
An Infrastructure Approach to Improving Effectiveness of
Android UI Testing Tools

Wenyu Wang
University of Illinois at
Urbana-Champaign, USA
wenyu2@illinois.edu

Wing Lam
University of Illinois at
Urbana-Champaign, USA
winglam2@illinois.edu

Tao Xie∗
Peking University, China

taoxie@pku.edu.cn

ABSTRACT

Due to the importance of Android app quality assurance, many
Android UI testing tools have been developed by researchers over
the years. However, recent studies show that these tools typically
achieve low code coverage on popular industrial apps. In fact, given
a reasonable amount of run time, most state-of-the-art tools cannot
even outperform a simple tool, Monkey, on popular industrial apps
with large codebases and sophisticated functionalities. Our moti-
vating study finds that these tools perform two types of operations,
UI Hierarchy Capturing (capturing information about the contents
on the screen) and UI Event Execution (executing UI events, such
as clicks), often inefficiently using UIAutomator, a component of
the Android framework. In total, these two types of operations use
on average 70% of the given test time.

Based on this finding, to improve the effectiveness of Android
testing tools, we propose Toller, a tool consisting of infrastructure
enhancements to the Android operating system. Toller injects
itself into the same virtual machine as the app under test, giving
Toller direct access to the app’s runtime memory. Toller is thus
able to directly (1) access UI data structures, and thus capture con-
tents on the screen without the overhead of invoking the Android
framework services or remote procedure calls (RPCs), and (2) in-
voke UI event handlers without needing to execute the UI events.
Compared with the often-used UIAutomator, Toller reduces aver-
age time usage of UI Hierarchy Capturing and UI Event Execution
operations by up to 97% and 95%, respectively. We integrate Toller
with existing state-of-the-art/practice Android UI testing tools and
achieve the range of 11.8% to 70.1% relative code coverage improve-
ment on average. We also find that Toller-enhanced tools are able
to trigger 1.4x to 3.6x distinct crashes compared with their original
versions without Toller enhancement. These improvements are
so substantial that they also change the relative competitiveness of
the tools under empirical comparison. Our findings highlight the
practicality of Toller as well as raising the community awareness
of infrastructure support’s significance beyond the community’s
existing heavy focus on algorithms.
∗Tao Xie is with the Key Laboratory of High Confidence Software Technologies (Peking
University), Ministry of Education, China, and is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464828

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

UI testing, test generation, Android framework
ACM Reference Format:

Wenyu Wang, Wing Lam, and Tao Xie. 2021. An Infrastructure Approach
to Improving Effectiveness of Android UI Testing Tools. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3460319.3464828

1 INTRODUCTION

As the Android operating system continues to thrive [25], effective
quality assurance for Android apps has become increasingly de-
manded by Android app developers. The ever-growing complexity
and fast pace of app feature development have imposed unprece-
dented challenges onmaking these Android apps robust and reliable.
User Interface (UI), as the primary medium of user interactions, is
naturally a good entry point for testing. UIs generally expose vast
functionalities through unified interfaces, making them a good fit
for automated testing. While manual and scripted UI testing is a
common practice, automated UI testing is becoming increasingly
popular. Automated testing complements manual testing by requir-
ing little to no human testing effort. Developers and testers can
easily run automated UI tests anytime, for long periods of time, and
for multiple apps across many devices. Besides aiming to achieve
comparable coverage of app functionalities with human efforts,
such tests can also help with more thoroughly covering app logic
that could be overlooked by human testers.

There have been numerous Android UI testing tools from both
the research community and industry after years of development.
Monkey [15], an Android UI testing tool developed by Google, is
one of the earliest efforts in this direction. Shipped by default with
most Android devices, the tool produces purely randomized UI
event sequences and injects them into the target Android system
without considering the design details of the app under test. De-
veloped after the release of Monkey, various testing tools aim
to improve Monkey’s simple testing strategy. They are mainly
randomness-driven/evolutionary-algorithm-based tools [29, 31, 39],
model-based tools [6, 18, 21, 28, 37], and systematic-exploration-
based tools [2, 4, 30]. In these tools’ paper publications, the authors
all claim that their tools can perform better than Monkey when the
tools are given a reasonable amount of run time.

Unfortunately, subsequent work [7, 38] finds that most of the
existing tools barely outperform Monkey (w.r.t. code coverage and

165

https://doi.org/10.1145/3460319.3464828
https://doi.org/10.1145/3460319.3464828

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wenyu Wang, Wing Lam, and Tao Xie

crash triggering ability) when the tools are given a reasonable
amount of run time. A study [7] in 2015 draws this conclusion
based on experimental results of 10 tools (other than Monkey) on 68
relatively simple, open-source apps. A number of tools continue to
be published after this work, and subsequently, another study [38]
in 2018 reaffirms the conclusion based on experimental results of
5 tools (other than Monkey; 4 of them are tools not studied in [7])
on 68 popular and relatively complex, industrial apps from the
Google Play store [13]. The conclusion from these two studies [7, 38]
contradicts researchers’ and practitioners’ common belief: given
that these tools have much more sophisticated design, they should
all outperform Monkey.

To understand what makes existing tools perform poorly on
popular industrial apps, we conduct a motivating study to find
what types of operations from these tools use most of the run time,
with particular attention given to testing infrastructure’s impacts
on testing effectiveness; these impacts have been constantly over-
looked by prior work [2, 4, 6, 18, 21, 29–31, 37, 39], which mainly
emphasizes algorithmic improvements. Our study findings show
that capturing information about the contents on the screen (UI
Hierarchy Capturing) and executing UI events (UI Event Execution)
are the two types of operations that consume the most time. In total,
these two factors use on average 70% of the entire run time budget
with 34% and 36% belonging to UI Hierarchy Capturing and UI
Event Execution, respectively (as shown in “Combined” in Figure 2).
These two types of operations, usually provided with infrastructure
support, are essential for most UI testing tools to perform their
duties. Yet, we find that these two types of operations are often per-
formed inefficiently using UIAutomator [22], a component of the
Android framework. For example, we find that it can take from 0.4
to 8.2 seconds on average to capture one UI hierarchy using UIAu-
tomator (as shown in Table 2). Our experiments (Section 5.2) find
that these time usages can be reduced to just tens of milliseconds
with infrastructure enhancements. The findings from our study
suggest that there are substantial efficiency improvements that can
be achieved with infrastructure enhancements so that tools can be
more effective when given the same run time.

Based on the aforementioned findings, we propose Toller, a tool
to provide infrastructure enhancements for UI Hierarchy Capturing
and UI Event Execution to Android UI testing tools. By modifying
the Android framework, Toller is capable of injecting itself into
any target app’s virtual machine and has access to the app’s runtime
memory. Toller can thus directly read an app’s internal UI data
structures and quickly extract the app’s UI hierarchy, avoidingmuch
of the overhead caused by using UIAutomator, which relies on the
complicated internal logic of the Android framework as well as
remote procedure calls. Toller also enables the direct invocation of
UI event handlers, thereby eliminating the unnecessary time spent
on executing low-level UI events that simulate human interactions
(e.g., waiting for long clicks) and have to be translated to UI element-
specific events based on the UI hierarchy. Our experiments show
that Toller can substantially reduce the time required for the
aforementioned two types of operations.

We integrate Toller with three state-of-the-art or state-of-the-
practice Android UI testing tools that depend on UIAutomator:
Stoat [37],WCTester [40, 41], and a tool named Chimp, which we
implement following a similar algorithmic design as the original

Monkey [15]. Our experiments with 15 popular, industrial apps
obtained from the Google Play Store show that the average time
usages for UI Hierarchy Capturing are reduced by about 97%, 77%,
and 97% on Chimp, WCTester, and Stoat, respectively, and for UI
Event Execution, the average time usages are reduced by 40%, 18%,
and 95% on Chimp, WCTester, and Stoat, respectively.

