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ABSTRACT

We present Bugs.jar, a large-scale dataset for research in automated

debugging, patching, and testing of Java programs. Bugs.jar is com-

prised of 1,158 bugs and patches, drawn from 8 large, popular open-

source Java projects, spanning 8 diverse and prominent application

categories. It is an order of magnitude larger than Defects4J, the

only other dataset in its class. We discuss the methodology used

for constructing Bugs.jar, the representation of the dataset, several

use-cases, and an illustration of three of the use-cases through the

application of 3 specific tools on Bugs.jar, namely our own tool,

Elixir, and two third-party tools, Ekstazi and JaCoCo.
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1 INTRODUCTION

Software applications pervade every aspect of commercial and con-

sumer life today. The meteoric growth of software over the past

decade has brought renewed focus on the reliability and quality of

software applications, and indeed the significant costs currently

incurred in assuring this reliability [2]. Research on automated

debugging, patching and testing of software promises to substan-

tially lower these costs. However, there is always a need for realistic,

large-scale datasets to drive the research towards practical solutions.

This paper makes a contribution in this area.

Java continues to be one of the leading programming languages

today, according to the TIOBE Index [10]. Research on automated

debugging and patching of C programs has benefitted immensely

from the several realistic datasets of C program bugs currently avail-

able, including ManyBugs [4], CoreBench [1], and IntroClass [4].

The Defects4J dataset [5] has played a similar role for Java programs

but continues to be the only representative in its class. Further, the

subject systems in Defects4J are not diverse enough to represent

the entire gamut of current Java applications, and by implication,

the diversity of Java bugs. For instance, 4 out of the 6 Defects4J sys-

tems (Commons Lang, Commons Math, Joda-Time, and JfreeChart)

are actually libraries. For both the above reasons, a second bug

dataset, particularly one spanning popular application categories
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not covered in Defects4J, could be a valuable asset for research in

automated debugging, patching and testing of Java programs.

In service of the above objective we have developed Bugs.jar, a

new large-scale, diverse dataset of 1,158 real bugs and patches from

8 large, popular open-source Java projects, spanning 8 distinct and

prominent Java application domains. Bugs.jar is publicly available at

https://github.com/bugs-dot-jar/bugs-dot-jar. This paper describes

the methodology used for constructing Bugs.jar, the representation

of the dataset, specific use-cases, and illustration of three use-cases

by using Bugs.jar with three specific tools, namely our own tool,

Elixir [9], and two third-party tools, Ekstazi [3] (http://ekstazi.org/)

and JaCoCo (http://www.jacoco.org/jacoco/).

2 DATASET CONSTRUCTION

2.1 Objectives

Our primary objective in constructing Bugs.jar was to organize a

collection of bugs and corresponding patches, from a diverse set

of large real-world Java software, that could serve as a benchmark

suite for research in automated debugging, patching, and testing of

Java programs. Specifically, for each bug we require (1) the buggy

version of the source code, (2) a bug report describing the nature

of the bug, (3) a test-suite, serving as a correctness specification,

comprising at least one failing (fault-revealing) test case and one

passing test case (to guard against regression), and (4) the devel-

oper’s patch to fix the bug, which passes all the test cases. The

design of Bugs.jar was driven by the following four broad criteria.

1. Real-world relevance: The goal was to focus on large, active

projects, with a rich development history. This would allow for

evaluating software engineering techniques at scale. It would also

provide a vast and diverse database of bugs.

2. Diversity: The chosen software projects should cover the

spectrum of applications typically implemented using Java, allow-

ing for an even richer diversity of bugs and patches.

3. Reproducibility: Many automated debugging and repair

techniques, that could benefit from such a bug dataset, rely on

test-suite executions to give consistent results over repeated execu-

tions. Thus, test-cases containing sources of randomness, or indeed

bug instances with such test cases, cannot be included.

4. Automatability: Maximizing automation is crucial to the

development of a large-scale dataset. It also limits errors and sub-

jective bias introduced by manual examination. Therefore we lim-

ited our search to projects and project ecosystems that followed

rigorous development practices, including having comprehensive,

well-maintained test-cases, a dedicated and actively maintained

bug tracking system, and descriptive commit logs to facilitate iden-

tification of bug-fixing commits. We also enforced uniformity in
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Figure 1: Methodology for creation of dataset

the build and test-authoring frameworks used by the different sub-

ject systems. This can prove to be an important issue for program

software engineering tools trying to utilize such a dataset [7].

