Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Stolee Claire Le Goues Yuriy Brun
Department of Computer Science School of Computer Science College of Information and Computer Science
Iowa State University Carnegie Mellon University University of Massachusetts, Amherst
{yke, kstolee} @iastate.edu clegoues@cs.cmu.edu brun@cs.umass.edu

Summary By-Fardina Fathmiul Alam
SWE 795, Spring 2017

Repairing Programs with
Semantic Code Search

Motivation

< Automated program repair can potentially reduce debugging costs and improve software quality.
But existing resources shortcomings in the quality of automatically generated repairs.

dThe key challenges 1s to find efficient semantically similar code (but not identical) to defective
code and integration of that code into a buggy program.

JdThis paper has present a repair technique SearchRepair that can do automated program
repair using semantic code search.

Repairing Programs with
Semantic Code Search

Key Idea

dSearchRepair:

I. Encodes a large database of human-written code fragments as satisiability modulo theories
(SMT) constraints on their input-output behavior.

2. Localizes a defect to likely buggy program fragments.

3. Constructs, for each fragment, the desired input-output behavior for code to replace those
fragments

4. Uses state-of-the-art constraint solvers, to search the database for fragments that satisty that
desired behavior and replacing the likely buggy code with these potential patches.

5. Validates each potential patch to repair the bug against program test suites.

Approach (1/3)

SearchRepair uses fault localization to identify buggy fragments of code.

1 int main() {
2 int a, b, ¢, median = 0;
3 printf("Please enter 3 numbers separated by spaces >");
g scanf ("$d%d%d", &a, &b, &c);
S if ((a<=b && a>=c) || (a>=b && a<=c))
6 median = a;
7 else if ((b<=a && b>=c) || (b>=a && b<=c))
8 median = b;
9 else if ((c<=b && a>=c) || (c>=b && a<=c))
10 median = c;
11 printf("%d is the median", median);
12 return 0;
13 1}

Fig. 1: A student-written, buggy program to print the median
of three integers. Note that the comparison between variables a
and < on line 9 are flipped, such that ¢ will never be identified
as the median.

Figures(1): Buggy Program to Print the Median of 3 Numbers

Potentially buggy

: expected program test
input
output output result
5] 999 | "9 is the median" "9 is the median" pass
tp | 023 | "2 is the median" | "2 is the median" pass
t3 | 010 | "0 is the median" | "0 is the median" pass
4 021 "l is the median" "0 is the median" fail
15 | 826 | "6 is the median" | "0 is the median" fail

Fig. 2: Five test cases for the program from Figure 1.

Figures(2): Five test cases for Figure (1)

Approach (2/3)

For each identified candidate buggy fragment, SearchRepair extracts program
state in the form of dynamic variable values over the test cases (called profile).

test | input input state output state test result
t1 | 999 | a:9:int b:9:int ¢:9:int median:0:int | a:9:int b:9:int ¢:9:int median:9:int pass
tp | 023 | a:0:int b:2:int c:3:int median:0:int | a:0:int b:2:int c¢:3:int median:2:int pass
t3 | 010 | a:0:int b:1:int c:0:int median:0:int | a:0:int b:1:int c¢:0:int median:0:int pass
t4 | 201 | a:0:int b:2:int c:1:int median:0:int | a:0:int b:2:int c¢:1:int median:0:int fail
ts | 28 6 | a:2:int b:8:int ¢:6:int median:0:int | a:2:int b:8:int ¢:6:1nt median:0:int fail

Fig. 4: An input-output profile for the program from Figure 1, constructed using the test suite from Figure 2.

Figures(4): An input-output profile

Approach (3/3)

SearchRepair uses these profiles to search a database of code to find
code fragments that can serve as potential patches, replacing the

buggy fragments.
(a) fully correct code fragment:
1 if((x <=y && x >=2z) || (x >= y && x <=z))
2 m = x;
3 else if((y <= x && y >=2) || (y >= x && y <= z))
4 m=y;
5 else
6 m= z;
(b) partially correct code fragment:

1 4if ((a <=Db && a >==¢) || (a >= Db && a <= ¢))
2 median = a;
3 else if ((b <= a & b >=¢) || (b >= a && b <= ¢))
4 median = b;
5 else if ((c <= b && a <=¢) || (¢ >= b && a <= ¢))
6 median = c;

Fig. 3: Two candidate code fragments to be used to replace
lines 5-10 in Figure 1. Code fragment (a) repairs the bug,
passing all five tests; meanwhile, (b) only partially repairs the
bug, as tests t1, fp, t3, and 75 pass, but test #4 still fails.

Figures(3): Two Candidate code for repair buggy program

Experiment Result

JFigure 8 shows a Venn diagram describing the breakdown of which techniques
repaired which defects. There are 310 total unique defects the tools were able to
repair. Of these, 20 (6.5%) are unique to SearchRepair, SearchRepair can repair
20 of the defects that the other three techniques do not repair.

4160 (51.6%) can be repaired by at least one other technique but not by

SearchRepair, and 130 (41.9%) can be repaired by SearchRepair and at least one
other technique.

SearchRepair

TrpAutoRepair
150 (48.4% ~

47 (79.7%)

20 (6.5%)

R RS :5\ KRRELTIN SearchRepair GenProg TrpAutoRepair AE
; & & 97.3% 68.7% 72.1% 64.2%

Fig. 9: The quality of the patches produced by the four repair
techniques, as measured by the number of independent (not
used for patch generation) tests the patched programs pass.

GenProg

287 (92.6%) 159 (51.3%)

total: 310 defects fixed

Fig. 8: SearchRepair is the only tool that can repair 20 (6.5%)
of the 310 defects repaired by the four repair techniques. The
other three repair tools can together repair 160 (51.6%) defects
that SearchRepair cannot. The remaining 130 (41.9%) of the
defects can be repaired by SearchRepair and at least one other
tool. (Not shown in the diagram is that 35 (11.3%) of the defects
can be repaired by both GenProg and TrpAutoRepair, and that
0 (0%) of the defects can be repaired by both SearchRepair
and AE.)

QUESTIONS FOR DISCUSSION

Overall reactions
Would you like to use this technique?

What limitations does this have?