Given the same run time for tools with and without Toller, the
Toller-enhanced tools are able to execute more events than the
original versions of the tools, and the Toller-enhanced tools on
average achieve higher code coverage and trigger more distinct
crashes than the original versions of the tools. In fact, our exper-
iments show that Toller-enhanced tools achieve 11.8% to 70.1%
relative code coverage improvement on average and are able to
trigger 1.4x to 3.6x distinct crashes compared with the original
versions of the tools. These improvements are so substantial that
they even change the relative competitiveness of the tools under
empirical comparison. For instance, Stoat achieves a higher average
code coverage compared to Monkey only after Stoat is enhanced
with Toller. We additionally involve another Android UI testing
tool, Ape [18], in our experiments. We find that Ape is already ben-
efiting from its own improved infrastructure support, despite the
fact that the tool authors did not mention the improved infrastruc-
ture support in their paper. We make Toller’s source code and the
scripts used to set up Toller publicly available [1]. We hope that
our results can raise the community’s awareness of the significance
of infrastructure support beyond the community’s existing heavy
focus on algorithms.

This paper makes the following main contributions:
• A motivating study to understand what types of operations
use most of existing Android UI testing tools’ run time. Our
results show the potential of two infrastructure enhance-
ments for improving these tools’ testing efficiency.

• Design and implementation of Toller, which provides two
infrastructure enhancements to Android UI testing tools so
that they can benefit from efficient UI Hierarchy Capturing
and UI Event Execution support.

• Comprehensive experiments involving the integration of
Toller with Android UI testing tools. Our experiments show
that infrastructure enhancements can lead to substantial
effectiveness improvements.

2 BACKGROUND

This section presents the relevant background information of Toller,
including two Android UI system interfaces used mainly by testing
tools, the structure of the Android framework, and UIAutomator.

2.1 Android System Interfaces for TestingTools

This section introduces the two Android UI system interfaces that
are used by most testing tools and that Toller aims to tackle: UI
Hierarchy Capturing and UI Event Execution.

UI Hierarchy Capturing enables UI testing tools to obtain de-
tailed information about current on-screen contents, including UI
properties (e.g., widget type, location, and size) and hierarchical
settings (e.g., some widget being a child of another widget). The cap-
tured UI information serves as context for testing decision making
and is especially critical to model-based tools.

166

An Infrastructure Approach to Improving Effectiveness of Android UI Testing Tools ISSTA ’21, July 11–17, 2021, Virtual, Denmark

..
<node
text="Settings”
class="android.widget.TextView” />
..
..
<node
class="android.widget.LinearLayout”>
<node
resource-id="icon”
class="android.widget.ImageView” />
<node
text="Data usage”
resource-id="title”
class="android.widget.TextView” />
..

</node>
<node
class="android.widget.LinearLayout”>
..
<node
text="Display”
resource-id="title”
class="android.widget.TextView” />
..

</node>

Figure 1: A simplified example of captured UI hierarchy

Figure 1 shows a simple example of a captured UI hierarchy
(represented in XML format) along with its corresponding screen-
shot. Each node in the hierarchy depicts a View (abstraction of
UI elements), which can be either a ViewGroup (Views specifically
for holding and organizing other Views) or ordinary View (i.e., UI
elements) that users can see and interact with. The hierarchical
relations among Views are reflected by “child of” relations of nodes.
Each node contains UI properties (e.g., text, position, resource ID)
that vary across different types and instances of UI elements.

UI Event Execution enables tools to perform UI events (e.g.,
screen clicks, text inputs) on the app under test. The interface is
usually invoked after each UI Hierarchy Capturing, where at each
step, a tool gets the current UI state and then executes a UI event
based on the state of the UI. A common way of performing UI
events is to inject the corresponding low-level UI events into the
Android system. For example, long clicking some point (𝑥,𝑦) on
the screen can be decomposed into (1) touching down at (𝑥,𝑦), (2)
waiting for 0.5 seconds, and (3) touching up at (𝑥,𝑦). These actions
are processed as if they were from human users.

2.2 Structure of Android Framework

This section introduces how app bytecode runs on Android, as well
as how the Android framework is structured. This section helps
explain how Toller is integrated with the Android framework.

The Android framework can be divided into two parts: the app
space part, which runs in the same virtual machine (VM) as each
app’s bytecode, and the system service part, which runs in stan-
dalone VMs and communicates with the app space part through
RPCs. The app space part of the Android framework consists of a
number of fundamental Java classes that are accessible from every
Android app. These fundamental classes are preloaded into the VM
and cannot be overridden by app classes. These characteristics of
the app space part make it ideal to host Toller’s runtime stub,
which needs to gain direct access to each app’s runtime memory.
Section 4 presents more details about how Toller makes use of
direct access to app runtime memory and the benefits of doing so.

2.3 UIAutomator

One component of the Android framework is UIAutomator [22],
the standard service for UI interactions on an Android device, used
by not only automated UI testing tools but also UI test scripting
platforms such as Espresso [10].

Implementation of UIAutomator can be divided into three parts.
The first part runs as a system service, which coordinates all UIAu-
tomator related activities on the device. The second part resides
in the app space Android framework, responsible for collecting
UI-related information from the app runtime memory and commu-
nicating with the system service counterpart. The third part acts
as a client to the system service, with which a user can request UI
information to be captured or UI event to be executed.

There is much overhead in using UIAutomator, especially when
it is used to capture UI hierarchies. When a user sends a request
to the system service for UI Hierarchy Capturing through remote
procedure calls (RPCs), the service first needs to look up the ac-
tive UI windows and then dispatch the request using RPCs to each
app process owning the UI windows. When the app space Android
framework counterpart receives the request, it uses accessibility
interfaces to gather the UI hierarchy for each requested UI window
and transmits the UI hierarchies back to the system service. When
each app process has finished processing, the system service finally
formats the UI hierarchies into one XML document and then trans-
mits the document back to the user. Section 4 presents details for
how Toller can reduce this overhead.

3 MOTIVATING STUDY

A recent study [38] has found that Android testing tools are sub-
stantially less effective on popular industrial apps, compared with
open-source apps, which are often used for evaluation. Many popu-
lar industrial apps are feature-rich and have much larger codebases
than open-source apps. Existing work [2, 4, 6, 18, 21, 29–31, 37, 39]
has been focusing on designing sophisticated UI exploration al-
gorithms to achieve better testing effectiveness. Although testing
effectiveness can be improved with sophisticated algorithms, one
often overlooked aspect is the efficiency of infrastructure support,
which is necessary for tools to perform their duties. Given that a
common way of evaluating Android testing tools is to set a run
time limit and measure code coverage or crash triggering ability
at the end of the run time, the efficiency of infrastructure support
directly affects a tool’s overall testing effectiveness.

To guide enhancements to Android testing tools, we conduct a
motivating study to understand the extent and sources of ineffi-
ciency from infrastructure support. Our study focuses on under-
standing the (in)efficiencies of Android UI testing tools interacting
with the testing devices. Our findings enable us to design and im-
plement a general solution for different tools. While UI Hierarchy
Capturing and UI Event Execution are necessary parts of tool-device
interactions, testing tools can also have other types of interactions.
For example, a tool may execute a shell command through Android
Debug Bridge (ADB) [14] to start the target app. Our motivating
study aims to understand the time usages by different types of
interactions to learn about their potentials for enhancements.

167

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wenyu Wang, Wing Lam, and Tao Xie

48%

27%

3%

22%

UI Capturing UI Event Execution Misc Interaction Tool Internal

49%

31%

3%
17%

Chimp

32%

43%

9%

16%

WCTester

34%

36%

9%

21%

Combined

20%

33%16%

31%

Stoat

Figure 2: Time usage distribution by operation types

Table 1: Overview of industrial apps for experiments

App Name Version Category #Inst APK Size

Abs 4.2.0 Health & Fitness 10m+ 57 MB
Duolingo 3.75.1 Education 100m+ 12 MB
Filters For Selfie 1.0.0 Beauty 1m+ 21 MB
GoodRx 5.3.6 Medical 1m+ 12 MB
Google Translate 6.5.0.RC04 Tools 500m+ 26 MB
Marvel Comics 3.10.3 Comics 5m+ 6.2 MB
Merriam-Webster 4.1.2 Books & Reference 10m+ 66 MB
Mirror 30 Beauty 1m+ 3.3 MB
My baby Piano 2.22.2614 Parenting 5m+ 3.7 MB
Sketch 8.0.A.0.2 Art & Design 50m+ 25 MB
trivago 4.9.4 Travel & Local 10m+ 12 MB
WEBTOON 2.4.3 Comics 10m+ 23 MB
Word 16.0.9126 Productivity 100m+ 74 MB
YouTube 15.35.42 Video Player & Editor 1b+ 93 MB
Zedge 7.2.2 Personalization 100m+ 33 MB

Notes: ‘#Inst’ denotes the approximate number of downloads.

