
Repairing Test Dependence

Wing Lam
Department of Computer Science

University of Illinois at Urbana-Champaign, USA
winglam2@illinois.edu

ABSTRACT
In a test suite, all the tests should be independent: no test
should affect another test’s result, and running the tests in
any order should yield the same test results. The assumption
of such test independence is important so that tests behave
consistently as designed. However, this critical assumption
often does not hold in practice due to test dependence.

Test dependence causes two serious problems: a depen-
dent test may spuriously fail even when the software is cor-
rect (a false positive alarm), or it may spuriously pass even
when a bug exists in the software (a false negative). Existing
approaches to cope with test dependence require tests to be
executed in a given order or for each test to be executed in a
separate virtual machine. This paper presents an approach
that can automatically repair test dependence so that each
test in a suite yields the same result regardless of their exe-
cution order. At compile time, the approach refactors code
under test and test code to eliminate test dependence and
prevent spurious test successes or failures.

We develop a prototype of our approach to handle one
of the most common causes of test dependence and evaluate
the prototype on five subject programs. In our experimental
evaluation, our prototype is capable of eliminating up to
12.5% of the test dependence in the subject programs.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Test dependence, Refactoring, Testing, Repairing, False alarm

1. RESEARCH PROBLEM
Test dependence causes inconsistent test result when tests

are run in different execution orders. Test dependence has
two serious consequences:

stat ic int x = 0 ;
void testXDefaultVal () {

as s e r tEqua l s (0 , x) ;
}
void testChangingXVal () {

x = 1 + x ;
a s s e r tEqua l s (1 , x) ;

}

Figure 1: Test code containing test dependence. If
testChangingXVal executes before testXDefaultVal, then
testXDefaultVal fails because testChangingXVal will have
changed the value of x to be 1 by the time testXDe-

faultVal executes.

• False positive alarms, in which the test fails spuriously
even when the software is correct. A failed test requires
human attention, which is the most costly resource
during software development.

• False negatives (missed alarms), in which the test passes
even when a bug exists in the software (e.g., CLI bug [5]).
A missed alarm delays discovery of a bug and increases
the cost to fix it [4, 1, 15].

Figure 1 illustrates an example of test dependence. Test
testXDefaultVal passes when it executes before testChang-

ingXVal, but it fails when it executes after testChangingXVal.
Test dependence does exist in practice [17]. To cope with

test dependence, tests could be required to run in a given
order [10], but doing so prevents the use of test selection
and prioritization. Another approach is to execute each test
in a separate virtual machine [11], but doing so significantly
increases test execution time. To the best of our knowl-
edge, our approach is the first to automatically repair test
dependence.

2. APPROACH
To repair test dependence is to refactor the tests so that

each test in a suite yields the same result regardless of their
execution order. Our proposed approach is to automatically
repair the causes of test dependence during code compila-
tion. More specifically, our approach automatically applies
various refactorings to the code under test and test code as
they are compiled.

There are three common root causes of test dependence [17]:
at least 61% due to side-effecting access to shared global
variables (e.g., static variables in Java), 10% due to side-
effecting access to a database, and 4% due to side-effecting
access to the file system. Since the most common root cause

stat ic int x = 0 ;
void testXDefaultVal () {

x = 0 ;
a s s e r tEqua l s (0 , x) ;

}
void testChangingXVal () {

x = 0 ;
x = 1 + x ;
a s s e r tEqua l s (1 , x) ;

}

Figure 2: Repaired test code.

Table 1: Subject programs used in our evaluation.
Column “LOC” represents the number of lines in
the subject program’s code under test (CUT) and
human-written tests. Column “# Tests” shows the
number of human-written unit tests and those gen-
erated by Randoop [12].

