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LOGISTICS

▸ HW4 due next week
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FOLLOWING A DESIGN
▸ So far we've considered how design choices can help system achieve 

quality attributes 

▸ abstractions, architectural styles, design patterns 

▸ by minimizing risk, by following domain model, hiding decisions likely 
to change 

▸ What happens when a developer makes a code change that fails to 
follow the constraints imposed by the design decision? 

▸ How do you prevent developers from not following design decisions? 

▸ What happens when the design decision should change? 

▸ Requirement changes may lead to decisions no longer being effective. 

▸ May find better design choices as better understand problem.
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EXAMPLE: HOW SOFTWARE EVOLVES OVER TIME

▸ ATM Simulator 

▸ Describes 
behavior of 
ATM machine 
as user 
interacts with 
machine
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V1: STATE PATTERN

▸ Decisions 

▸ Use the state 
pattern 

▸ Put data in 
context class 

▸ Make context a 
property of 
ATMState 

▸ Use command 
line for UI
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V1: STATE PATTERN

▸ ATMContext stores variables used by ATMState subclasses 

▸ Need to be shared between subclasses 

▸ Everything needs references to context class 

▸ ATMContext contains many methods that only forward the call 
to the current state 

▸ ATMContext does not check whether a particular event is 
supported by the current state 

▸ Potential for defects
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V2: FLYWEIGHT

▸ Goals 

▸ Memory 
usage: 
instantiate 
each state 
class only 
once 

▸ Performance: 
reduce 
startup time 
for simulator
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V2: FLYWEIGHT

▸ Each state class is only created once 

▸ Removed the context property from ATMState, added 
context parameter in each event method
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V3: MULTIPLE INSTANCES

▸ Goals 

▸ Parallelism: 
enable each 
simulator to 
run in a 
separate 
thread 

▸ UI: support 
multiple 
simulators
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V3: MULTIPLE INSTANCES

▸ Replaced command line with GUI, each containing 
multiple windows 

▸ Each window associated with ATMContext 

▸ GUI connected to ATMContext with pipes and filters 

▸ Whenever a user enters data, can read from IOStream 
from GUI just as if it were the command line 
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V4: DELEGATION-BASED APPROACH 

▸ Goals 

▸ Configurability: allow for adding new states and 
transitions at runtime (e.g., machine runs out of paper) 

▸ Separation of concerns: decouple state machine further
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V4: DELEGATION-BASED APPROACH
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V4: DELEGATION BASED APPROACH

▸ Use delegation rather than inheritance 

▸ States no longer subclass FSMState 

▸ Transitions are now first class 

▸ Transitions delegate behavior to Action
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V5: DECOUPLING

▸ Goals 

▸ Reduce use of 
static
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▸ Introduce FSM, which separates responsibility of storing FSM 
from dispatching events
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SUMMARY OF EVOLUTION
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▸ Later decisions revised earlier
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SUMMARY OF EVOLUTION

▸ Design decisions changed over time 

▸ Driven by making a particular usage or scenario easier 

▸ Reasons may not be apparent without knowing these scenarios  

▸ Easy to lose track of decisions 

▸ Constant change makes it harder to stay up to date with the current 
version of each design decision 

▸ Risk that might make change inconsistent with design 

▸ Risk that when changing a decision might not update everything 
required
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SOFTWARE EVOLUTION

▸ As requirements are added and change, code must 
implement these changes. 

▸ This requires making changes to system that are either 

▸ consistent with the existing design 

▸ changing decisions to better accommodate these new 
requirements, updating the relevant implementation 
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ARCHITECTURAL EROSION

▸ Software architectural erosion (or decay): the gap between 
the architecture as designed as an as built 

▸ e.g., intended to be a pipes and filters architecture, but 
isn't entirely 

▸ Consequences of design decision are no longer achieved 

▸ if decision helped enable maintainability, it does no longer 

▸ May sometimes lead to behaviorally observable defects, but 
not always
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CODEBASES TEND TO DECAY OVER TIME

▸ Study of large software system, as observed through commit 
data 

▸ Over time 

▸ Increase in # of files touched per commit 

▸ Increase in # of modules touched per commit 

▸ These increases lead to increased effort to make change 

▸ Relationship between edits and defects introduced
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S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? Assessing the evidence from change 
management data. IEEE Trans. Softw. Eng. (TSE), 27(1):1–12, Jan 2001.
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AN EXAMPLE

▸ You've built a system following the publish / subscribe 
architectural style. 