3.1 Experiment Settings

To drive our design of Toller, we run and profile three tools:
Chimp, WCTester [41], and Stoat [37]. All three of these tools use
UIAutomator [22] and control the testing devices from a computer
(i.e., having no on-device components themselves), making it easy to
profile the tools’ interactions with the testing devices. The following
are more details about these three tools:

• We implement Chimp, a tool based on Monkey [15]. Similar
to Monkey, Chimp randomly decides on what UI events to
generate. The main difference between Chimp and Monkey
is that Chimp is aware of the UI element locations when
generating UI events while Monkey is unaware. Note that
we do not include Monkey directly in our study because it
does not capture any UI information from the target app
and just injects random low-level UI events. Therefore, the
enhancements provided by Toller are unlikely to improve
Monkey’s testing effectiveness. On the other hand, Chimp
shares the same exploration strategy as Monkey and makes
use of Toller’s infrastructure enhancements. Specifically,
at each step, Chimp (1) obtains the current UI hierarchy, (2)
determines what UI event types are executable (i.e., there
is at least one UI element with a corresponding action han-
dler) on the current screen, (3) randomly chooses a UI event
type based on a predefined probability distribution, and (4)

randomly chooses an applicable UI element (and action pa-
rameters if needed) to apply the next action on.

• WCTester [41] is a practical upgrade from Monkey, featuring
widget awareness, state awareness, and various heuristics
to improve its effectiveness. Developed by researchers and
practitioners [40, 41], the tool has been deployed onWeChat,
an app with over one billion monthly active users. The tool
has moderate testing effectiveness on various industrial apps
according to a previous study [38]. Although WCTester is
not open-sourced, the authors [40, 41] shared the tool with
us upon request.

• Stoat [37] is a sophisticatedmodel-based tool featuring proba-
bilistic modeling and sampling-basedmodel evolution.While
the Stoat paper [37] reports that Stoat outperforms Monkey
based on an evaluation using open-source apps, a previous
study [38] shows that Stoat generally achieves low code cov-
erage on popular industrial apps and achieves lower code
coverage than Monkey. Stoat is open-sourced.

All of our experiments are conducted on the official Android x86-
64 emulators running Android 6.0 on a server with Xeon E5-2650 v4
processors. Each emulator is allocated with 4 dedicated CPU cores,
2 GiB of RAM, and 2 GiB of internal storage space. The emulators
are stored on a RAM disk and backed by discrete graphics cards
for minimal mutual influences caused by disk I/O bottlenecks and
CPU-intensive graphical rendering.

Our experiments consist of 15 widely used industrial apps from
the Google Play Store and are selected from obtaining the top
apps from 13 different categories. The selected apps must all run
on Android 6.0 x86-64 emulators and do not require logging in,
given that logins can be flaky due to network calls and require
expensive manual checks afterwards. Details of these apps are
shown in Table 1. Each testing tool runs on each app for one hour
without interruption. If a tool exits before using up the run time
budget in some run, we automatically launch the tool to start testing
again until the allotted one hour is up.

3.2 Results

Figure 2 shows the breakdown of time usages by different types of
tool operations. Specifically, we measure the number of occurrences
as well as the end-to-end time usages of three types of operations:

168

An Infrastructure Approach to Improving Effectiveness of Android UI Testing Tools ISSTA ’21, July 11–17, 2021, Virtual, Denmark

UI Hierarchy Capturing, UI Event Execution, and ADB command
executions that are not used for the first two purposes (labeled as
“Misc Interaction”). The remaining time used during testing is then
considered to be used internally by the tool.

As shown in Figure 2, UI Hierarchy Capturing and UI Event
Execution take most of the run time budget on all of the studied
tools. By putting results from all three tools together (“Combined”),
we see that these two types of interactions each take about 1/3 of
the entire run time. Our findings suggest that focusing on the two
types of operations has good potential for improving the efficiency
of these tools and consequently the effectiveness of the tools when
the tools are given a specific run time budget. In Section 5, we show
how the use of Toller to enhance UI Hierarchy Capturing and
UI Event Execution can lead to higher average code coverage and
better crash triggering ability for the same three tools and 15 apps
used in this motivating study.

4 DESIGN & IMPLEMENTATION OF TOLLER

Figure 3 shows an overview of Toller’s design. Toller’s source
code and our scripts to set up Toller are publicly available [1].
Toller resides in the same VM as the app under test, giving Toller
fast and direct access to the app’s runtime memory. Toller is thus
able to (1) resolve the app’s internal UI-related data structures to
generate UI hierarchies, and (2) dynamically analyze, invoke, or
alter UI event handlers to perform UI events or understand/control
app behaviors. To resolve UI-related data structures, Toller uses
Java reflection to read the single-instanced AccessibilityManager
class that indirectly points to all visible windows’ root view groups.
Toller then recursively finds all Java objects corresponding to child
views (i.e., instances of subclasses of android.view.View) to gen-
erate hierarchies. To invoke UI event handlers, Toller directly calls
the corresponding action invocationmethods (e.g., performClick())
upon View objects. Note that Toller’s UI Event Execution strategy
falls back to low-level UI event injections on event handlers that
have not been covered by a low-level UI event injection. This strat-
egy helps Toller by (1) invoking low-level UI event injections at
least once for every event handler that Toller directly invokes and
(2) preventing the direct invocation of event handlers from covering
less code than low-level UI event injections. These low-level injec-
tions can cover more code than directly invoking a specific event
handler, say 𝐸𝐻 , because low-level injections may first invoke a
topmost View’s event handler only for it to then invoke a child
View’s event handler until the event eventually reaches 𝐸𝐻 .

We also design Toller to be non-intrusive to the app under test:
Toller is bundled with the app-space Android framework classes
on the testing device and app installation packages are not modified.
This design is particularly useful for testing close-sourced indus-
trial apps, because (1) many apps have self-protection mechanisms,
preventing unauthorized changes to the installation packages, and
(2) manipulating a large app’s bytecode is highly error-prone (for
example, just adding a new class during instrumentation may cause
an app’s .dex file to exceed the 64K method limit [12]).

For our experiments, we integrate Toller with the Android 6.0
framework on both emulators and real devices. While we experi-
ence no issue with our way of integration, we would still like to
point out that it is possible to use Toller without modifying the

Dalvik VM / Android Runtime

App Code
(.dex)

Toller
Agent

Android Framework
(App Space)

App Runtime Memory Space

UIAutomator
Adapter

(Optional)

UI Testing
Tool

Unix Socket
Over ADB

Figure 3: Overview of Toller’s design

Android framework; in such a case, developers could simply need
to add Toller to the app’s codebase when building the app. We
discuss more about the trade-offs of this option in Section 7. In
brief, we take the following steps to inject Toller into an Android
framework. First, we obtain the Android framework’s DEX byte-
code from the target device using ADB. Second, we convert the
Android framework’s bytecode into Smali [26] IR code. Third, we
compile Toller’s source code into Smali code. Fourth, we modify
the Android framework’s Smali code to incorporate Toller’s Smali
code. Finally, we convert all Smali code into DEX bytecode and
replace the Android framework’s bytecode on the target device
with the converted DEX bytecode.

As Android testing tools typically run on a computer, while the
app under test and Toller run on a device, the tools and Toller
need a mechanism to communicate (e.g., share UI hierarchy in-
formation) with one another. Toller uses Unix’s abstract socket
for this communication as Android already provides good support
(e.g., LocalServerSocket) for such communication. By doing so,
Toller also does not need the app to have any specific permissions
(e.g., networking, read/write storage).

As developers often change UncaughtExceptionHandlerswhen
apps are first started to avoid sharing implementation details, Toller
can also be used to disable apps’ UncaughtExceptionHandlers.
Disabling such handlers helps ensure that stack traces are printed
to system logs so that experiments can understand crash statistics
from such logs (e.g., our experiments in Section 5.4). To disable
such handlers, Toller periodically (every five seconds in our exper-
iments) calls Thread.setDefaultUncaughtExceptionHandler()
to restore the default handler to ensure that stack traces from
crashes are printed to the system logs.

