
Record and Replay for Android: Are We There Yet in Industrial
Cases?

Wing Lam
Zhengkai Wu
Dengfeng Li
Wenyu Wang

{winglam2,zw3,dli46,wenyu2}@
illinois.edu

University of Illinois at
Urbana-Champaign, USA

Haibing Zheng
Hui Luo
Peng Yan

Yuetang Deng
{mattzheng,huiluo,peteryan,
yuetangdeng}@tencent.com

Tencent, Inc., China

Tao Xie
taoxie@illinois.edu

University of Illinois at
Urbana-Champaign, USA

ABSTRACT
Mobile applications, or apps for short, are gaining popularity. The
input sources (e.g., touchscreen, sensors, transmitters) of the smart
devices that host these apps enable the apps to offer a rich experi-
ence to the users, but these input sources pose testing complications
to the developers (e.g., writing tests to accurately utilize multiple in-
put sources together and be able to replay such tests at a later time).
To alleviate these complications, researchers and practitioners in
recent years have developed a variety of record-and-replay tools
to support the testing expressiveness of smart devices. These tools
allow developers to easily record and automate the replay of com-
plicated usage scenarios of their app. Due to Android’s large share
of the smart-device market, numerous record-and-replay tools have
been developed using a variety of techniques to test Android apps.
To better understand the strengths and weaknesses of these tools,
we present a comparison of popular record-and-replay tools from
researchers and practitioners, by applying these tools to test three
popular industrial apps downloaded from the Google Play store.
Our comparison is based on three main metrics: (1) ability to repro-
duce common usage scenarios, (2) space overhead of traces created
by the tools, and (3) robustness of traces created by the tools (when
being replayed on devices with different resolutions). The results
from our comparison show which record-and-replay tools may be
the best for developers and identify future directions for improving
these tools to better address testing complications of smart devices.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Android, GUI testing, Record-and-replay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3117769

ACM Reference format:
Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui
Luo, Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and Replay for
Android: Are We There Yet in Industrial Cases?. In Proceedings of 2017 11th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 6 pages.
https://doi.org/10.1145/3106237.3117769

1 INTRODUCTION
Smart devices such as mobile phones are becoming increasingly
widespread and these devices rely on mobile applications, or apps
for short, in order to perform a variety of activities. These apps
make use of the many input sources included in a smart device,
such as the touchscreen, sensors (e.g., GPS, accelerometer, compass,
gyroscope), and transmitters (e.g., WiFi, Bluetooth) to perform
their activities. The numerous input sources on a smart device
pose challenges for app developers to create tests that accurately
utilize these input sources and to replay an input generated from
them at a later time. Record-and-replay tools developed by both
practitioners and researchers have aimed to address such problems.
In particular, these tools allow developers to easily record and
replay complicated usage scenarios of their app. By automating the
replay of the complicated usage scenarios of their app, developers
no longer have to manually control each input source every time
they want to test their app. The automation also allows developers
to test their apps at scale (e.g., testing their app on multiple devices
at once).

Various record-and-replay tools have been developed by prac-
titioners and researchers for the Android platform for three main
reasons. First, majority of the smart devices in the world are using
the Android platform and consequently, tools compatible with the
platform are thereby compatible with most apps and devices out
there. Second, the Android platform is used in the majority of smart
devices partly because the Android platform is compatible with
a variety of devices. These devices (often varying in screen sizes
and available input sources) make app developers’ testing process
expensive. Record-and-replay tools can automate what otherwise
would be a manual process for developers to confirm that their app
works as expected on a variety of devices. Third, with the Android
platform being open-sourced, record-and-replay tools can make
use of the Android platform to gain complete access to record and

https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1145/3106237.3117769

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang,

Haibing Zheng, Hui Luo, Peng Yan, Yuetang Deng, and Tao Xie

replay the interactions between the app under test and the Android
platform or other apps.