LOC # Tests
Program CUT Tests Human Auto Version

Crystal 4573 1302 78 3198 1.0.20111015
JFreechart 92255 49942 2234 2438 1.0.15
Joda-Time 27183 51492 3875 2234 b609d7d66d
Synoptic 5317 2758 118 2467 d5ea6fb3157e
XML Security 18255 3807 108 665 1.0.4

of test dependence is due to side-effecting access to shared
global variables, we develop a prototype of our approach to
specifically address this cause.

Our prototype works in two phases: (1) determine the
initial value of every global variable (its value after all static
initialization blocks have executed); and (2) for every test,
reassign all occurrences of global variables whose value is
potentially read during the test’s execution with the value
of the global variable obtained from Phase 1.

Static initialization blocks are called only when a class is
initialized for the very first time and can be used to create
and manipulate objects that can eventually be assigned to
static variables. One challenge for Phase 1 is to record the
creation and manipulation of objects inside static initializa-
tion blocks. Our prototype addresses this challenge by cre-
ating a mapping for each static variable to the assignments
and manipulations performed on to the static variable.

Phase 2 of our prototype operates by statically analyz-
ing the code under test and test code to determine which
global variables a test may interact with and reassign such
global variables. One challenge for this phase is to ensure
that only one reassignment is created for global variables a
test and methods invoked by this test may read. Our proto-
type addresses this challenge by creating a set for the global
variables that may be read for each test and the methods
invoked by the test, and finally reassigning these global vari-
ables in the beginning of the test.

For the example in Figure 1, when our prototype identifies
that test testXDefaultVal reads int x and test testChang-

ingXVal reads and writes int x, we repair the code such that
both tests will reassign int x in the beginning of the test.
An example of the repaired code can be seen in Figure 2.

3. RESULTS
Table 1 lists the subject programs used in our evaluation.

The subject programs are known to contain dependent tests

Table 2: Number of unique dependent tests exposed
by applying four test prioritization algorithms on
the subject programs. Columns “Repaired” show
the number of dependent tests exposed after apply-
ing our prototype.

Number of dependent tests
Human tests Auto tests

Original Repaired Original Repaired
Program program program program program

Crystal 5 2 51 43
JFreechart 3 3 5 5
Joda-Time 1 0 224 157
Synoptic 0 0 2 2
XML Security 4 4 78 77

Total 13 9 360 284

from our previous study [10]. It is notable that when these
subject programs were chosen for our previous study, they
were the first programs that we chose without knowledge of
whether they actually contained dependent tests and yet all
of them turned out to contain dependent tests. To measure
the effectiveness of our prototype, we measure the number
of dependent tests exposed by applying test prioritization
[8, 9, 13, 14, 16] on the subject programs in Table 1 with
and without first applying our prototype. We assess four
different test prioritization algorithms from [6, Table 1].

Out of the lower-bound number of dependent tests for
these subject programs from a previous study [10], we find
that our prototype eliminates 10.8% of human-written and
12.5% of automatically-generated dependent tests. Cur-
rently our prototype repairs only test dependence caused by
shared global variables that are primitive or String typed.
We believe that once we enhance the prototype to repair
shared global variables of any type, then the prototype will
be able to eliminate even more test dependence.

4. RELATED WORK
Our approach can automatically repair test dependence

by refactoring the code under test and test code during code
compilation. Previous research proposed other techniques to
address test dependence.

The approach of Unit Test Virtualization [2] executes tests
in multiple containers inside one JVM and Muşlu et al. [11]
proposed executing tests in separate JVMs. In contrast
to their approaches, our work can automatically repair the
common causes of test dependence so that the repaired tests
will yield consistent results when executed on a single, stan-
dard JVM. Other related work includes Electric Test [3] and
PolDet [7]. Both of these approaches are capable of detect-
ing test dependence but they do not repair test dependence.

5. FUTURE WORK
Currently, our prototype automatically fixes test depen-

dence for only shared global variables that are of primitive
or String types. In the future, we plan to continue devel-
opment on this prototype to support variables of any type.
Furthermore, the approach described in Section 2 can be ap-
plied to handle additional causes of test dependence such as
access to a database or file system and concurrent programs.
By covering additional causes of test dependence, we foresee
the possibility for our tool to automatically repair all cases
of test dependence.