Toller’s implementation of UI Event Execution relies on Toller’s
UI Hierarchy Capturing. Concretely, in a Toller-captured UI hierar-
chy, each UI element is associated with a globally unique identifier,
which is linked to the memory address of the underlying View
object (see Section 2.2 for more details on how UI hierarchies are
represented). Toller-enhanced testing tools can subsequently use
these identifiers to precisely specify the UI element that should be
executed. This feature is especially helpful when (1) an app’s UI is
constantly changing and UI events from the tools cannot be easily
executed on the desired UI element, and (2) a tool wants to execute
UI events on not-easily accessible UI elements such as list items that
are visible only after scrolling. In general, we find that Toller with
UI Hierarchy Capturing and UI Event Execution has better testing
effectiveness than Toller with just UI Hierarchy Capturing (see

169

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wenyu Wang, Wing Lam, and Tao Xie

Table 2: UIHierarchyCapturing (Capt) efficiency comparison

Ch𝑂 Ch𝐸 Wt𝑂 Wt𝐸 St𝑂 St𝐸

Time per capt 846 22 360 82 8175 245
of capt 31182 47599 47666 83603 1348 47525

Notes: Ch, Wt, and St denote Chimp, WCTester, and Stoat, respectively.
For each tool T, T𝑂 refers to its original version, while T𝐸 refers to our
Toller-enhanced version. Time is shown in milliseconds.

Table 3: UI Event Execution (Exec) efficiency comparison

Ch𝑂 Ch𝐸 Wt𝑂 Wt𝐸 St𝑂 St𝐸

Time per exec 762 454 455 372 8395 391
of exec 22045 57714 51137 65340 2118 44466

Notes: Ch, Wt, and St denote Chimp, WCTester, and Stoat, respectively.
For each tool T, T𝑂 refers to its original version, while T𝐸 refers to our
Toller-enhanced version. Time is shown in milliseconds.

Section 5.6 for more details). Therefore, in all of our experiments
except Section 5.6, we define Toller-enhanced as Toller with both
UI Hierarchy Capturing and UI Event Execution.

5 EVALUATION

To understand the impact that Toller’s infrastructure enhance-
ments can have on Android testing tools, we investigate five main
research questions:
RQ1: How does each of Toller’s infrastructure enhancements con-
tribute to Android testing tools’ efficiency?
RQ2: How does enhancing Android testing tools with Toller im-
prove achieved code coverage?
RQ3: How does enhancing Android testing tools with Toller im-
prove achieved crash triggering ability?
RQ4: How much do covered code entities and triggered crashes
overlap for each tool that is and is not enhanced with Toller, re-
spectively?
RQ5: How does each of Toller’s infrastructure enhancements con-
tribute to Android testing tools’ effectiveness?

We address RQ1 to understand how Toller’s various infras-
tructure enhancements affect the run time performance benefits
of Toller. We address RQ2 and RQ3 to understand how Toller
affects Android testing tools on two metrics commonly used to
evaluate such tools and to understand whether the effectiveness
rankings of these tools change when they are and are not enhanced
with Toller, respectively. We address RQ4 to understand the extent
that a tool enhanced with Toller covers the same code entities and
triggers the same crashes as the tool not enhanced with Toller.
Finally, we address RQ5 to understand how Toller’s various in-
frastructure enhancements affect two metrics commonly used to
evaluate Android testing tools.

5.1 Evaluation Setup

To answer our RQs, we use the same experiment environment and
set of apps as our motivating study (Section 3.1). We collect the
method coverage as code coverage achieved by each run using the
MiniTrace [17] tool, which modifies DalvikVM/ART and does not
require app instrumentation. We consider only crashes originated

from app bytecode and collect code locations in stack traces as
crash signatures. We obtain stack traces by monitoring and filtering
Android Logcat [16] messages. As mentioned in Section 4, we use
Toller to remove apps’ UncaughtExceptionHandlers to ensure
that stack traces are being reported to Logcat.

In addition to the three Android UI testing tools used in our
motivating study (Section 3.2), we also use Ape [18], another state-
of-the-art tool, for our experiments. We use the four tools in the
following settings.

• Both WCTester and Stoat run on computers and use UIAu-
tomator to capture UI hierarchies. To enhance the two tools
with Toller while keeping implementation changes min-
imal, we translate Toller’s captured UI hierarchies to the
UIAutomator’s format to make them directly readable by
these two tools. For UI Event Execution, WCTester injects
low-level UI events directly using ADB shell commands,
while Stoat sends UI element queries to UIAutomator to
generate and inject the corresponding low-level UI events.
We replace both tools’ original implementation of UI Event
Execution with Toller.

• LikeWCTester and Stoat, Chimp also runs on computers and
can use UIAutomator to capture UI hierarchies. To enhance
Chimp with Toller, we choose to fully incorporate Toller
into Chimp to avoid unnecessary translations of UI hierar-
chies. For UI Event Execution, Chimp injects low-level UI
events directly using ADB shell commands while its Toller-
enhanced version uses Toller for UI Event Execution.

• As the most recently proposed state-of-the-art tool in our
experiments, Ape already provides support for fast UI Hi-
erarchy Capturing in its implementation by using hidden
Android accessibility service APIs. These implementation
details are not explicitly discussed in the tool’s paper [18].
To show the significance of infrastructure support on Ape,
we modify Ape to build its slow version, which leverages
UIAutomator services in the same way as the other tools.
We then compare the slow version’s testing effectiveness
with the original version of Ape. Note that unlike the other
Toller-enhanced tools, the original Ape contains only the UI
Hierarchy Capturing enhancement and not the UI Event Ex-
ecution enhancement because UI Event Execution requires
Toller’s UI Hierarchy Capturing (Section 4).

In total, we have nine tool versions in our experiments: Chimp
(with and without Toller), WCTester (with and without Toller),
Stoat (with and without Toller), Ape (original and slow version),
and Monkey. To compensate for potential randomness in our exper-
iments introduced by tool or app logic, we run each tool on each
app three times, with each run being one hour. Overall, we spend
27 hours per app (9 tool versions * 3 runs for each version) and a
total of 405 hours (27 * 15 apps) for all apps.

5.2 RQ1: Efficiency of Enhancements

To understand how Toller’s UI Hierarchy Capturing and UI Event
Execution infrastructure enhancements affect the run time per-
formance benefits of Toller, we integrate Toller with the three
testing tools from Section 3.1 and re-run the experiments in the
same settings. The time usage statistics of UI Hierarchy Capturing

170

An Infrastructure Approach to Improving Effectiveness of Android UI Testing Tools ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 4: Average method coverage for all tool versions

App Name Ape𝑆 Ape𝑂 Δ Mk Ch𝑂 Ch𝐸 Δ Wt𝑂 Wt𝐸 Δ St𝑂 St𝐸 Δ

Abs 8273 8424 1.8% 6213 6656 6874 3.3% 7527 7622 1.3% 3538 5282 49.3%
Duolingo 14180 14598 2.9% 8948 13500 13447 -0.4% 11659 13482 15.6% 6297 14006 122.4%
Filters For Selfie 2369 5489 131.7% 4077 2290 2262 -1.2% 2608 2170 -16.8% 2345 2227 -5.0%
GoodRx 15524 14272 -8.1% 13149 14033 15499 10.4% 13829 15904 15.0% 8716 12243 40.5%
Google Translate 8918 9169 2.8% 7554 7376 8477 14.9% 8793 8960 1.9% 3653 6855 87.7%
Marvel Comics 5306 5873 10.7% 4538 4672 4781 2.3% 4378 4460 1.9% 3459 4908 41.9%
Merriam-Webster 8229 8287 0.7% 5141 7657 8486 10.8% 6661 8241 23.7% 7238 7856 8.5%
Mirror 1120 1124 0.4% 426 1253 657 -47.6% 1105 851 -23.0% 887 948 6.9%
My Baby Piano 1096 3419 212.0% 165 1583 1652 4.4% 1373 1553 13.1% 700 219 -68.7%
Sketch 7695 8124 5.6% 6871 8081 8532 5.6% 7666 7782 1.5% 5755 7766 34.9%
trivago 19491 20079 3.0% 19678 18721 19317 3.2% 19373 19164 -1.1% 4325 19424 349.1%
WEBTOON 20415 24493 20.0% 19775 12590 21457 70.4% 14329 23338 62.9% 5695 13672 140.1%
Word 12057 12387 2.7% 11911 10875 12713 16.9% 12834 12612 -1.7% 8445 11482 36.0%
Youtube 28026 24888 -11.2% 17945 17086 18123 6.1% 17923 18930 5.6% 11162 18434 65.1%
Zedge 32937 43080 30.8% 28139 35532 38786 9.2% 34530 36665 6.2% 19490 30664 57.3%
Average 12376 13580 9.7% 10302 10794 12071 11.8% 10973 12116 10.4% 6114 10399 70.1%

