Wing Lam
j[CS @ ILLINOIS

COMPUTER SCIENCE Repairing Test Dependence University of lllinois at Urbana-Champaign

winglam2@illinois.edu

RESEARCH PROBLEM

/ . , Test code containing test dependence.\
* Test dependence causes inconsistent test result when tests are

static int x = 0O;
run in different execution orders. oﬁvoid testfﬁefalflt(gal ()) {
. 35 asser quals , X);
* There are two serious consequences. 27}
o , , void testChangingXVal() {
o False positives: Test fails even when the software is correct. x = 1 + x;
\o False negatives: Test passes even when a bug exists.) assertEquals (1, x); /
APPROACH
(Automatically applies various refactorings to the code under test Repaired test code. \
d d h iled static Int x = 0;
and test code as they are compiled. void testXDefaultVal() {
* Most common root cause of test dependence is side-effecting C’ X = 0t3E s (0)
, asser quals X);
access to shared global variables. 1 | |
e Our prototype addresses side-effecting tests in two phases. VOIdXtiStghangmngal O A
-)
1.Determine the initial value of every global variable. C x = 1 + x;
: : assertEquals (1, x);
2.For every test, reassign all occurrences of global variables whose 1 4 ()
\value is potentially read during the test’s execution. /
RESULTS
Subject programs used in our evaluation.
* Subject programs were chosen from our LOC # Tests
. Program CUT |Tests | Human | Auto | Version
previous study. Crystal 4573 | 1302 78 | 3198 1.0.20111015
JFreechart 02255 [49942 2234 2438|1.0.15
* Had no knowledge of whether the programs Joda-Time |27183|51492| 3875| 2234 |b609d7d66d
actually contained dependent tests. Synoptic 5317 | 2758 118 | 2467 | d5ea6fb3157¢
XML Security | 18255 | 3807 108 665|1.0.4
* Measure the number of dependent tests Dependent tests exposed by applying four test
exposed by applying test prioritization with _ prioritization algorithms.
and without our prototype. e .t
. - Original | Repaired | Original | Repaired
* With a lower-bound number from a previous Program brogram | program | program | program
study, our prototype eliminates Crystal 5 2 51 43
. JFreechart 3 3 5) 5)
0 10.8% of human-written dependent tests Joda-Time 1 0 224 157
. Synoptic 0 0 2 2
o 12.5% of the automatically-generated XML Security s s s -
dependent tests Total 13 9 360 284

RELATED & FUTURE WORK

Related work

* Tests could be required to run in a given order.

o Prevents the use of test selection and
prioritization.

Future work

* Our prototype fixes test dependence for only
variables that are of primitive or String types.

o Improve the prototype to support variables
of any type.

-
-/

* Execute each test in a separate virtual machine.

o Significantly increases test execution time. * Expand our approach to handle additional
causes of test dependence.
o Such as access to a database or file system

and concurrent programs.

* Other related work only detects test
dependence.

o Our approach repairs test dependence.
* By covering additional causes of test

o Repaired tests vield consistent results on a _
dependence, our approach can repair all /

single, standard JVM.
cases of test dependence.

This work is supported by the US National Science Foundation under grant no. CNS-1434582.