▸ Wanted to enable adding and removing components without 
impacting existing code 

▸ Constraints 

▸ Components do not know why an event is published 

▸ Subscribing components do not know who published event, 
depending on event type rather than specific publisher
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IN CLASS ACTIVITY

▸ Imagine a publish subscribe system which contains the 
following events 

▸ UserInput, ScreenResize, AppStart, AppClosing 

▸ Imagine a developer who implements functionality which 
should execute whenever the screen resizes.  

▸ To do this, they look for a message from the RenderLoop 
class rather than looking for a ScreenResize event. 

▸ What are potential consequences of this?
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TECHNICAL DEBT

▸ Sometime you know that you've broken the design, but 
still decide to do it anyway. 

▸ Why? Schedule pressure. 

▸ But.... then have to live with the consequences 

▸ Changes get more expensive
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MANAGING TECHNICAL DEBT

▸ Debt metaphor: deferred some of the work necessary to 
complete changes to the future 

▸ It passes these tests, but violates design principles that 
enable extensibility and maintainability. 

▸ Need to have a plan to pay down debt. 

▸ Plan work to improve design to make it again consistent 
with design.
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WHAT TO DO ABOUT CODE DECAY?

▸ Prevent code decay 

▸ Better communicate design to developers 

▸ Check that changes are consistent with design 

▸ Fix code decay after it occurs 

▸ Refactor code to be consistent with design 

▸ Change code to be consistent with design changes
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BETTER COMMUNICATE DESIGN TO DEVELOPERS

▸ How does a developer know 
that there's a design decision 
they should follow? 

▸ Ask a teammate 

▸ Read a comment 

▸ Read documentation 

▸ e.g., in our codebase, we 
only create element x by 
doing y.
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CHECK THAT CHANGES ARE CONSISTENT WITH DESIGN

▸ Code reviews offer important 
quality gate 

▸ Before any change is committed, 
another developer must review the 
a delta of the code change 

▸ That developer looks for 
potential defects in the code as 
well as violations of design 
decisions. 

▸ Gives comments, which original 
developer must then fix before 
code is committed 
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BETTER SOLUTION: TOOL SUPPORT FOR SYNCHRONIZING DECISIONS AND CODE
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Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. (2020). Active Documentation: Helping Developers Follow Design Decisions. Symposium on Visual Languages and Human-Centric Computing.
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FIX CODE DECAY AFTER IT OCCURS 

▸ Make changes that improve the design of the code without changing the 
behavior: refactoring 

▸ Goal: before and after change, code should behave exactly the same 

▸ Involves moving and renaming functionality 

▸ Modern IDEs support automatic low-level refactorings 

▸ e.g., move method. 

▸ Finds references to functionality and updates 

▸ Tries to guarantee that defects are not inserted. 

▸ Often need to make many low-level changes to achieve higher-level goal 

▸ Many may not be supported directly through automated refactoring 
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EXAMPLE: REFACTORING SUPPORT
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SOME EXAMPLES OF REFACTORINGS 

▸ Encapsulate field – force code to access the field with getter and setter methods 

▸ Generalize type – create more general types to allow for more code sharing 

▸ Replace conditional with polymorphism 

▸ Extract class:  moves part of the code from an existing class into a new class. 

▸ Extract method: turn part of a larger method into a new method. 

▸ Move method or move field: move to a more appropriate class or source file 

▸ Rename method or rename field: changing the name into a new one that better 
reveals its purpose 

▸ Pull up: move to a superclass 

▸ Push down: move to a subclass
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SUMMARY

▸ As software evolves, its requirements may change, necessitating 
changes to the implementation 

▸ Code that is inconsistent with the design introduces code decay, 
where expected consequences of design decisions are no 
longer realized 

▸ Code decay makes code harder to change and can lead to 
defects 

▸ To reduce code decay, important to prevent code decay and fix 
it when it occurs
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IN CLASS ACTIVITY
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SKETCH V6 ATM IMPLEMENTATION
▸ Form group of 2 or 3, pick an OO language (e.g., Java, C++, Python) 

▸ Start with V5 ATM implementation 

▸ Goal: make it possible to have multiple ATM implementations for separate ATM 
machines. 

▸ Clients should be able to request an ATM be created without having to depend on 
which ATM implementation is created 

▸ Client:         

▸ ATM atm = getNewATM();   // Implementation could decide to return different 
FSM without breaking client 

▸ Code should focus only on portion of implementation relevant to ATM creation and ATM 
state management 

▸ Deliverables:  

▸ Sketch of V6 ATM implementation
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