Notes: Mk, Ch, Wt, and St denote Monkey, Chimp, WCTester, and Stoat, respectively. For each tool T, T𝑂 refers to its original version, while T𝐸
refers to our Toller-enhanced version. Ape𝑆 refers to the slow version of Ape. Each integer cell shows the average number of covered distinct
methods across three runs by the corresponding tool version on the corresponding app. For each tool T, Δ = (T𝐸 − T𝑂)/T𝑂 × 100%. Average
Δ = (T𝐸 − T𝑂)/T𝑂 × 100% = (ΣT𝐸 − ΣT𝑂)/ΣT𝑂 × 100%.

and UI Event Execution are shown in Tables 2 and 3, respectively.
Note that the numbers for each tool are aggregated from running
on all 15 apps once. As shown in Tables 2 and 3, Toller is capable
of reducing overheads for both primitive interfaces on all three
tools. Specifically, the average time usages for UI Hierarchy Captur-
ing are reduced by about 97%, 77%, and 97% on Chimp, WCTester,
and Stoat, respectively. For UI Event Execution, the average time
usages are reduced by 40%, 18%, and 95% on Chimp, WCTester, and
Stoat, respectively. We find that UI Event Execution has less sub-
stantial overhead reductions than UI Hierarchy Capturing because
as described in Section 4, Toller falls back on using low-level UI
event injections on event handlers that have not been covered by a
low-level UI event injection.

UI Hierarchy Capturing and UI Event Execution can take a sub-
stantially different amount of time for different tools because some
of the tools use different approaches to invoke UIAutomator (e.g.,
directly invoking the uiautomator command in the ABD shell as
used by Chimp, or using a service wrapper [22] for ease of pro-
gramming in the case of WCTester and Stoat). Another observation
is that the original implementation of Stoat takes much more time
than the other tools to perform both types of operations. We find
that this result is related to how Stoat uses the UIAutomator service
wrapper: Stoat’s implementation essentially sets up and establishes
new connections to the on-device service agent before each capture
or action. On the contrary, WCTester sets up this connection only
once and persists the connection, eliminating much overhead.

5.3 RQ2: Code Coverage Benefits

Table 4 shows the average coverage statistics of each pair of tools
and apps from our experiments. Figure 4 shows the changes of
average code coverage across all apps for each tool along with run
time. Note that methods that can be covered after app launch but
before testing starts are excluded. As shown in Table 4 and Figure
4, using Toller’s infrastructure enhancements helps improve the

testing effectiveness of various Android UI testing tools. Specifi-
cally, enhancing Chimp, WCTester, and Stoat with Toller yields
11.8%, 10.4%, and 70.1% average method coverage improvements,
respectively. For Ape, the tool’s own fast UI Hierarchy Capturing
implementation brings 9.7% average method coverage improve-
ment. It should also be noted that the aforementioned percentages
are calculated based on the average number of covered methods
across different apps, where apps with a larger codebase can have
a bigger impact on the results.

One key finding is that the differences of code coverage brought
by infrastructure enhancements can be substantial enough to change
the relative competitiveness among tools. For example, Table 4
shows that for Stoat, compared with Monkey, the Toller-enhanced
version achieves higher average code coverage, while the original
version achieves lower average code coverage. In Ape’s case, the
slow version has much smaller advantages over other tools: its
average code coverage is only about 2% relatively higher than the
Toller-enhanced WCTester. We also find that the original Ape
achieves higher code coverage than other tools on 10 apps, while
the slow Ape does that on only 4 apps. For comparison, the Toller-
enhanced Chimp and WCTester top the ranks on 4 and 3 apps,
respectively, when we omit the original Ape from consideration.
Figure 4 additionally shows that the slow Ape (denoted as Ape𝑆)
constantly has comparable average code coverage as the Toller-
enhancedWCTester (denoted asWCTester𝐸), where Ape𝑆 starts to
beat WCTester𝐸 after 40 minutes of testing. Interestingly, accord-
ing to Figure 4, the Toller-enhanced WCTester even has higher
code coverage than all other tools in the first several minutes of test-
ing. Specifically, when we observe the area under the curve (AUC)
for every minute, we find that if developers are given at most 9
minutes to use Android UI testing tools, then the Toller-enhanced
WCTester gives the highest AUC instead of the original Ape.

5.3.1 Analysis of Negative Code Coverage Improvements. To better
understand our results for this RQ, we manually study some of our

171

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wenyu Wang, Wing Lam, and Tao Xie

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 #
 o

f C
ov

er
ed

 M
et

ho
ds

Time Elapsed (mins)

Ape_O Ape_S Monkey Chimp_O Chimp_E WCTester_O WCTester_E Stoat_O Stoat_E

Notes: Each data point shows how many methods have been covered on average across three runs on all apps by the respective tool, after the corresponding
amount of time has elapsed in each run. The ending number of covered methods for each tool is the same as that in the “Average” row in Table 4.

Figure 4: Average method coverage by elapsed time during testing

Table 5: Cumulative numbers of distinct crashes for all tool versions

App Name Ape𝑆 %𝑆 Ape𝑂 %𝑂 ΣApe MK Ch𝑂 %𝑂 Ch𝐸 %𝐸 ΣCh Wt𝑂 %𝑂 Wt𝐸 %𝐸 ΣWt St𝑂 %𝑂 St𝐸 %𝐸 ΣSt
Abs 1 33% 2 67% 3 3 1 100% 0% 1 3 75% 1 25% 4 8 67% 12 100% 12
Duolingo 1 50% 1 50% 2 - - 0% 1 100% 1 6 55% 9 82% 11
Filters For Selfie - - 1 - - - - 3 75% 4 100% 4
GoodRx 0% 1 100% 1 5 100% 5 1 13% 7 88% 8 6 67% 5 56% 9
Google Translate 0% 1 100% 1 0% 1 100% 1 - - 8 73% 5 45% 11
Marvel Comics 1 100% 0% 1 0% 1 100% 1 0% 1 100% 1 9 82% 9 82% 11
Merriam-Webster - - - - - - 4 44% 9 100% 9
Mirror 3 60% 5 100% 5 5 3 60% 5 100% 5 5 83% 4 67% 6 5 63% 7 88% 8
My Baby Piano - - - - - - - -
Sketch - - - - - - 4 80% 4 80% 5
trivago 1 33% 2 67% 3 3 1 100% 0% 1 0% 1 100% 1 8 53% 11 73% 15
WEBTOON 0% 1 100% 1 1 - - 1 100% 0% 1 8 57% 14 100% 14
Word 0% 1 100% 1 2 0% 4 100% 4 1 33% 2 67% 3 6 55% 11 100% 11
Youtube - - 0% 1 100% 1 2 100% 0% 2 13 59% 16 73% 22
Zedge 1 100% 0% 1 0% 1 100% 1 0% 3 100% 3 4 40% 9 90% 10
Total 8 42% 14 74% 19 15 5 25% 18 90% 20 13 43% 20 67% 30 92 61% 125 82% 152

Notes: Ch, Wt, and St denote Chimp, WCTester, and Stoat, respectively. For each tool T, T𝑂 refers to its original version, while T𝐸 refers to our Toller-
enhanced version. Each integer cell under T𝑂 or T𝐸 shows the cumulative number of distinct crashes across three runs by the corresponding tool version on
the corresponding app. A blank cell indicates no crash. Each integer cell under ΣT indicates the union number of covered methods by the two tool versions
on the corresponding app. %𝑂 = T𝑂/ΣT × 100%, similar for %𝐸 . In the ‘Total’ row, each integer indicates the sum value of all numbers in the respective
column, while each percentage is calculated from sum values using the same methodology as aforementioned.

results to understand why some tools have negative code coverage
improvements on some apps after Toller’s infrastructure enhance-
ments. Specifically, we manually look into all of the cases where the
coverage decrement is over 1% given that smaller changes (<1%) are
likely caused by random noise. We look at tool logs and differences
in method coverage to speculate root causes.