To investigate the practicality of these different record-and-
replay tools for industrial practices, we present the first compari-
son of popular record-and-replay tools from practitioners and re-
searchers by applying these tools on three popular industrial apps
from the Google Play store. In particular, we study the strengths
and weaknesses of these tools, how effective they are compared to
each other, and how they could be improved. Our comparison is
based on three main metrics: (1) ability to reproduce common usage
scenarios, (2) space overhead of traces created by the tools, and (3)
robustness of traces created by the tools (when being replayed on
devices with different resolutions). We evaluate the tools’ ability to
reproduce common usage scenario and their traces’ robustness to
different devices, since prior to a new version’s release, developers
commonly have to test their app on a variety of devices to ensure
that their changes do not unexpectedly affect the common usage
scenarios of their app on such devices. In addition, we evaluate the
space overhead of the traces generated by the tools to show which
tools utilize space efficiently.

The results from our comparison show which record-and-replay
tools may be the best for developers and identify future directions
for improving these tools to better address testing complications of
smart devices. In our experiment, we find that the tools under study
have different problems and they do not meet the expectation of
developers. On our project website [13], readers can see and replay
the recorded traces of common usage scenarios for each of the apps
under test.

This paper makes the following main contributions:
• A survey of popular record-and-replay tools for Android

apps.
• A comparative study of applying such tools on three popu-

lar industrial apps.
• An analysis of the results for highlighting the strengths and

weaknesses of the different tools under study and possible
future directions for record-and-replay tools.

2 RECORD-AND-REPLAY TOOLS:
DESIRABLE CHARACTERISTICS

The primary goal of record-and-replay tools is to accurately record
an app’s execution in order to support automatic replay. By allowing
developers to easily record and automate the replay of complicated
usage scenarios of their app, record-and-replay tools can be valuable
for various software engineering tasks, such as software debugging
and testing. Although the goals of these tools are mostly the same,
they often vary in functionality. For example, some record-and-
replay tools are inadequate for smart devices because these tools
can record the user’s activity only in terms of discrete high-level
actions. These high-level actions cannot easily express complex
gestures such as swipes, and they do not support record and replay
for events from sensors.

Researchers and practitioners have created record-and-replay
tools through two main avenues. The tools are either desktop tools
or mobile app tools. Desktop tools, as the name suggests, are tools
that are meant to be executed on a desktop machine. These tools
commonly use the Android Debug Bridge to send commands to
the target device in order to record and replay events. Mobile app

tools, on the other hand, are tools that ought to be installed directly
onto a mobile device, and the recording and replaying of events
are controlled through the installed app. These tools commonly
require the user’s device to be rooted and often lack functionality
compared to desktop tools. The tools used in our study are found
by examining the research literature in record-and-replay tools or
are recommended to us by the WeChat developers [18], a highly
popular messenger app with over 900 million monthly active users.

To understand desirable characteristics of record-and-replay
tools from industry practitioners, we consult with over 30 develop-
ers from WeChat’s Android Development and Engineering Tools
team. These WeChat developers have over 100 years of experience
combined in testing mobile apps. The WeChat developers inform
us of five highly desirable characteristics that a record-and-replay
tool should have and four secondary characteristics that are also of
interest. The five highly desirable characteristics that a record-and-
replay tool should have are whether the tool is coordinate sensitive
(recording based on coordinates), widget sensitive (recording based
on a GUI widget’s unique identifier, e.g., R.id), state sensitive (the
tool can restore the state of the app when the trace was recorded),
timing sensitive (whether the tool can record the time difference
between the events when they were recorded) and lastly, whether
the tool requires the developers to install a custom operation sys-
tem (OS) onto their device. The four secondary characteristics that
are also of interest for a record-and-replay tool are access to the
tool’s source code, and not having to require access to the source
code of the app under test, instrumenting the app, and rooting the
device in order to use the tool.

