In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA 2024), Yokohama, May 2024

Dexterous Legged Locomotion in Confined 3D Spaces with Reinforcement Learning

Zifan Xu¹, Amir Hossain Raj², Xuesu Xiao², Peter Stone^{1,3} ¹University of Texas at Austin, ²George Mason University, ³Sony AI

We develop an RL-based hierarchical system that enables legged locomotion to handle environments with not only underneath constraints, but also all-around constraints.

Goal location (x_g, y_g)

The University of Texas at Austin Computer Science

Results

1. Success Rate:

Approach	Easy	Medium	Hard
End-to-end dexterity	29.4%	7.0%	5.1%
Hierarchical dexterity (ours)	96.8%	51.5%	39.4%
Parameterized motor skills	65.7%	4.0%	2.4%

2. Sample Efficiency:

Approach	#timesteps to convergence
End-to-end dexterity	600 million
Hierarchical dexterity (ours)	40 million
Parameterized motor skills	80 million

3. Collision Count:

Approach	Easy	Medium	Hard
End-to-end dexterity	7.9	16.2	29.8
Hierarchical dexterity	3.8	32.3	43.6

As indicated by the contact counts, the robot has to make more contacts in harder environments, for example, lean against some obstacles to assure torso stability and forward progress.

Takeaways

- Robust locomotion in confined 3D spaces only emerges in hierarchical dexterity by training to reach local goal locations computed by a classical path planner.
- Parameterized motor skills are not sufficient to navigation in confined 3D spaces. The agent has to develop it own motions to reach the local goals.
- Generalizing to diverse and confined 3D spaces is still challenging.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin and the RobotiXX Laboratory at GMU. LARG research is supported in part by NSF (FAIN-2019844, NRT-2125858), ONR (N00014-18-2243), ARO (E2061621), Bosch, Lockheed Martin, and UT Austin's Good Systems grand challenge. RobotiXX research is supported by ARO (W911NF2220242, W911NF2320004, W911NF2420027), AFCENT, Google DeepMind, Clearpath Robotics, and Raytheon Technologies.