
React Tech Talk Thomas LaToza
SWE 632
8/29/2023

SWE 632, Fall 2023

React
❖ Framework for building complex web user interfaces

❖ Enables apps to be built declaratively, efficiently rendering
and updating HTML based on changes in app state

❖ Breaks up complex apps into encapsulated components
written in JS rather than HTML that reduce dependencies
and encourage reuse

❖ Interops well with other frontend web technologies

❖ Can also be used to build native mobile apps

2

SWE 632, Fall 2023

Embedding HTML in Javascript

❖ HTML embedded in JavaScript

❖ HTML can be used as an expression

❖ HTML is checked for correct syntax

❖ Can use { expr } to evaluate an expression and return a
value

❖ e.g., { 5 + 2 }, { foo() }

❖ Output of expression is HTML
3

return <div>Hello {this.props.name}</div>;

SWE 632, Fall 2023

class HelloMessage extends React.Component {

 render() {

 return (

 <div>

 Hello world!

 </div>

);

 }

}

ReactDOM.render(

 <HelloMessage/>, mountNode

);

Hello world example

4

<div id=“mountNode”></div>

“Declare a HelloMessage
component”
Declares a new component with the
provided functions.

“Return the following HTML  
whenever the component is
rendered”
Render generates the HTML for the
component. The HTML is dynamically
generated by the library.

“Render HelloMessage and
insert in mountNode”
Instantiates component, replaces
mountNode innerHTML with
rendered HTML. Second parameter
should always be a DOM element.

SWE 632, Fall 2023

class HelloMessage extends React.Component {

 render() {

 return (

 <div>

 Hello {this.props.name}

 </div>

);

 }

}

ReactDOM.render(

 <HelloMessage name="John" />,

 mountNode

);

Properties

5

“Read this.props.name
and output the value”
Evaluates the expression to a value.

“Set the name property of
HelloMessage to John”
Components have a this.props collection
that contains a set of properties instantiated
for each component.

SWE 632, Fall 2023

State

❖ Can update state

❖ this.setState(OBJ)

❖ Triggers call to
render() to generate
new HTML for new
state

6

class Timer extends React.Component {

 constructor(props) {

 super(props);

 this.state = { seconds: 0 };

 }

 tick() {

 this.setState(prevState => ({

 seconds: prevState.seconds + 1

 }));

 }

 componentDidMount() {

 this.interval = setInterval(() => this.tick(), 1000);

 }

 componentWillUnmount() {

 clearInterval(this.interval);

 }

 render() {

 return (

 <div>

 Seconds: {this.state.seconds}

 </div>

);

 }

}

ReactDOM.render(<Timer />, mountNode);

SWE 632, Fall 2023

Working with state
❖ Constructor should initialize state of object

❖ Use this.setState to update state

❖ Doing this will (asynchronously) eventually result in render being invoked

❖ Multiple state updates may be batched together and result in a single render call

7

 constructor(props) {

 super(props);

 this.state = {date: new Date()};

 }

 this.setState({

 date: new Date()

 });

SWE 632, Fall 2023

Nesting components

❖ UI is often composed of nested components

❖ Parent owns instance of child

❖ Occurs whenever component instantiates other component in render
function

❖ Parent configures child by passing in properties through attributes
8

render() {

 return (

 <div>

 <PagePic pagename={this.props.pagename} />

 <PageLink pagename={this.props.pagename} />

 </div>

);

}

Establishes ownership by
creating in render function.

Sets pagename property of child
to value of pagename property of
parent

SWE 632, Fall 2023

Component lifecycle

9

class Timer extends React.Component {

 constructor(props) {

 super(props);

 this.state = { seconds: 0 };

 }

 tick() {

 this.setState(prevState => ({

 seconds: prevState.seconds + 1

 }));

 }

 componentDidMount() {

 this.interval = setInterval(() => this.tick(), 1000);

 }

 componentWillUnmount() {

 clearInterval(this.interval);

 }

 render() {

 return (

 <div>

 Seconds: {this.state.seconds}

 </div>

);

 }

}

ReactDOM.render(<Timer />, mountNode);

[component created]

constructor(...)

render()

componentDidMount()

[component is being  
destroyed]

componentWillUnmount()

SWE 632, Fall 2023

Babel

❖ React components usually written in an extension of JavaScript
called JSX

❖ Using JSX requires a transpiler

❖ Takes JSX and outputs traditional Javascript (a.k.a ES5)

❖ Can use directly in web page or through build process

10

https://babeljs.io/

<script	src=“https://cdnjs.com/libraries/babel-core/
5.8.34">	</script>

<script	type=“text/babel”>

//JSX	here

</script>

https://babeljs.io/
https://cdnjs.com/libraries/babel-core/5.8.34
https://cdnjs.com/libraries/babel-core/5.8.34

SWE 632, Fall 2023

Status
❖ Open source, created and maintained by Facebook

❖ Initially released in 2013

❖ Actively maintained and updated

❖ Used widely by popular websites

❖ e.g., Facebook, Airbnb, Uber, Netflix, X, Pinterest,
Reddit

❖ Wide variety of related frameworks that build on top of it

11

SWE 632, Fall 2023

Competitors

❖ Other frontend JS frameworks

❖ Angular, Vue.js, ember.js

❖ Traditional server side frameworks

❖ PHP, JSP, ASP, Ruby on Rails, Django, ...

12

SWE 632, Fall 2023

Summary
❖ Organizes web apps into encapsulated components

❖ Easier to reuse, test, debug, change, ...

❖ Does the work in figuring out what HTML changes need to
be made

❖ Only need to be able to construct HTML from app state

❖ Embeds HTML in code rather than code in HTML

❖ Use of JSX requires either a build a process for frontend
(usually) or added runtime overhead

13