Table 1 provides an overview of the record-and-replay tools for
Android that researchers and practitioners commonly use. The table
reports all of the tools and classifies them according to what type
of tool it is (desktop or app). Additionally, the table presents other
useful information for each of the tools, such as whether the tool
is sensitive to coordinates, widgets, state or timing changes, and
whether the tool is publicly available, instruments the app, requires
a custom OS, root access, or the source code of the app under test.
More details about each of these characteristics are described in
the remainder of this section.

Open source. “✓” if source code of the tool is available online.
“✗” otherwise.

The WeChat developers do not prioritize this characteristic as
top interest in a record-and-replay tool but they state that it is
preferable when a tool has its source code online so that they can
improve the tool to suit their needs and debug any issues of the
tool when needed.

Sensitivity - Coordinate. “✓” if there exist any instanceswhere
the events recorded by the tool are based on coordinates of the
events on the GUI screen. “✗” otherwise.

Sensitivity -Widget. “✓” if there exist any instances where the
events recorded by the tool are based on the widgets (e.g., buttons,
text fields) that the events interacted with. “✗” otherwise.

The WeChat developers often prefer a tool to be both widget
and coordinate sensitive. When this preference is not an option,
they prefer a tool to be widget sensitive instead of being coordinate
sensitive. They credit this preference to the fact that coordinate-
sensitive tools are often prone to failing due to the slightest GUI

Record and Replay for Android: Are We There Yet in Industrial Cases? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: Overview of record-and-replay tools for Android. “?” indicates unable to verify this characteristic for the tool.
Open Sensitivity Instruments Custom Root Needs

Name source Coordinate Widget State Timing app OS access source
Desktop tools
appetizer [1] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Bot-bot [2] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Culebra [3] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Espresso [4] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

MobiPlay [14] ✗ ✓ ✗ ? ✓ ✗ ✓ ✗ ✗

monkeyrunner [12] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Mosaic [8] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Ranorex [15] ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

RERAN [7] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Robotium [17] ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

VALERA [10] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

App tools
HiroMacro [9] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

RepetiTouch [16] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

changes or they are not robust enough for their traces to be replayed
on multiple devices.

Sensitivity - State. “✓” if the tool can be replayed successfully
only if the device is currently in the state that it was in when the
trace was recorded. “✗” if the tool can be replayed even if the phone
is in any state. Tools not being state sensitive (“✗”) generally require
new recordings to start in a new instance of the app, and restart
the app before each replay.

The WeChat developers feel that this characteristic is the most
important characteristic of record-and-replay tools. They empha-
size that one of the major complications with testing an app is
the implicit dependences of the app (e.g., the money balance of
the account, the friendship status of two accounts) and tools that
can help reduce the burden of developers to manually set up such
dependences are considered highly valuable to them.

Sensitivity - Timing. “✓” if the tool automatically sets the
timing between recorded events, or “✗” if it requires the user to
manually specify the timing between events. Tools that can auto-
matically set the timing between recorded events generally set the
timing to be the time delay between the events when they were
recorded.

The WeChat developers feel that this characteristic would be an
important one largely because apps such as WeChat make frequent
calls to the Internet, and tools that require developers to manually
set the time delay of events are troublesome and error prone. Ad-
ditionally, tools that set arbitrary time delays between events are
also undesirable because they are likely to fail due to insufficient
loading time between events.

Instruments app. “✓” if the tool requires that the app under
test be first instrumented by the tool. “✗” otherwise. Tools that have
this requirement typically can record and replay events only within
the app under test and cannot support record-and-replay of any
interactions that involve the app under test and the OS or another
app (e.g., sharing a photo from another app through the app under
test).

The WeChat developers do not prioritize this characteristic as
of top interest but are concerned about instrumentations that may
be incompatible with WeChat.

Custom OS. “✓” if the tool requires that the host OS be a cus-
tomized version of Android. “✗” otherwise. Tools that have this
requirement can generally record any events within the app under
test, and between the app under test and the OS or another app.
However, the overhead of installing a custom OS often makes these
tools unappealing to developers and troublesome for them to test
their app with a variety of OS versions.

