An Infrastructure Approach to
Improving Effectiveness of
Android Ul Testing Tools

Wenyu Wang, Wing Lam, Tao Xie

{wenyu2, winglam2}@illinois.edu
taoxie@pku.edu.cn

2 *«(CNS-1564274
- CCF-1763788

Automated Ul Testing For Android Apps

Automatically explore the app through Uls, just like human users

Code coverage Capturmg of screen content]

-

Test effectiveness Test [Action(s) } Test Test record
report device (screen tap, key press,) and report

tool

How much do these two types
of operations dffect testing
effectiveness?

-& Little human effort =& Scalable with numerous devices “& Deeper functionality saturation

1

Infrastructure Efficiency: A Motivational Study

* Break down of testing time usages

* 3 tools using UlIAutomator from the 2018 study L]
* Including one re-implemented Monkey (baseline tool), Chimp
* 15 industrial apps from the study, each run for 1-hour
* Tm+ to 1b+ downloads, 3.3MB to 93MB APK sizes

/0% of testing time is spent
on just two tybes of operations!

m Ul Capturing m Ul Event Execution

Misc Interaction Tool Internal . .
Save time from these operations —

More actions within limited testing time —

Better testing effectiveness!

(11 Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng, and Tao Xie.
An empirical study of android test generation tools in industrial cases (ASE 2018))

Our Approach (TOLLER)

* Goal: Fast Ul Hierarchy Capturing + Ul Event Execution
* Direct access to app Ul data structures & event handlers

* L ow-overhead communication with in-app agent

é N
App VM
— = === 1
@ : TOLLER : Unix socket
' android G w
App Code Android Framework
 (dex) (App Space)) ¢

Test Tool

Ul Hierarchy Capturing

Ul Hierarchy Capturing

YNy

o e
Test
Te;t Ul Event Execution |
device too

Obtain structured on-screen contents
from the test device

II%EHHHH!%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHII

Wireless & networks

@

Data usage
More
Device
{} Display

Sound & notification

Apps

Storage & USB

<node
text="Settings”
class="android.widget.TextView” />

<node
class="android.widget.LinearLayout”>
<node
resource-id="icon”
class="android.widget.ImageView” />
<node
text="Data usage”
resource-id="title”
class="android.widget.TextView” />

</node>
<node
class="android.widget.LinearLayout”>
<node
text="Display”
resource-id="title”
class="android.widget.TextView” />

</node>

Mechanism Of Ul Hierarchy Capturing
(UlAutomator)

Android
Ul System
Services

IPC
| |
: UlAutomator {'_’ UlAutomator
. android Agent || RC
- Androd Framework™ ~ """ | I
RPC

(App Space)

Test Tool

Mechanism Of Ul Hierarchy Capturing
(TOLLER)

4)
App VM

r— Y ——————————— 1

| |

: TOAléLER :

I . ent I

 android |

b - ________=

Android Framework Unix s/g\%gt
(App Space) over

- J

&

ToLLER facilitates Test Tool

direct access to Ul
data structures!

Ul Hierarchy Capturing

Ul Event Execution T
Tt

Test
tool

. Ul Event Executi
High-level event vent Execution

e.g., tapping button X

TOLLER facilitates
direct access to
event handlers!

Event Handler
X'sOnClickListener

Fvaluation Outline

* RQ1T: Efficiency of two types of operations
* RQ2: Code coverage improvement
* RQ3: Crash triggering ability improvement

* RQ4: Code/crash overlap with and without TOLLER
* Please see paperl!! for details

* RQ5: Breakdown of improvements by enhancing types

of two operations
* Please see paperl!! for details

U1 https://wenyu.io/publ/issta2 1-toller.pdf

https://wenyu.io/pub/issta21-toller.pdf

RQT: Efficiency Comparison

* Same testing time, with and without TOLLER | ToLLER substantially accelerates
two types of operations

e Fallback to UlIAutomator on unhandled cases

Avg time usage of single operations Total # of operations
2000 -97% -95% 20000 1.8x
8000 80000
7000 70000 1.3x
6000 60000 2.6x
000 soo0 1.5 35.3x 21.0x
4000 40000
3000 30000
2000 _97% _4ocy 20000 I I
1000 -77% °© _18% 10000
., B - - e m= - . — —
Chimp WCTester Stoat Chimp WCTester Stoat Chimp ~ WCTester Stoat Chimp ~ WCTester Stoat
Ul Hierarchy Capturing Ul Event Execution Ul Hierarchy Capturing Ul Event Execution