We are able to identify only onemajor cause for the reduced effec-
tiveness: Unsupported UI element types. The current implementation
of Toller does not support obtaining the inner contents of certain
types of UI elements, such as WebViews that maintain their own
non-standard, internal UI-related data structures. These WebViews

are a major cause for why apps such as “Filters For Selfie” and
“Mirror” have negative code coverage improvements for WCTester.
Both of these two apps have Google’s AdMob SDK embedded and
the SDK relies on WebViews to display ads. Without knowing the
UI hierarchy inside, it is difficult for tools to produce meaningful UI
events to fully exercise this ads-related logic. Future work should
explore how Toller can better handle certain types of UI elements
(e.g., falling back to UIAutomator for WebViews).

172

An Infrastructure Approach to Improving Effectiveness of Android UI Testing Tools ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 6: Distribution of exception types for all tool versions

Exception Type Ape𝑆 Ape𝑂 Mk Ch𝑂 Ch𝐸 Wt𝑂 Wt𝐸 St𝑂 St𝐸 Total

ActivityNotFoundException 2 5 4 2 4 4 3 3 11

ExceptionInInitializerError 2 2 3

IllegalArgumentException 1 1 2

IllegalStateException 2 3 4 2 4 2 17

NoClassDefFoundError 2 2 2

NullPointerException 1 4 2 1 5 9 5 11 25

OutOfMemoryError 1 2 3

RuntimeException 2 2 4 2 3 6 2 81 102 129

Other 1 3 1 2 2 2 11

Total 8 14 15 5 18 13 20 92 125 203

Notes: Each cell shows the number of distinct crashes of the specific type triggered by the corresponding tool on all apps.
A blank cell indicates no crash. If an exception type appears only once across all tools and apps, it is counted in “Other”
instead of being shown in a separate row. Thus, the numbers of distinct crashes in “Other” also indicate the numbers of
exception types. The “Total” column shows the numbers of distinct crashes for each exception type across all tools.

Table 7: Cumulative method coverage for all tool versions

App Name Ape𝑆 %𝑆 Ape𝑂 %𝑂 ΣApe Ch𝑂 %𝑂 Ch𝐸 %𝐸 ΣCh Wt𝑂 %𝑂 Wt𝐸 %𝐸 ΣWt St𝑂 %𝑂 St𝐸 %𝐸 ΣSt
Abs 8872 95% 9318 100% 9348 9077 97% 7479 80% 9369 9107 89% 8205 80% 10206 6367 77% 7380 89% 8290
Duolingo 14789 96% 15018 97% 15471 14282 97% 14235 96% 14770 12086 81% 14136 94% 14989 12397 80% 14937 96% 15558
Filters For Selfie 2380 42% 5684 99% 5730 2343 97% 2286 95% 2407 2759 68% 2177 54% 4067 2479 73% 3365 99% 3406
GoodRx 16451 96% 15504 90% 17191 14973 89% 16214 97% 16762 14383 85% 16615 98% 16911 12257 81% 14173 93% 15185
Google Translate 9709 93% 10292 99% 10428 8545 79% 10537 97% 10829 9732 95% 9689 95% 10192 6519 72% 7665 85% 9000
Marvel Comics 5614 81% 6688 96% 6946 5016 98% 4940 96% 5140 4736 94% 4614 92% 5031 4667 83% 5344 95% 5647
Merriam-Webster 8776 97% 8614 95% 9046 8293 90% 8858 96% 9223 6859 75% 8710 95% 9192 8353 86% 9314 95% 9766
Mirror 1196 93% 1253 97% 1290 1514 99% 796 52% 1534 1309 97% 959 71% 1354 1058 79% 1213 91% 1335
My Baby Piano 1572 31% 5059 100% 5065 1590 87% 1810 100% 1818 2682 66% 1555 38% 4083 1654 100% 253 15% 1662
Sketch 8737 92% 8919 94% 9519 8687 93% 8955 96% 9311 8120 91% 8264 93% 8913 6874 71% 9351 97% 9614
trivago 19999 97% 20437 100% 20524 19857 98% 19980 98% 20342 20010 98% 19847 97% 20399 6072 29% 20926 100% 20981
WEBTOON 23982 85% 27149 97% 28088 18048 63% 27933 98% 28643 19754 68% 27185 93% 29238 9957 36% 25123 91% 27457
Word 13550 93% 13034 90% 14514 11711 78% 14645 97% 15095 13946 94% 13706 93% 14763 11055 80% 13493 98% 13768
Youtube 31010 87% 28268 79% 35681 21122 86% 21427 87% 24572 20101 77% 23709 91% 26069 20866 71% 22451 76% 29427
Zedge 39932 77% 50763 98% 51562 52210 93% 41536 74% 56212 39612 95% 38550 92% 41765 28960 68% 36159 85% 42503
Average 13771 86% 15067 94% 16027 13151 87% 13442 89% 15068 12346 85% 13195 91% 14478 9302 65% 12743 89% 14240

Notes: Ch, Wt, and St denote Chimp, WCTester, and Stoat, respectively. For each tool T, T𝑂 refers to its original version, while T𝐸 refers to our Toller-
enhanced version. Each integer cell under T𝑂 or T𝐸 shows the cumulative number of covered distinct methods across three runs by the corresponding tool
version on the corresponding app. Each integer cell under ΣT indicates the union number of covered methods by two tool versions on the corresponding
app. %𝑂 = T𝑂/ΣT × 100%, similar for %𝐸 . In the ‘Average’ row, each integer indicates the average value of all numbers in the respective column, while
each percentage is calculated from average values using the same methodology as aforementioned.

5.4 RQ3: Crash Triggering Benefits

Table 5 shows the cumulative number of distinct crashes (from
three runs) for all tool versions evaluated on each app. As shown in
the table, the Toller-enhanced versions are capable of substantially
improving the total number of distinct crashes, from 5, 13, and 92
to 18, 20, and 125 for Chimp, WCTester, and Stoat, respectively. In
Ape’s case, the total crash count rises from 8 to 14 by using Ape’s
improved infrastructure support. Overall, we find that there are
43 pairs of tools and apps with at least one crash (non-empty cells
under ΣT). Of the 43 pairs, 30 and 10 pairs have more and fewer
(respectively) crashes triggered by enhanced tool versions than
original/slow tool versions. The remaining 3 pairs have the same
number of crashes for both tool versions. Of the 30 pairs where
the enhanced tool versions have more crashes, 21 pairs’ cumulative
crashes are all from the enhanced tool versions (highlighted cells
under T𝐸 and Ape𝑂). On the other hand, of the 10 pairs where the
enhanced tool versions have fewer crashes, only 6 pairs’ cumulative
crashes are all from the original/slow versions. In general, when
the original/slow versions trigger more crashes, the differences are
generally small: only one crash for 7 of the 10 pairs. Randomness in

the tools’ and apps’ logic is likely responsible for why original/slow
versions can trigger more distinct crashes than Toller-enhanced
versions. Overall, our results find that infrastructure enhancements
help testing tools with not only covering more code but also trig-
gering more distinct crashes.

5.4.1 Exception Types. We additionally study the distribution of
exception types. As shown in Table 6, the Toller-enhanced versions
trigger not only more instances of crashes, but also more types of
exceptions (the number of non-empty cells): from 3, 4, and 6 types
to 8, 6, and 9 types on Chimp, WCTester, and Stoat, respectively. In
Ape’s case, the slow version triggers 5 types of exceptions, while
the original version triggers only 4 types. One possible explanation
for this finding is the randomness in the tools’ and apps’ logic.
Nevertheless, our results still find that infrastructure enhancements
help most testing tools trigger more distinct types of crashes.