The WeChat developers are highly interested in this characteris-
tic. Their interest is largely due to two main factors: (1) they are
afraid that results from scenarios reproduced on custom OSs will
not translate to the same results on the original Android OS; (2) they
are afraid that the use of custom OSs either will not work on many
devices or may even damage the phone due to incompatibilities of
the OS and the device.

Root access. “✓” if the tool requires the Android device be
rooted. “✗” otherwise. Similar to the Custom OS characteristic,
tools that have this requirement can generally record any event
within the app under test, and between the app under test and the
OS or another app. However, unlike the Custom OS characteristic,
root access is easily granted to most Android OS versions [11].

The WeChat developers feel that tools that do not require a
device to be rooted would be preferable since rooting a device would
often break its warranty and make the device more vulnerable to
security issues. However, they would be willing to compromise on
this characteristic if a tool satisfies the characteristics that they are
highly interested in.

Access to app source code. “✓” if the tool requires the source
code of the app under test. “✗” otherwise. Generally, record-and-
replay tools do not need the app’s source code for recording and
replaying the events of an app. In our study, we find only one tool,
Espresso [4], that requires the source code of an app in order to
record and replay. Upon further investigation, we find a third-party
tool that can enable Espresso to be used for record and replay
without the source code; however, the third-party tool is no longer
available and appears to be quite outdated.We suspect that Espresso
requires the source code mainly because its other functionalities
such as writing Android UI tests requires access to the source code.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang,

Haibing Zheng, Hui Luo, Peng Yan, Yuetang Deng, and Tao Xie

The WeChat developers sometimes outsource the testing of the
app to other companies so that these companies can verify that
apps such as WeChat work well with their products (e.g., a new
mobile device). When the WeChat developers outsource the testing
of the app, they prefer that these other companies use the same
record-and-replay tool as they do, so that if a problem arises, these
other companies can share the replay with the WeChat developers
and allow them to debug the problem quickly. Moreover, to protect
the intellectual property of WeChat, the WeChat developers re-
frain from exposing the source code of the app to other companies.
Therefore, the WeChat developers do prefer a tool that does not
require the source code of the app, because this preference helps
keep WeChat’s source code confidential while allowing the other
companies to test WeChat in a manner that is easy for the WeChat
developers to debug if necessary.

3 EMPIRICAL STUDY
3.1 Selected Tools
Our study cannot consider all the tools listed in Table 1. For the
tools that we omit, we gather the results in Table 1 by emailing the
tool authors or going through the documentations of the tools. First,
we have to omit Bot-bot and VALERA because we cannot get the
tools to work. Second, we have to omit Mosaic and MobiPlay from
our study because Mosaic has incomplete documentation to use the
tool and MobiPlay’s tool is unavailable to get. We have contacted
the developers of Bot-bot, VALERA, Mosaic, and MobiPlay with the
preceding respective problems, but at the time of our writing, we
have yet to hear back or receive a working solution from them.

We are able to get Culebra to record and replay; however, the
tool is extremely slow to use. For example, even on a real device, it
could take half a minute to type in a single text field, or about ten
seconds to perform a single click. Due to Culebra’s slowness to use,
it seems impractical for developers to use the tool in an industrial
setting. Therefore, we decide to omit the tool from our study.

Since our empirical study focuses on only apps from industry,
obtaining the source code for our subject apps is infeasible. There-
fore, we are unable to include Espresso in our study. Espresso does
contain a third-party tool that could enable it to bypass the require-
ment for source code. However, when we attempt to download
the third-party tool, the tool is no longer accessible. Other tools
that require the user to pay include Robotium and Ranorex. We
decide to omit Ranorex from our study because Ranorex fails to
instrument two of the three apps that we study due to the large
size of the two apps. Robotium can record events to the GUI only if
such GUI elements are controlled by the main process of the app.
In other words, when there are other processes that create GUI
elements, Robotium would be unable to record actions on such
elements. One example for how WeChat uses other processes to
create GUI elements is through WeChat’s mini programs, which
are embedded apps in the WeChat app. Due to Robotium’s lack of
support for GUI elements created by other processes, we decide to
omit Robotium from our study as well.