Figure 1 presents an overview of the methodology used to create

Bugs.jar. Broadly, it involves first identifying a set of suitable subject

systems (projects) and then mining the source repositories of each

of these projects for viable bug-patch instances.

2.2 Methodology for choosing projects

After conducting a rigorous search on GitHub and Google Code, we

found that projects developed by the Apache Foundation, hosted on

GitHub, fulfill our real-world relevance and automatability criteria.

Further, there are several hundred projects in this ecosystem and

projects are tagged with one or more of 28 different keywords, such

as library, big data, network-server, etc., representing the application

domain of the project. This provides an objective path for us to

satisfy our diversity criterion as well (as discussed below). Thus

we chose the Apache ecosystem on GitHub, which has 260 such

tagged projects, for constructing Bugs.jar.

First, we grouped the 260 projects, each of which is tagged with

one or more of 28 different tags, by tag categories. Note that a

project can appear in multiple groups. We then selected the top

8 groups, each of which have 20 or more projects. This strategy

respects our diversity criterion. Next we selected representative

projects from each of the 8 groups that satisfied the following

specific criteria: (1) at least 50KLoc and 5,000 commits (real-world

relevance criterion), and (2) use maven as the underlying build

system and JUnit test cases (automatability criterion). We selected

subjects among the most active projects in each group (measured

by the number of commits), provided it passed the above criteria.

Further, we chose subjects to reflect the proportion of projects in

each category. Table 1 lists the set of chosen subject systems.

2.3 Methodology for filtering bugs

The objective of this step was to select those commits that purely

correspond to bug fixes, rather than feature enhancements or any-

thing else, and for which the bug could be reproduced reliably.

Identifying bug-fixing commits. All Apache projects use the

Jira issue-tracking system. Each issue in Jira is tagged with a type,

e.g., Bug, Improvement, Task etc., , and a unique alphanumeric issue

ID. Further, when (Apache) developers make changes to the source

code to resolve a given issue, they generally include the issue ID

in the commit message. To identify all bug-fixing commits of a

given project we iterate through the complete commit history of

the project, searching for issue IDs in commit messages. Any issue

ID found in a commit message is checked against the Jira repository

for its type, and if it is of type Bug, the corresponding commit is

selected as a bug-fixing commit. The set of bug-fixing commits

selected in this fashion are the input to the subsequent steps.

Consistently reproducible bug-fixes. Once we get the bug

fixing commit from the previous step, we extract the version, which

we call Vf ix . Then we run all the test cases on Vf ix . Ideally, all
the test cases should pass on Vf ix . However, in real-world, large
software projects, there may be some broken test cases in practice.

If we get any failing test cases, we exclude them from analysis since

they are most likely irrelevant to the bug under investigation. Then

we apply the bug fixing reverse patch to get buggy version of the

source code. We call this version as Vbuддy . We run the test cases

on Vbuддy . If there is any fault-reproducing test cases, we consider
the bug for further investigation. There may be also some flaky test

cases, whose results are non-deterministic [6]. These flaky test cases

make some bugs reproducible some times but not reproducible in

other times. Therefore, we run the previous step 10 times to make

sure that the bugs are consistently reproducible.

Manual verification. Finally, when we get a set of consistently

reproducible bugs, we manually analyze each bug to make sure that

they are indeed a bug, i.e., they are not misclassified as a Bug in the

Jira repository. To this end, two authors of this paper independently

read each bug report and decided whether a given issue is a bug.

In case of any disagreement, we had a group discussion among all

the authors to resolve the issue, although such instances were rare.

The right-most column of Table 1 lists the final number of bugs

included in the dataset, for each subject system.

2.4 Statistics of final dataset

As per Table 1, Bugs.jar consists of 1,158 bugs from 8 subject sys-

tems. It is roughly an order of magnitude larger than the Defects4J

dataset [5], with 2.93X more bugs (1,158 vs. 395 for Defects4J)

and 3.46X larger subject systems (1,167 KLoc of source code for

the latest version of the subjects, vs. 337 KLoC for Defect4J), i.e.,

2.93 × 3.46 = 10.14X larger. More importantly, it contains appli-

cations from 8 different, prominent application categories, while

4 of the 6 subjects in Defects4J (Commons Lang, Commons Math,

Joda-Time, and JfreeChart) are actually libraries. Apache Commons

Math is the only subject system common to both datasets.

