SWE 632 Fall 2023

Interaction Techniques

© Thomas LaToza

Administrivia

- Midterm Exam scores up on Blackboard / Gradescope
- HW4 due today
- HW5 due next week

Class Overview

- 1. Overview of Interaction Design: Thinking about User Actions
- **Considering Physical Actions:** Designing to Ease Physical Constraints 2.
- Mobile Design Considerations: Designing for Mobile Interaction З.
- **Universal Design:** Considering Accessibility 4.

Interaction Design Overview

Identifying Actions

Action Sequence

Signifiers

Is this a button?

- Goals
 - Show which UI elements can be manipulated
 - Show how they can be manipulated
 - Help users get started
 - Guide data entry
 - Suggest default choices
 - Support error recovery

Or a link?

Hinting

- Indicate which UI elements can be interacted with
- Possible visual indicators
 - Static hinting distinctive look & feel
 - **Dynamic hinting** rollover highlights
 - <u>Response hinting</u> change visual design with click
 - <u>Cursor hinting</u> change cursor display

Help Users Predict Outcome of Actions

- What does this do?
- Should I click it?

Clarity of Wording (Bad Example)

• Design for clarity & precision

example.com	5	Û	+	G
w "example.com" to use Touch	ID?			
Don't Allow	ОК			

Clarity of Wording

- Choose words carefully
- Speak the user's language
- Avoid vague, ambiguous terms
- Be as specific as possible
- Clearly represent domain concepts

Likely & Useful Defaults

- Default text, if relevant (e.g., date)
- Default cursor position
- Avoid requirements to retype & re-enter data

Modes

- Vary the effect of a command based on state of system
- Examples
 - caps lock
 - insert / overtype mode
 - vi / emacs command modes
 - keyboard entry used for controlling game and chatting

Challenges with Modes

- Modes create inconsistent mapping
 - E.g., control S sometimes saves, sometimes sends email
 - System 1 actions

- Avoid when possible
- Clearly distinguish if necessary
 - Make clear to user which mode they are in and how to change

Especially dangerous for frequent interactions that become highly automatic

Command Interactions

- How can a user invoke a command?
- Common examples
 - Menus
 - Buttons
 - Toolbar
 - Dialog box
 - Keyboard shortcut
 - Gesture
 - Voice commands
- What are some advantages and disadvantages of each approach?

Physical Actions

Avoid Physical Awkwardness

- Switching between input devices takes time
- Avoid forcing user to constantly switch between input devices (e.g., keyboard & mouse)
 - e.g., Effective tab order between fields
- Avoid awkward keyboard combinations

Moving the Mouse

- After a user has (1) realized that a region is interactable, (2) decided that it will cause the desired action to be invoked
- How long does it take for a user to move the cursor to click on it?

What factors might influence this time?

SWE 632 User Interface Design & Development Home Schedule Project Tech Talks Syllabus Resources

Home

Course Description

This course will provide a comprehensive introduction to human-computer interaction and the design and development of user interfaces, covering basic human cognition, methods for need-finding and prototyping, user-centered design, empirical and analytical methods for conducting usability evaluations, and principles for visual, information, interaction, and community design.

General Course Information

Table of contents

Course Description General Course Information Course Meeting Times Virtual Course Spaces A Note to Students during COVID-19 Course Philosophy Learning Outcomes

Fitt's Law

- Time required to move to a target <u>decreases</u> with target size & increases with distance to the target
- Movements typical consist of
 - one large quick movement to target (*ballistic* movement)
 - fine-adjustment movement (*homing* movements)
- Homing movements generally responsible for most of movement time & errors
- Applies to rapid pointing movements, not slow continuous movements

Design Implications of Fitt's Law

- <u>Constraining</u> movement to one dimension dramatically increases speed of actions
 - e.g., scroll bars are 1D

Design implications of Fitt's law

- Making controls <u>larger</u> reduces time to invoke actions
- Locating controls closer to user <u>cursor</u> reduces time
 - e.g., context menus

Design Implications of Fitt's Law

 Positioning button or control along <u>edge</u> of screen acts as barrier to movement, substantially reducing homing time & errors

Mobile Design

Responsive Design

- Can design a separate UI
- Or may build a <u>fluid</u> UI that rescales for different display sizes

Mobile devices often have smaller form factor than desktop / laptop OS

Where's the Cursor?

- No cursor on many mobile devices
- with
 - May require more use of static hinting
- Fitt's law still applies

Cannot use dynamic hinting to determine which elements can be interacted

• Fingers are less sensitive, hard to select small buttons, occlude elements

Alternative Inputs

- Modern mobile devices often have a wide range of sensors which can be used for input
 - Camera
 - Microphone
 - Accelerometer
 - Three-axis gyro
 - GPS
 - Barometer
 - Proximity sensor
 - Ambient light sensor
- Enables new interaction techniques

Augmented Reality

Overlaying generated content on top of view of the real world

Alternative Inputs + Augmented Reality

Universal Design

Supporting Users with Disabilities

- **Perception** visual & auditory impairments
 - Blindness or visual impairments
 - Color blindness
 - Deafness & hearing limitations
- **Motion** muscle control impairments
 - Difficulties with fine muscle control \bullet
 - Weakness & fatigue
- **Cognition** difficulties with mental processes
 - Difficulties remembering
 - Difficulties with conceptualizing, planning, sequencing actions

Blindness and Visual Impairments

- Users use screenreader to listen to screen elements
- Reads all of the text on the page
 - Through practice, learn to listen to text at 400+ words per minute

- Important to have <u>alt-text</u>
 - Images should have labels that explain them
- Important to have *hierarchy*
 - which level to navigate to next

• Rather than visually skimming page, skims page by listening to section heads to determine

Motion Impairments

Universal Design

- How can users with physical disabilities be supported in user interactions?
- Good: <u>assistive design</u> offering equivalent actions for disabled users that cannot take normal actions
- Better: <u>universal design</u> designing interactions so broadest set of users across age, ability, status in life can use normal actions

Example - Curb cut

- hand carts, roller blades, bikes, ...

Initially designed for *accessibility* - support for disabled & wheel chairs But potentially benefits <u>all users</u> of public spaces - people w/ suitcases,

7 Principles of Universal Design

- Equitable use: The design is useful and marketable to people with diverse abilities
- *Flexibility in use:* The design accommodates a wide range of individual preferences and abilities
- <u>Simple and intuitive</u>: Use of the design is easy to understand, regardless of the user's experience, knowledge, language skills, or current concentration level
- Perceptible information: The design communicates necessary information effectively to the user, regardless of ambient conditions or the user's sensory abilities
- <u>Tolerance for error</u>: The design minimizes hazards and the adverse consequences of accidental or unintended actions
- Low physical effort: The design can be used efficiently and comfortably and with a minimum of fatigue
- <u>Size and space for approach and use</u>: Appropriate size and space is provided for approach, reach, manipulation, and use regardless of user's body size, posture, or mobility

Big Topic - Further Reading

Jeff Bigham's Course at CMU: http://www.accessibilitycourse.com

Amy Ko's Book Chapter on Accessibility: https://faculty.washington.edu/ajko/books/user-interface-software-and-technology/#/accessibility#ref-islam10

10 Minute Break

In-Class Activity

In-Class Activity: Interaction Design Guidelines

- In groups of 2 or 3
- Select a common application task (e.g., navigating list of items, invoking commands on content, entering formed text)
- Describe pros and cons of each alternative
- Describe how each alternative might be adapted to support mobile and universal design
- Due by 6:25pm today

• Build a list of alternatives to the standard interaction techniques for this task (e.g., chat, AR)