Lastly, we decide to ignore app tools, since developers must
control these tools through the app on the phone. This require-
ment makes batch testing with these tools much more complicated.

Table 2: Overview of the apps selected to evaluate the record-
and-replay tools in our study.
Name Version Category Size (MB)
Facebook [5] 122.0.0.17.71 Social 72.2
File Explorer [6] 5.1.3.0 Business 9.2
WeChat [18] 6.5.7 Communication 40.5

Additionally, the requirement of root permission from these record-
and-replay tools can also be troublesome for developers. In the
end, we select three tools for our empirical study, namely appetizer,
monkeyrunner, and RERAN.

appetizer-toolkit [1], or appetizer for short, is a desktop tool
that relies solely on coordinates to record events. Appetizer is closed
source but from what we can tell it relies heavily on the Android
Debug Bridge (ADB) in order to record and replay events. With
appetizer, a developer does not need to worry about manually
setting the time between events for recordings but for replays they
do need to ensure that the state of the device is the same as it was
when the trace was recorded. Assuming that two devices have the
same aspect ratio, one of appetizer’s most prominent features is
that it supports recording events on one device and then replaying
the events on a different device. Section 3.5 presents our evaluation
of the selected tools on this feature.

monkeyrunner [12] is a desktop tool developed by Google Inc.
that provides an API for writing Python programs to control an
Android device or emulator. With monkeyrunner, a developer can
write Python programs to install an Android app, record and replay
keystrokes to it, take screenshots of its user interface, and store the
screenshots onto the desktop. The monkeyrunner tool is coordinate
sensitive, state sensitive, and not time sensitive. These characteris-
ticsmakemonkeyrunner quite difficult to use as a record-and-replay
tool but as we show in later sections of the paper, monkeyrunner
does have its advantages compared to the other tools.

RERAN [7] is a desktop tool similar to the preceding tools
in that it is also coordinate sensitive and state sensitive. What
sets RERAN apart is that RERAN requires the device to be rooted
in order to replay recorded events. RERAN relies solely on ADB
commands such as getevent in order to record and replay events.
RERAN consists of three steps. First, RERAN uses ADB to record.
Second, the recorded trace is then translated by RERAN. Third, the
translated trace is replayed by RERAN onto the device.

3.2 Selected Apps
To evaluate the tools that we select, we download three popular
apps that belong to distinct categories from the Google Play store.
Since the record stage requires human effort to properly configure
and use a tool to record popular usage scenarios of an app, and the
replay stage requires human effort to verify whether the specified
goals of the scenarios are accomplished or not, these factors limit
the number of apps that we evaluate. Table 2 shows the apps that
we collect and the apps’ version, category, and size in megabytes.

3.3 Reproducing Common Usage Scenarios
In this section, we evaluate how the selected record-and-replay
tools perform on the selected apps. More specifically, we identify
common scenarios in which the selected apps are used for and eval-
uate whether the record-and-replay tools can accurately record and

Record and Replay for Android: Are We There Yet in Industrial Cases? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

(a) Position ofWeChat button during
record.

(b) Position of WeChat button dur-
ing replay.

Figure 1: When recording and replaying one of the common
usage scenarios of WeChat (Gallery/Photo), the Android OS
may reposition buttons used in the scenario.

replay such scenarios. For WeChat, the WeChat developers provide
us the common scenarios for evaluation. For the remaining apps,
we identify common usage scenarios from reading the apps’ de-
scription on the Google Play store. Some of the scenarios identified
by us require only one device while some scenarios require two. In
either case, we identify one device to be the primary device while
the other device to be the secondary device. The primary device
is a Nexus 5X running Android 6.0 while the secondary device is
a Nexus 5 running Android 6.0. All of the scenarios in which we
evaluate the tools on are described in greater detail and shown
through videos on our project website [13].