3 DATA REPRESENTATION

Each bug instance in Bugs.jar contains four artifacts: (1) the buggy

version of source code, (2) the bug report, (3) the bug reproducing

test-suite, and (4) the developer’s patch to fix the bug. In the sim-

plest form, Bugs.jar may be bundled with the snapshots of all buggy

versions, and distributed as an archive. However, that is certainly

not space-efficient for large subjects. Furthermore, such archival
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Table 1: Selected subject systems

Project Purpose Tags Commits Bug Size (excl. tests) Total Size Bugs

Reports [KLoC] [KLoC] Selected

Accumulo sorted, distributed key-value store database 8,714 2,041 371 458 98

Camel routing and mediation engine network-client, network-server 24,096 1,081 122 257 147

Commons Math math & statistics library library 5,994 635 93 187 147

Flink streaming dataflow engine big data 8,906 2,070 171 345 70

Jackrabbit Oak content management system XML, network-server, library 10,810 1,686 139 228 278

Log4J2 logging framework library 6,971 784 63 104 81

Maven project management build management 10,264 2,863 81 100 48

Wicket server-side Web app framework Web framework 19,386 3,770 127 177 289

Total 95,141 14,930 1,167 1,856 1,158
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Figure 2: Bugs.jar Representation on GitHub

of bug instances lacks transparency, and flexibility to extend the

dataset. Therefore, we carefully designed a tree data structure for

Bugs.jar and stored it in a GitHub repository linking Bugs.jar sub-

jects to their respective official repositories. We leveraged several

Git features to represent Bugs.jar that promotes the transparency

and flexibility to update and extend it, while being space efficient.

Let us assume that for a given subject project (e.g., Apache

Camel), there are n commits ranging fromC1 toCn . Recalling from
Section 2.3, each bug instance in Bugs.jar is reconstructed from its

corresponding fixed version Vf ix . Let us assume that Ci is such a
bug fixing commit in Figure 2. We make a branch with a Bugs.jar ID

(e.g., Bugs.jar-Bug-1), and we commit the reconstructed buggy ver-

sion Vbuддy , presented as node B1. We also added all the relevant

information such as the bug report, test results, and so on in a hid-

den directory so that they do not affect the project’s purity. 1 Since

the reconstruction of a buggy version may involve not only revert-

ing the bug fixing changes but also changes in the build scripts or

filtering out refactoring related changes, this design enables a user

to see the exact changes during the reconstruction of the buggy

version with respect to the original fixed version. In our experience

of evaluating Elixir on Defects4J, although we frequently needed

1Many modern projects do not build if a foreign file is detected in the codebase.

the change information for a given buggy version, there was no

convenient way to extract that since each bug instance in Defects4J

is completely isolated from the official subject repository.

Another important reason to choose this data structure is that

Bugs.jar also may undergo changes due to its own bug fixes or

feature improvements. Under the present design, we can keep up-

dating the dataset by making further commits to the specific branch

for the bug ID (e.g., B11). Therefore, the updating process is trans-
parent to the user. To extend Bugs.jar with new bugs, we simply

start another branch at an appropriate position (e.g., Cj ). Bugs.jar

maintains a separate Git repository on GitHub for each subject

which is linked to the official repository of that subject. All the

subject Git repositories are grouped together in a parent Git reposi-

tory. Due to the novel data representation of Bugs.jar, it cannot be

simply merged to any existing bug dataset such as Defects4J.

4 USE CASES

4.1 Research Opportunities

Bugs.jar can be a valuable resource for driving research in the

broad area of automated debugging, patching, and testing of Java

programs. More specifically, it can be used for designing innovative

techniques related to code coverage, mutation testing, test selection,

prioritization, and reduction, test case generation, bug localization,

learning invariants, anomaly detection, automatic program repair,

and so on. Furthermore, since each bug in Bugs.jar comes with a

bug report, it would be a valuable asset for research areas such as

information retrieval based bug localization, bug report triaging,

bug report quality analysis, program comprehension, etc.