5.5 RQ4:Overlap ofCodeCoverage andCrashes

In RQ4, we investigate whether the code coverage achieved and
crashes triggered by tools with infrastructure enhancements are
subsumed by what the original/slow versions of the tools achieve

173

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wenyu Wang, Wing Lam, and Tao Xie

Table 8: Average method coverage for enhancements

None HC Only Δ HC + EE Δ
Chimp 10794 12072 11.8% 12071 11.8%
WCTester 10973 12112 10.4% 12116 10.4%
Stoat 6114 10121 65.5% 10399 70.1%

Table 9: # of distinct crashes for enhancements

None HC Only Δ HC + EE Δ
Chimp 5 8 1.6x 18 3.6x
WCTester 13 15 1.2x 20 1.5x
Stoat 92 103 1.1x 125 1.4x
Notes: “None” denotes that no infrastructure enhancement is applied.
“HC Only” denotes that only UI Hierarchy Capturing enhancement
is used, while “HC + EE” denotes that both UI Hierarchy Capturing
and UI Event Execution enhancements are used.

and trigger. To answer this RQ, we measure the overlaps between
code coverage achieved and distinct crashes triggered by both ver-
sions of each tool.

Table 7 shows the cumulative code coverage for all tool versions.
Specifically, for each tool on each app, this table shows how many
methods are covered by either version in any run, as well as how
manymethods can be covered by only one of the versions. As shown
in the table, the Toller-enhanced versions achieve, on average, 89%,
91%, and 89% coverage of all methods that can be covered by either
version of Chimp, WCTester, and Stoat, respectively. In Ape’s case,
the original version achieves 94% coverage of all methods that can
be covered by either the slow or original version. Our results suggest
that tool versions with infrastructure enhancements can generally
replace the original versions as the versions with enhancements
provide the most of the coverage achievable by either version.

We use the same methodology to show the overlaps of crashes
triggered by the two versions of each tool. As shown in Table 5, the
Toller-enhanced versions also cover most of the crashes triggered
by either version shown by the %𝐸 columns in the table. In fact, 90%,
67%, and 82% of the cumulative distinct crashes detected by Chimp,
WCTester, and Stoat, respectively, are triggered by the Toller
versions. For Ape, the original version covers 74% of all crashes.
Our results again suggest that tool versions with infrastructure
enhancements can generally replace the original versions as the
enhanced versions provide the most of the detected crashes.

5.6 RQ5: Effectiveness of Enhancements

To understand how Toller’s two enhancements have contributed
to testing tools’ code coverage and crash triggering ability, we
additionally conduct experiments by enabling only UI Hierarchy
Capturing and comparing its results with the setting where both
enhancements are used (results in Sections 5.3 and 5.4). We do not
evaluate only UI Event Execution, as Toller’s UI Event Execution
implementation depends on UI Hierarchy Capturing and does not
work on its own as discussed in Section 4. Tables 8 and 9 show the
average method coverage and the number of distinct crashes, re-
spectively, for all testing tools using different enhancement options
under the same experimental settings. More detailed experiment
data is available on our website [1].

As shown in Tables 8 and 9, enhancing UI Hierarchy Captur-
ing already improves both achieved code coverage and triggered
crashes, while enhancing UI Event Execution leads to even better
testing effectiveness, particularly for the number of distinct crashes
triggered. One interesting finding is that for Chimp and WCTester,
the UI Event Execution enhancement does not improve the overall
code coverage. Beyond the fact that all tools are likely to cover less
new code as time increases, we identify multiple additional causes
for why UI Event Execution may not increase code coverage:

• As discussed in Section 4, UI Event Execution skips the logic
of dispatching low-level UI events on UI elements, likely
resulting in the loss of coverage. We mitigate this limitation
by falling back to low-level UI event injection when we find
an event handler that has not been exercised. However, the
strategy could still miss edge cases (e.g., when different UI
elements share the same parameterized event handler class).

• Faster UI Event Execution and faster UI Hierarchy Capturing
can result in higher CPU usages and overload the emulators,
likely causing apps to stop responding.

• Tools might not be accustomed to both fast UI Event Execu-
tion and fast UI Hierarchy Capturing. Being unaccustomed
to both may cause the tools to be too fast when an app loads
content asynchronously, and the time overhead incurred
by slower UI Event Execution or UI Hierarchy Capturing
actually helps the tools properly wait for the content to load.
Such cases are known to cause UI flaky tests [35].

Future work should explore how to carefully design solutions
to address the aforementioned causes. For example, future work
can intelligently decide on the waiting time at each step to mitigate
the effects of device overloading or asynchronous loading with
minimal unnecessary waiting costs.

6 THREATS TO VALIDITY

The internal threats to the validity of our work are that Toller’s im-
plementation and the scripts used to generate the tables and figures
could have faults that might have affected our results. Furthermore,
our setup of the Android testing tools used in our experiments
could have been incorrect and affected our results. To mitigate
these internal threats to validity, we design our experiments to
output extensive logs along with the metrics used in our experi-
ments. We then manually analyze a sample of the logs from our
experiments to ensure that the presented results match what we
observe from the logs.

The main external threat to the validity of our work is the repre-
sentativeness of the apps and the Android UI testing tools selected
for our experiments. To mitigate this threat to validity, we select
the top apps from 13 different categories of apps on the Google
Play Store. Therefore, the selected apps vary greatly in their func-
tionality and APK size (from 3.3MB to 93MB). The Android testing
tools used for our experiments are from a previous study [38] of
Android UI testing tools. The study finds that Monkey is the best
Android UI testing tool among six tools. Among these tools, we find
that two are runnable on our infrastructure and do not require app
instrumentation. To demonstrate the improvements that Toller
can have on Android UI testing tools, particularly on ones that
use UIAutomator, we select the two tools from the previous study

174

An Infrastructure Approach to Improving Effectiveness of Android UI Testing Tools ISSTA ’21, July 11–17, 2021, Virtual, Denmark

and implement a version of Monkey, known as Chimp, that uses
UIAutomator for our experiments.

Another threat to the validity of ourwork is the randomness from
the Android UI testing tools, apps, and emulators. Namely, across
different runs of the same tool, app, and emulator, the obtained
metrics could change. To mitigate this threat to validity, we run
each pair of tools and apps three times, where each run is performed
on a newly-created emulator with the same software and hardware
configurations throughout all of the experiments. The conclusions
that we make from our results are then from the aggregation of the
three runs for each pair of tools and apps.

7 DISCUSSION

Modifying Android OS. For our experiments, we modify AOSP
Android 6.0 on both emulators and real devices. Ourmodified emula-
tor image is publicly available [1] as a portable testing environment
for others to immediately begin using.

While modifying the Android framework eliminates the risks of
app instrumentation, it is true that modifying the Android frame-
work can also be undesirable. For instance, we might fail to modify
a customized Android OS. Additionally, the modification usually
requires root access to the testing device, not being always feasible.
To support developers who may be interested in infrastructure en-
hancements without modifying the Android framework, we also
design Toller so that it can be bundled with the target app’s code
through source code integration or binary instrumentation. Be-
cause Toller relies on only Android framework classes, it is only
necessary to inject a startup method call into existing app code to
make Toller work.

On the other hand, we argue that different testing needs should
be satisfied with different ways of support. Specifically, the Android-
framework-based solution is suitable for external testing on certain
devices, such as app examinations conducted by app marketplaces.
The code-bundling-based solution may be more suitable for in-
house testing conducted by app developers, such as compatibility
testing that involves various devices.

Future Work. Our work demonstrates how Android UI testing
can be improved with infrastructure enhancements, but there are
many other future directions to improve mobile app testing and
debugging. Based on the current implementation of Toller, we
can additionally support ultra-low overhead UI event monitoring,
which is essential for capture and replay tools [27]. Toller can
also be extended to support performing UI manipulation (e.g., dis-
abling a button) at runtime, allowing testers to conveniently control
the regions of interest for any tool. Toller even has the potential
of assisting with in-situ static analysis by providing the bytecode
and argument values of any UI event handler at runtime, allowing
testing tools to predict the consequences of any UI event without
destroying the current app state. The aforementioned future di-
rections are just some of many examples of how infrastructure
enhancements can improve testing and debugging of mobile apps.