The results of our evaluation can be found in Table 3. We find
that in the Facebook scenarios, all three tools successfully replay
Facebook’s scenarios except for RERAN, which fails on the “Play
games” scenario. The reason why RERAN fails for that scenario
is that the exit button on the top-left corner of the Facebook app
does not appear to be responsive every time we replay the trace.
Without the source code of Facebook, we are unable to verify the
actual cause of this failure but it is likely that the failure is due to
Facebook’s handling of the event while other processes of the app
are running. For the File Explorer app, appetizer fails for the first
two scenarios. The tool works well in the beginning, but it is unable
to replay the last clicking event of the scenarios. This inability of
appetizer seems to be due to a limitation of the tool.

For the WeChat scenarios, the three tools behave quite differ-
ently. Appetizer fails on the “Moments/Photo&Link” scenario due
to the unexpected long loading time of Moments, a feature similar
to Facebook’s wall for allowing users to share and get access to
accepted WeChat friends’ information. After increasing the time
delay between events to 30 seconds, appetizer ceases to fail any-
more. For this scenario, appetizer’s failure seems to be due to the
nondeterministic loading time of Moments in WeChat and not due
to the tool itself. We find monkeyrunner to be quite difficult to use
especially when recording and replaying on two devices simultane-
ously. The tool may replay the traces of the primary phone onto the
secondary phone if we start the second replay script less than two
seconds after the first script starts. Therefore, in our experiment,
we get the replay to succeed only 1 out of 10 times for the “Group
chat/Link” scenario due to the difficulty of running monkeyrunner
on two devices. Furthermore, the tool does not have the functional-
ity of recording long presses; therefore, the tool is unable to record

Table 3: Reproducibility of the top usage scenarios. “✓” indi-
cates that the tool is able to accomplish the scenario speci-
fied goals every time. “-” indicates that the tool is able to ac-
complish the scenario specified goals some of the times. “✗”
indicates that the tool is unable to accomplish the scenario
specified goals every time.

monkey
Scenarios appetizer runner RERAN
Facebook
Create post ✓ ✓ ✓

Watch video ✓ ✓ ✓

Share photo ✓ ✓ ✓

Play games ✓ ✓ -
File Explorer
Tutorial ✗ ✓ ✓

Explore menu ✗ ✓ ✓

Browse directories ✓ ✓ ✓

New windows ✓ ✓ ✓

WeChat
Group chat/Link ✓ - ✓

Group chat/Photo ✓ ✗ ✓

Gallery/Photo ✓ ✗ -
Moments/Photo&Link - ✗ ✓

Moments/Post ✓ ✗ ✓

the other four scenarios. RERAN is able to successfully replay all
of WeChat’s scenarios except for the “Gallery/Photo” scenario. Our
investigation into the failure finds that the failure is due to the state
of the Android OS. The OS may change the order of the options in
the sharing menu as shown in Figure 1. This change causes RERAN
to share the photo to another app. This cause of failure is not spe-
cific to the RERAN tool, and after we replay the scenario a couple
of times, the location of the WeChat button stops changing and all
subsequent replays of this scenario are no longer affected by this
cause of failure.

3.4 Space Overhead
Table 4 shows the space overhead of the traces recorded for the
scenarios of each app as described in Section 3.3. In general, the
traces recorded by RERAN tend to be 67 times greater in size than
the size of the traces recorded by monkeyrunner. On the other hand,
appetizer’s traces tend to be 2-3 times greater in size than those of
monkeyrunner.

Our investigation of the trace files generated by RERAN shows
that RERAN produces much more trace information when the trace
involves dragging events. Appetizer and monkeyrunner do not
appear to suffer from this caveat. For monkeyrunner, the trace file
is in plain text and we can see that monkeyrunner simply generates
one “DRAG” event for each dragging event. For appetizer, the trace
file is a binary file, which we are unable to decipher exactly how
dragging events are stored.