4.2 Using Bugs.jar

Using Bugs.jar is simple. Users can download the entire copy of

Bugs.jar in a directory of a local or remote computer by simply

cloning the Bugs.jar repository from GitHub. Then, for a given

subject project, users can check out a specific branch using the

corresponding Bugs.jar bug ID. This will move the Git pointer to

the latest version of Bugs.jar instance for that bug ID that contains

the buggy code, the test suite with bug reproducing test cases, and

properly configured build and test scripts (e.g., POM files for maven

build systems). This snapshot ensures that if there exist any broken

test cases that are irrelevant to the bug, they will not be run during

testing. Also, there is a hidden directory called .bugs-dot-jar that
contains useful information regarding the developer’s patch, and
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Figure 3: Statistics of Code Coverage by JaCoCo

Table 2:Median Proportion of Test Cases Selected By Ekstazi

Accumulo Camel Flink Math Oak Maven Wicket

23% 1% 17% 16% 33% 22% 8%

detailed test results that we generated during the construction of

Bugs.jar. A more comprehensive manual on the usage of Bugs.jar

is provided in the Bugs.jar system as a README.md file.

4.3 Our Experience of Using Bugs.jar

To demonstrate that Bugs.jar is easily usable by various external

and internal tools, this section describes our experiences of apply-

ing three different tools on Bugs.jar for three different applications.

More specifically, we applied two external tools JaCoCo and Ekstazi

on Bugs.jar for code coverage collection and regression test selec-

tion, respectively. We also ran our own automatic program repair

tool, Elixir on Bugs.jar. Since all these experiments are expensive,

we performed them on the 252 one-hunk bugs of Bugs.jar.

Collection of Code Coverage Using JaCoCo. Standard code

coverage information is collected and used in many dynamic tech-

niques including fault localization, and test suite evaluation. JaCoCo

is a popular and publicly available tool for obtaining code coverage

for a given Java project. In order to run JaCoCo, we included the

JaCoCo maven plugin in the build of each bug instance. Figure 3

shows that the average code coverage across all the experimented

buggy versions of each system. The statement (branch) coverage

ranges from 19% (15%) for Accumulo to 89% (85%) for Commons

Math. Therefore, Bugs.jar is diverse in terms of test coverage. Fur-

thermore, the successful run of JaCoCo on Bugs.jar demonstrates

that Bugs.jar can be used in analyses requiring code coverage.

Regression Test Selection (RTS) Using Ekstazi. RTS is a well

known technique to select the relevant test cases for any given

changes in a project. Ekstazi is an industry-standard publicly avail-

able RTS tool. Like JaCoCo, we were also able to run Ekstazi success-

fully on Bugs.jar by including its maven plug-in in the build system

of each bug instance. Table 2 presents the median proportion of

selected tests across all the experimented buggy versions of each

system. Ekstazi did not generate results for around 5% of the bugs.

Automatic Program Repair Using Elixir. Running an auto-

matic repair tool is challenging for any dataset since it involves

both static and dynamic program analyses. Furthermore, various

third-party tools and libraries enable such sophisticated analysis.

For example, Elixir uses the ASM byte code library to instrument

programs’ source code, Spoon library [8] to modify a program at

the abstract syntax tree (AST) level, javax.tools for in-memory
compilation, and JUnit APIs to run the test cases programmatically.

Table 3: Patch Generation Summary by Elixir

Project # One-hunk Bugs Correct Incorrect

Accumulo 21 1 0
Camel 31 4 3
Commons Math 41 10 4
Flink 14 2 0
Jackrabbit Oak 61 4 7
Maven 10 0 0
Wicket 74 11 11

Total 252 32 25

A summary of the results is presented in Table 3. This demonstrates

that Bugs.jar supports complex static and dynamic analysis and

publicly available libraries that implement these techniques.

Challenges. Running various tools on large systems can be dif-

ficult. Although the uniform and efficient architecture of Bugs.jar

simplified the process, there are still some challenges depending

on the given application. For automatic program repair, we needed

to run test cases using JUnit APIs. However, using such APIs was

particularly tricky for subjects with many dependent libraries since

correctly specifying configurations, such as classpaths was consid-

erably more difficult with the APIs. Also, instrumentation was an

issue for a subject such as Log4J2 due to library conflicts.

5 CONCLUSION

In this paper we described Bugs.jar, a large-scale, diverse dataset

of real-world Java bugs, aggregated by us. Bugs.jar is comprised

of 1,158 bugs and patches, drawn from 8 large, popular open-

source Java projects, spanning 8 diverse and prominent application

categories. We discussed the methodology used for constructing

Bugs.jar, its representation, and illustrated three of its many use-

cases through the application of three specific tools on Bugs.jar. We

strongly believe that Bugs.jar can be a valuable asset for driving

research in automated debugging, patching, and testing of Java

programs, and have already made Bugs.jar available to the research

community with this sincere hope.
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