

▸ To do this, they look for a message from the RenderLoop
class rather than looking for a ScreenResize event.

▸ What are potential consequences of this?

21

LaToza GMU SWE 621 Fall 2022

TECHNICAL DEBT

▸ Sometime you know that you've broken the design, but
still decide to do it anyway.

▸ Why? Schedule pressure.

▸ But.... then have to live with the consequences

▸ Changes get more expensive

22

LaToza GMU SWE 621 Fall 2022

MANAGING TECHNICAL DEBT

▸ Debt metaphor: deferred some of the work necessary to
complete changes to the future

▸ It passes these tests, but violates design principles that
enable extensibility and maintainability.

▸ Need to have a plan to pay down debt.

▸ Plan work to improve design to make it again consistent
with design.

23

LaToza GMU SWE 621 Fall 2022

WHAT TO DO ABOUT CODE DECAY?

▸ Prevent code decay

▸ Better communicate design to developers

▸ Check that changes are consistent with design

▸ Fix code decay after it occurs

▸ Refactor code to be consistent with design

▸ Change code to be consistent with design changes

24

LaToza GMU SWE 621 Fall 2022

BETTER COMMUNICATE DESIGN TO DEVELOPERS

▸ How does a developer know
that there's a design decision
they should follow?

▸ Ask a teammate

▸ Read a comment

▸ Read documentation

▸ e.g., in our codebase, we
only create element x by
doing y.

25

LaToza GMU SWE 621 Fall 2022

CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

▸ Code reviews offer important
quality gate

▸ Before any change is committed,
another developer must review the
a delta of the code change

▸ That developer looks for
potential defects in the code as
well as violations of design
decisions.

▸ Gives comments, which original
developer must then fix before
code is committed

26

LaToza GMU SWE 621 Fall 2022

BETTER SOLUTION: TOOL SUPPORT FOR SYNCHRONIZING DECISIONS AND CODE

27

Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. (2020). Active Documentation: Helping Developers Follow Design Decisions. Symposium on Visual Languages and Human-Centric Computing.

LaToza GMU SWE 621 Fall 2022

FIX CODE DECAY AFTER IT OCCURS

▸ Make changes that improve the design of the code without changing the
behavior: refactoring

▸ Goal: before and after change, code should behave exactly the same

▸ Involves moving and renaming functionality

▸ Modern IDEs support automatic low-level refactorings

▸ e.g., move method.

▸ Finds references to functionality and updates

▸ Tries to guarantee that defects are not inserted.

▸ Often need to make many low-level changes to achieve higher-level goal

▸ Many may not be supported directly through automated refactoring
28

LaToza GMU SWE 621 Fall 2022

EXAMPLE: REFACTORING SUPPORT

29

LaToza GMU SWE 621 Fall 2022

SOME EXAMPLES OF REFACTORINGS

▸ Encapsulate field – force code to access the field with getter and setter methods

▸ Generalize type – create more general types to allow for more code sharing

▸ Replace conditional with polymorphism

▸ Extract class: moves part of the code from an existing class into a new class.

▸ Extract method: turn part of a larger method into a new method.

▸ Move method or move field: move to a more appropriate class or source file

▸ Rename method or rename field: changing the name into a new one that better
reveals its purpose

▸ Pull up: move to a superclass

▸ Push down: move to a subclass

30

LaToza GMU SWE 621 Fall 2022

SUMMARY

▸ As software evolves, its requirements may change, necessitating
changes to the implementation

▸ Code that is inconsistent with the design introduces code decay,
where expected consequences of design decisions are no
longer realized

▸ Code decay makes code harder to change and can lead to
defects

▸ To reduce code decay, important to prevent code decay and fix
it when it occurs

31

LaToza GMU SWE 621 Fall 2022

IN CLASS ACTIVITY

32

LaToza GMU SWE 621 Fall 2022

SKETCH V6 ATM IMPLEMENTATION
▸ Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python)

▸ Start with V5 ATM implementation

▸ Goal: make it possible to have multiple ATM implementations for separate ATM
machines.

▸ Clients should be able to request an ATM be created without having to depend on
which ATM implementation is created

▸ Client:

▸ ATM atm = getNewATM(); // Implementation could decide to return different
FSM without breaking client

▸ Code should focus only on portion of implementation relevant to ATM creation and ATM
state management

▸ Deliverables:

▸ Sketch of V6 ATM implementation

33