3.5 Replaying Robustness
One primary usage of record-and-replay tools is to ease the man-
ual efforts of developers during regression testing. Prior to a new
version’s release, developers commonly have to test their app on a
variety of devices to ensure that their changes do not negatively

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang,

Haibing Zheng, Hui Luo, Peng Yan, Yuetang Deng, and Tao Xie

Table 4: Space overhead of the record-and-replay tools in
kilobytes.

Name appetizer monkeyrunner RERAN
Facebook 10 3 215
File Explorer 4 3 94
WeChat 24 8 625
Total 38 14 934

affect the app on such devices. To replicate the developers’ intended
usage of record-and-replay tools, we evaluate how recorded traces
from Section 3.3 perform when they are replayed on a device that
contains a resolution different than the device that recorded the
traces. More specifically, all of WeChat’s traces described in Sec-
tion 3.3 are recorded in either a Nexus 5X or a Nexus 5, which both
have a 1920 by 1080 resolution. To evaluate the robustness of these
tools on different resolutions, traces recorded on the Nexus 5X are
replayed on a Samsung Galaxy SIII that has a resolution of 1280 by
720, while traces recorded on the Nexus 5 are replayed on a Nexus
6P that has a resolution of 2560 by 1440.

For all of the WeChat scenarios, none of the three tools are able
to successfully replay the scenarios. However, these tools do be-
have differently. RERAN would generate only the first one or two
clicking events. For example, it can successfully open the menu
to create a new group chat, but then no additional events are re-
played. Monkeyrunner would click into wrong coordinates for all
of the scenarios. Appetizer can successfully create a group chat
and even finish typing the message. However, when it comes to
dragging events, appetizer is unable to replay the events at the right
coordinates.

Since all of the tools are unsuccessful in replaying the scenarios
of WeChat, we also replay the traces of Facebook on two different
devices. Instead of a Nexus 5X for the primary phone, we use a
Nexus 5 and instead of a Nexus 5 for the secondary phone, we
use a Nexus 6p. We find that RERAN fails for all of Facebook’s
scenarios on both the Nexus 5 and Nexus 6p phones. Monkeyrunner
successfully replays the steps of the first two scenarios on only the
Nexus 5, but it fails on the steps of the Nexus 6p. For the other
scenarios, both the Nexus 5 and Nexus 6p fail to replay successfully.
Appetizer successfully replays the first three scenarios on both
phones with a small exception for the “Create post” scenario. For
this scenario, the typed string on the Nexus 6p changes from “Test"
to “Gest”. Since the “Play games” scenario contains two dragging
events, appetizer fails this scenario for Facebook similar to what it
did for WeChat’s scenarios.

4 DISCUSSION
Our results from Sections 2 and 3 show that although there exist
many record-and-replay tools from practitioners and researchers,
very few of these tools are readily available for developers to ac-
tually use in practice. The three tools that we end up using for
our study also do not produce stable results (indicated by “-” in
Table 3) in four of the scenarios that we evaluate them on. RERAN,
which is one of the very first record-and-replay tools proposed by
researchers, is the only tool that is able to record and replay all
scenarios and able to achieve the goal of the scenarios at least some
of the times. However, the traces produced by RERAN do occupy
about 67 times the space that traces from monkeyrunner would

occupy. For those scenarios that we evaluate the record-and-replay
tools with, the traces of each tool occupy less than 1 megabyte.
However, if industrial app developers are to heavily rely on such
tools, the space overhead induced by RERAN may start to become
an issue. Monkeyrunner is provided by Google. However, the tool
is difficult to use and quite problematic, especially when replaying
traces on two devices simultaneously. Appetizer is easier to use
but also contains some unexpected bugs such as the imprecise re-
play of dragging events on different devices. Lastly, we find that
when replaying traces on a device with a different screen resolution,
RERAN could not replay any scenarios. Monkeyrunner can succeed
in some simple scenarios and appetizer can do slightly better than
monkeyrunner. However, none of these tools are able to replay
complicated scenarios on different screen sizes successfully.