6. REFERENCES
[1] W. Baziuk. BNR/NORTEL: Path to improve product

quality, reliability, and customer satisfaction. In Sixth
International Symposium on Software Reliability
Engineering, Toulouse, France, October 24–27, 1995.

[2] J. Bell and G. Kaiser. Unit test virtualization with
VMVM. In ICSE’14, Proceedings of the 36th
International Conference on Software Engineering,
pages 550–561, Hyderabad, India, June 4–6, 2014.

[3] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya.
Efficient dependency detection for safe Java test
acceleration. In ESEC/FSE 2015: The 10th joint
meeting of the European Software Engineering
Conference (ESEC) and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (FSE), pages 770–781, Bergamo, Italy,
September 2–4, 2015.

[4] B. W. Boehm. Software engineering. IEEE
Transactions on Computers, C-25(12):1226–1241,
1976.

[5] An Apache CLI bug masked by dependent tests.
https://issues.apache.org/jira/browse/CLI-26
https://issues.apache.org/jira/browse/CLI-186
https://issues.apache.org/jira/browse/CLI-187.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In ISSTA
2000, Proceedings of the 2000 International
Symposium on Software Testing and Analysis, pages
102–112, Portland, OR, USA, August 22–25, 2000.

[7] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable
testing: Detecting state-polluting tests to prevent test
dependency. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA
2015, pages 223–233, New York, NY, USA, 2015.
ACM.

[8] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse.
Adaptive random test case prioritization. In ASE
2009: Proceedings of the 24th Annual International
Conference on Automated Software Engineering, pages
233–244, Auckland, NZ, November 18–20, 2009.

[9] J.-M. Kim and A. Porter. A history-based test
prioritization technique for regression testing in
resource constrained environments. In ICSE’02,
Proceedings of the 24th International Conference on
Software Engineering, pages 119–129, Orlando,

Florida, May 22–24, 2002.

[10] W. Lam, S. Zhang, and M. D. Ernst. When tests
collide: Evaluating and coping with the impact of test
dependence. Technical Report UW-CSE-15-03-01,
University of Washington Department of Computer
Science and Engineering, Seattle, WA, USA, March
2015.

[11] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. In ESEC/FSE 2011: The 8th joint
meeting of the European Software Engineering
Conference (ESEC) and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (FSE), New Ideas Track, pages 496–499,
Szeged, Hungary, September 7–9, 2011.

[12] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In
ICSE’07, Proceedings of the 29th International
Conference on Software Engineering, pages 75–84,
Minneapolis, MN, USA, May 23–25, 2007.

[13] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering,
27(10):929–948, October 2001.

[14] M. J. Rummel, G. M. Kapfhammer, and A. Thall.
Towards the prioritization of regression test suites
with data flow information. In Proceedings of the 2005
ACM Symposium on Applied Computing, pages
1499–1504, Santa Fe, NM, USA, March 14–17, 2005.

[15] D. Saff and M. D. Ernst. Reducing wasted
development time via continuous testing. In
Fourteenth International Symposium on Software
Reliability Engineering, pages 281–292, Denver, CO,
November 17–20, 2003.

[16] A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
ISSTA 2002, Proceedings of the 2002 International
Symposium on Software Testing and Analysis, pages
97–106, Rome, Italy, July 22–24, 2002.

[17] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam,
M. D. Ernst, and D. Notkin. Empirically revisiting the
test independence assumption. In ISSTA 2014,
Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pages 385–396, San
Jose, CA, USA, July 23–25, 2014.

https://issues.apache.org/jira/browse/CLI-26
https:// issues.apache.org/jira/browse/CLI-186
https://issues.apache.org/jira/browse/CLI-187

	Research problem
	approach
	results
	Related Work
	Future work
	References