B Original M Enhanced B Original M Enhanced

#apps with highest coverage:

* 3 one-hour runs for each (tool, app)

on CH, WT, and ST

* Average # of Java methods covered after
testing starts

RQ2Z: Code Coverage Improvement

/

MK CH WT ST
Without TOLLER
4 8 3 0
With ToLLER
2 5 5 3

N\

TOLLER-induced coverage
improvements are substantial
enough to change relative tool

competitiveness

~

J

MK = Monkey, CH = Chimp (re-implemented Monkey), WT = WCTester, ST = Stoat

10

RQ2Z: Code Coverage Improvement

* Additionally evaluate on Ape
* More advanced algorithm than tools from the 2018 study
* No mention of leveraging private APls for Ul Hierarchy Capturing
* Slow (no efficient infra. support) vs. Original (with infra. support)

14000

/ Tools with less \

advanced algorithm but
efficient infra. support
could outperform tools
with more advanced
algorithm but no

\eﬂ?cient infra. support /

12000

10000

8000 Apes lower than
WCTester for
~40 minutes

6000

4000

Average # of Covered Methods

2000

0 5 10 15 20 25 30 35 40 45 50 55

Time Elapsed (mins)

—=—Ape_O Ape_S WCTester O —+—WCTester E

9.7% improvement
from Apec to Apeg

10.4% improvement
from WCTesterg to
W(CTesterg

60

11

RQ3: Crash Triggering Improvement

4 o)
Efficient infrastructure

* Cumulative # of distinct crashes, identified by stacktraces helps tools trigger

substantially more crashes
* 3.6%, 1.5%, 1.4x for three enhanced tools; 1.8x for Ape _ /)

* For the majority of (tool, app) pairs, more crashes are found by enhanced tool versions

MK = Monkey, CH = Chimp (re-implemented Monkey), WT = WCTester, ST = Stoat

App Name APEs %s APEp %0 2XAPE MK |CHp %0 CHg % 2CH|Wto %0 WtTg % 2WT|STo %0 STE %Eg 28T
Abs 1 33% 2 67% 3 3 1 100% 1 3 75% 1 25% 4 8 67% 12 100% 12
Duolingo 1 50% 1 50% 2 - - 1 100% 1 6 55% 9 82% 11
Filters For Selfie - - 1 - - - - 3 75% 4 100% 4
GoodRx 1 100% 1 5 100% 5 1 13% 7 88% 8 6 67% 5 56% 9
Google Translate 1 100% 1 1 100% 1 - - 8 73% 5 45% 11
Marvel Comics 1 100% 1 1 100% 1 1 100% 1 9 82% 9 82% 11
Merriam-Webster - - - - - - 4 44% 9 100% 9
Mirror 3 60% 5 100% 5 5 3 60% 5 100% 5 5 83% 4 67% 6 5 63% 7 88% 8
My Baby Piano - - - - - - - -

Sketch - - - - - - 4 80% 4 80% 5
trivago 1 33% 2 67% 3 3 1 100% 1 1 100% 1 8 53% 11 73% 15
WEBTOON 1 100% 1 1 - - 1 100% 1 8 57% 14 100% 14
Word 1 100% 2 4 100% 4 1 33% 2 67% 3 6 55% 11 100% 11
Youtube - - 1 100% 1 2 100% 2 13 59% 16 73% 22
Zedge 1 100% 1 1 100% 1 3 100% 3 4 40% 9 90% 10
Total 8 42% 14 74% 19 15 5 25% 18 90% 20 13 43% 20 67% 30 92 61% 125 82% 152

12

Recap & Conclusion

* Over /0% of testing time budget is for Android testing tools' use of test
infrastructure

e Use of test infrastructure can be made much more efficient with TOLLER

* 10.4% - 70.1% code coverage improvement, 1.4x - 3.6x unique crashes detected
depending on tool

e Code and data available at https://eithub.com/TOLLER-Android/main

Efficient infrastructure support is useful for effective Android Ul testing tools,
complementary with existing algorithmic advances

13

https://github.com/TOLLER-Android/main