Our interactions with the WeChat developers help derive desir-
able characteristics of a record-and-replay tool (Section 2). Unfortu-
nately, none of the tools that we find exhibit all of these character-
istics. Researchers and practitioners working on record-and-replay
tools may want to develop a more desirable tool to exhibit this set
of characteristics.

5 CONCLUSION
In this paper, we have presented a comparison of the popular record-
and-replay tools from researchers and practitioners, by applying
these tools to testing three popular industrial apps downloaded from
the Google Play store. The results from our comparison show that
none of these tools are desirable for developers to use in practice,
calling for the need of developing more desirable tools in future
work.

ACKNOWLEDGMENTS
The work of UIUC authors is supported in part by NSF under grants
no. CCF-1409423, CNS-1434582, CNS-1513939, CNS-1564274.

REFERENCES
[1] appetizer-toolkit, 2017. https://github.com/appetizerio/appetizer-toolkit.
[2] Bot-bot, 2017. http://imaginea.github.io/bot-bot/index.html.
[3] Culebra, 2017. https://github.com/dtmilano/AndroidViewClient/wiki/culebra.
[4] Espresso Test Recorder, 2017. https://developer.android.com/studio/test/

espresso-test-recorder.html.
[5] Facebook, 2017. https://play.google.com/store/apps/details?id=com.facebook.

katana.
[6] File Explorer, 2017. https://play.google.com/store/apps/details?id=nextapp.fx.
[7] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: Timing- and touch-

sensitive record and replay for Android. In ICSE ’13, pages 72–81, 2017.
[8] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. Mosaic: cross-platform user-

interaction record and replay for the fragmented Android ecosystem. In IS-
PASS’15, pages 215–224, 2017.

[9] HiroMacro Auto-Touch Macro, 2017. https://play.google.com/store/apps/details?
id=com.prohiro.macro.

[10] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-replay for
Android. In OOPSLA’15, pages 349–366, 2017.

[11] KingoRoot, 2017. https://www.kingoapp.com.
[12] monkeyrunner, 2017. https://developer.android.com/studio/test/monkeyrunner/

index.html.
[13] Record-and-Replay tool study project website, 2017. https://sites.google.com/

view/record-and-replay.
[14] Z. Qin, Y. Tang, E. Novak, and Q. Li. MobiPlay: A remote execution based

record-and-replay tool for mobile applications. In ICSE ’16, pages 571–582, 2017.
[15] Ranorex, 2017. http://www.ranorex.com/mobile-automation-testing.html.
[16] RepetiTouch Free (root) (ads), 2017. https://play.google.com/store/apps/details?

id=com.cygery.repetitouch.free.
[17] Robotium Recorder, 2017. https://robotium.com/products/robotium-recorder.
[18] WeChat, 2017. https://play.google.com/store/apps/details?id=com.tencent.mm.

https://github.com/appetizerio/appetizer-toolkit
http://imaginea.github.io/bot-bot/index.html
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://developer.android.com/studio/test/espresso-test-recorder.html
https://developer.android.com/studio/test/espresso-test-recorder.html
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=nextapp.fx
https://play.google.com/store/apps/details?id=com.prohiro.macro
https://play.google.com/store/apps/details?id=com.prohiro.macro
https://www.kingoapp.com
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://sites.google.com/view/record-and-replay
https://sites.google.com/view/record-and-replay
http://www.ranorex.com/mobile-automation-testing.html
https://play.google.com/store/apps/details?id=com.cygery.repetitouch.free
https://play.google.com/store/apps/details?id=com.cygery.repetitouch.free
https://robotium.com/products/robotium-recorder
https://play.google.com/store/apps/details?id=com.tencent.mm

	Abstract
	1 Introduction
	2 Record-and-Replay TOOLS: Desirable Characteristics
	3 EMPIRICAL STUDY
	3.1 Selected Tools
	3.2 Selected Apps
	3.3 Reproducing Common Usage Scenarios
	3.4 Space Overhead
	3.5 Replaying Robustness

	4 Discussion
	5 Conclusion
	References