8 RELATEDWORK

Automated UI testing for Android. Our work tackles the effi-
ciency issue of infrastructure support for automated Android UI
testing tools. A number of automated UI testing tools have been

published over the years. One of the earliest efforts is Monkey [15],
a tool from Google, originally intended for stress testing of app
UIs. While receiving almost no feedback from the target app, Mon-
key still manages to outperform many research tools with its high
event generation and execution efficiency. Subsequent efforts have
led to tools based on randomness/evolution [29, 31, 39], UI model-
ing [6, 9, 18, 21, 28, 37], and systematic exploration [2, 4, 30].
UI capture and replay for Android. Our work also directly ben-
efits many Android UI capture and replay tools that often require
UI Hierarchy Capturing and UI Event Execution. Existing Android
UI capture and replay tools can be categorized into coordinate-
based [3, 11, 24, 32, 33] and UI-element-based [5, 8, 10, 19, 20, 33,
34] tools. The latter tool category is likely to have very low effi-
ciency [27], e.g., needing seconds to capture a single action, similar
to the Android UI testing tools used in our work.
Infrastructure support for Android testing. There has been
work trying to improve infrastructure support for the purpose of
efficient testing. Hu et al. [23] proposed work that aims to quickly
find potential sequences of error-triggering UI inputs through direct
invocations of UI event handlers, achieved by instrumenting the
target apps. Song et al. [36] also proposed a similar idea. Toller’s
UI Event Execution support achieves similar goals. It should be
noted that Toller aims to provide infrastructure support for any
tool in need of either UI Hierarchy Capturing or UI Event Execution.
Additionally, Toller does not require app instrumentation, which
often breaks functionalities, especially on industrial apps.

9 CONCLUSION

Much work has been proposed by researchers to improve Android
UI testing tools with sophisticated algorithmic designs. Recent
studies have shown that these tools barely outperform (w.r.t. code
coverage and crash triggering ability) Monkey, a simple tool that
generates and injects purely randomized UI events. To understand
the inefficiencies of Android testing tools, we have conducted a
motivating study to determine the sources and extents of the in-
efficiencies for these tools. Our motivating study has found that
capturing information about the contents on the screen (UI Hierar-
chy Capturing) and executing UI events (UI Event Execution, such
as clicks) use on average 70% of the testing run time. Based on
our findings, we have proposed Toller, a tool to provide efficient
infrastructure support for UI Hierarchy Capturing and UI Event
Execution to Android UI testing tools. Our experiments show that
Toller can substantially (1) reduce the run time used by the infras-
tructure that the testing tools depend on and (2) improve the code
coverage and crash triggering ability of these tools when they are
given a reasonable amount of run time. We make the source code of
Toller and the scripts used to set up Toller publicly available [1].
We hope that our results can raise the community’s awareness of
the significance of infrastructure support beyond the community’s
existing heavy focus on algorithms.

ACKNOWLEDGMENTS

We thank Lingming Zhang and Tianyin Xu for discussions about
this work. This work was partially supported by 3M Foundation
Fellowship, Google CMD-IT LEAP fellowship, and NSF grants CNS-
1564274, CCF-1763788, and CCF-1816615.

175

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wenyu Wang, Wing Lam, and Tao Xie

REFERENCES

[1] Toller artifacts, 2021. https://github.com/TOLLER-Android/main.
[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic testing of

smartphone apps. FSE, 2012.
[3] appetizer-toolkit, 2017. https://github.com/appetizerio/appetizer-toolkit.
[4] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic

testing of Android apps. OOPSLA, 2013.
[5] Bot-bot, 2021. http://imaginea.github.io/bot-bot/index.html.
[6] W. Choi, G. Necula, and K. Sen. Guided GUI testing of Android apps with minimal

restart and approximate learning. OOPSLA, 2013.
[7] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for

Android: Are we there yet? ASE, 2015.
[8] Culebra, 2021. https://github.com/dtmilano/AndroidViewClient/wiki/culebra.
[9] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury. Time-travel testing of

Android apps. ICSE, 2020.
[10] Espresso test recorder, 2021. https://developer.android.com/studio/test/espresso-

test-recorder.html.
[11] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: Timing- and touch-

sensitive record and replay for Android. ICSE, 2013.
[12] Google. Android 64K method limit, 2021. https://developer.android.com/studio/

build/multidex.
[13] Google. Android apps on Play Store, 2021. https://play.google.com/store/apps.
[14] Google. Android debug bridge (ADB), 2021. https://developer.android.com/

studio/command-line/adb.
[15] Google. Android Monkey, 2021. https://developer.android.com/studio/test/

monkey.
[16] Google. Logcat command-line tool, 2021. https://developer.android.com/studio/

command-line/logcat.
[17] T. Gu. Minitrace, 2021. http://gutianxiao.com/ape.
[18] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su. Practical

GUI testing of Android applications via model abstraction and refinement. ICSE,
2019.

[19] J. Guo, S. Li, J.-G. Lou, Z. Yang, and T. Liu. Sara: Self-replay augmented record
and replay for Android in industrial cases. ISSTA, 2019.

[20] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. Mosaic: Cross-platform user-
interaction record and replay for the fragmented Android ecosystem. 2015.

[21] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. PUMA: Programmable
UI-automation for large-scale dynamic analysis of mobile apps. MobiSys, 2014.

[22] X. He. Python wrapper of Android uiautomator test tool, 2021. https://github.
com/xiaocong/uiautomator.

[23] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting mobile app
bugs with AppDoctor. EuroSys, 2014.

[24] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-replay for
Android. OOPSLA, 2015.

[25] IDC and Gartner. Share of Android OS of global smartphone shipments from
1st quarter 2011 to 2nd quarter 2018. https://www.statista.com/statistics/236027/
global-smartphone-os-market-share-of-android.

[26] JesusFreke. smali/baksmali, 2021. https://github.com/JesusFreke/smali.
[27] W. Lam, Z. Wu, D. Li, W. Wang, H. Zheng, H. Luo, P. Yan, Y. Deng, and T. Xie.

Record and replay for Android: Are we there yet in industrial cases? ESEC/FSE,
2017.

[28] Y. Li, Z. Yang, Y. Guo, and X. Chen. DroidBot: A lightweight UI-guided test input
generator for Android. ICSE-C, 2017.

[29] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system
for Android apps. ESEC/FSE, 2013.

[30] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid: Segmented evolutionary
testing of Android apps. FSE, 2014.

[31] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing for
Android applications. ISSTA, 2016.

[32] Z. Qin, Y. Tang, E. Novak, and Q. Li. MobiPlay: A remote execution based
record-and-replay tool for mobile applications. ICSE, 2016.

[33] Ranorex, 2021. http://www.ranorex.com/mobile-automation-testing.html.
[34] Robotium recorder, 2021. https://robotium.com/products/robotium-recorder.
[35] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang. An empirical analysis

of UI-based flaky tests. ICSE, 2021.
[36] W. Song, X. Qian, and J. Huang. EHBDroid: Beyond GUI testing for Android

applications. ASE, 2017.
[37] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su. Guided,

stochastic model-based GUI testing of Android apps. ESEC/FSE, 2017.
[38] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie. An empirical

study of Android test generation tools in industrial cases. ASE, 2018.
[39] H. Ye, S. Cheng, L. Zhang, and F. Jiang. DroidFuzzer: Fuzzing the Android apps

with intent-filter tag. MoMM, 2013.
[40] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie. Automated

test input generation for Android: Are we really there yet in an industrial case?
FSE, 2016.

[41] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam, W. Yang, and
T. Xie. Automated test input generation for Android: Towards getting there in
an industrial case. ICSE-SEIP, 2017.

176

https://github.com/TOLLER-Android/main
https://github.com/appetizerio/appetizer-toolkit
http://imaginea.github.io/bot-bot/index.html
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://developer.android.com/studio/test/espresso-test-recorder.html
https://developer.android.com/studio/test/espresso-test-recorder.html
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://play.google.com/store/apps
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
http://gutianxiao.com/ape
https://github.com/xiaocong/uiautomator
https://github.com/xiaocong/uiautomator
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-android
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-android
https://github.com/JesusFreke/smali
http://www.ranorex.com/mobile-automation-testing.html
https://robotium.com/products/robotium-recorder

	Abstract
	1 Introduction
	2 Background
	2.1 AndroidSystemInterfacesforTestingTools
	2.2 Structure of Android Framework
	2.3 UIAutomator

	3 Motivating Study
	3.1 Experiment Settings
	3.2 Results

	4 Design & Implementation of Toller
	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: Efficiency of Enhancements
	5.3 RQ2: Code Coverage Benefits
	5.4 RQ3: Crash Triggering Benefits
	5.5 RQ4:OverlapofCodeCoverageandCrashes
	5.6 RQ5: Effectiveness of Enhancements

	6 Threats to Validity
	7 Discussion
	8 Related Work
	9 Conclusion
	References

