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Toward Agile Maneuvers in Highly Constrained
Spaces: Learning From Hallucination

Xuesu Xiao , Bo Liu , Garrett Warnell , and Peter Stone , Fellow, IEEE

Abstract—While classical approaches to autonomous robot nav-
igation currently enable operation in certain environments, they
break down in tightly constrained spaces, e.g., where the robot
needs to engage in agile maneuvers to squeeze between obstacles.
Recent machine learning techniques have the potential to address
this shortcoming, but existing approaches require vast amounts of
navigation experience for training, during which the robot must
operate in close proximity to obstacles and risk collision. In this
letter, we propose to side-step this requirement by introducing a
new machine learning paradigm for autonomous navigation called
learning from hallucination (LfH), which can use training data
collected in completely safe environments to compute navigation
controllers that result in fast, smooth, and safe navigation in highly
constrained environments. Our experimental results show that the
proposed LfH system outperforms three autonomous navigation
baselines on a real robot and generalizes well to unseen environ-
ments, including those based on both classical and machine learning
techniques.

Index Terms—Autonomous vehicle navigation, imitation
learning, machine learning for robot control, motion and path
planning, sensorimotor learning.

I. INTRODUCTION

AUTONOMOUS navigation in complex environments is
an essential capability of intelligent mobile robots, and

decades of robotics research has been devoted to developing au-
tonomous systems that can navigate mobile robots in a collision-
free manner in certain environments [1]. However, when facing
highly constrained spaces that are barely larger than the robot, it
is difficult for these conventional approaches to produce feasible
motion without requiring so much computation that the robot
needs to slow down or even stop.
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Recently, machine learning approaches have also been used
to successfully move robots from one point to another [2].
Those approaches, based on techniques such as Reinforcement
Learning (RL) and Imitation Learning (IL), have enabled new
capabilities beyond those provided by classical navigation, such
as terrain-based [3] and social [4] navigation. Their initial suc-
cess indicates a strong potential for learning-based methods
to complement — and possibly to improve upon — classical
approaches. However, most machine learning techniques require
a large amount of training data before they can generalize to
unseen environments. Furthermore, these approaches typically
cannot provide verifiable guarantees that the robot will not
collide with obstacles while navigating to its goal. While these
shortcomings may not prove detrimental when applying ma-
chine learning to mobile robot navigation in relatively simple
environments, their effects become disastrous in highly con-
strained spaces. In such environments, RL methods — which
typically rely on random exploration — are unlikely to quickly
find safe controllers, especially without catastrophic failures
during training. IL methods are also unlikely to succeed due
to the challenge of gathering demonstration data since highly
constrained environments are typically difficult to navigate even
for humans. In short, most existing machine learning paradigms
for autonomous navigation lack both (1) the ability to generate
sufficient training data for learning to navigate in highly con-
strained spaces and (2) safety assurances to prevent collisions.

In this paper, we introduce a novel machine learning paradigm
for navigation, Learning from Hallucination (LfH), that ad-
dresses the shortcomings above and enables safe, fast, and
smooth navigation in highly constrained spaces. To address chal-
lenge (1), i.e. data insufficiency, we introduce a self-supervised
neural controller which can collect training data in an obstacle-
free environment using a randomly-exploring policy. After per-
forming various collision-free maneuvers, highly constrained
configuration spaces that allow the same effective maneuvers
are synthetically projected onto the recorded perceptual data so
that the machine learner can be provided with training data as
if the robot had been moving in those constrained spaces. We
refer to this process of modifying the robot’s real perception as
hallucination. Thanks to the inherent safety of navigating in an
obstacle-free training environment, the robot can automatically
generate a large amount of training data with minimal or no
human supervision. In order to generalize to unseen deploy-
ment environments (e.g. environments that are less constrained),
the robot’s perceptual stream is also hallucinated during run-
time, using whichever perceptual stream is more constrained
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Fig. 1. LfH navigates in a highly constrained obstacle course.

(between real and hallucinated) as input. To address challenge
(2) regarding safety, we leverage the capabilities of classical
navigation approaches: the robot assesses safety at runtime using
classical techniques from model predictive control, and adjusts
its motion by modulating its speed and aborting unsafe plans.
LfH is fully implemented on a physical robot, and we show that
it can achieve safer, faster, and smoother navigation compared
to three classical and learning baselines in a highly constrained
environment (Fig. 1).

This paper makes three main contributions. (1) From the mo-
tion planning perspective, LfH is a novel data-driven technique
that enables safe, fast, and smooth maneuvers in previously
unseen highly constrained spaces. (2) From the machine learning
perspective, LfH is a novel, self-supervised learning technique
that collects data offline in an obstacle-free environment and
hallucinates the most constrained configuration space during
training for better sample efficiency. (3) We implement LfH as an
end-to-end local planner for navigation which modulates motion
with explicit safety estimation and provide empirical evidence of
its efficacy. Combined with other conventional navigation com-
ponents, our implementation achieves safer, faster, and smoother
navigation in (highly constrained) unseen environments without
extensive engineering, training, or expert demonstrations, com-
pared to classical and learning baselines.

II. RELATED WORK

This section summarizes related work from the robotics com-
munity that has sought to address autonomous navigation in
highly constrained spaces. We also review the literature from
the machine learning community that has considered the general
problem of mobile robot navigation.

A. Classical Navigation

Given a global path from a high-level global planner, such
as Dijkstra’s algorithm [5], A* [6] or D* [7], classical mobile
robot navigation systems aim to compute fine-grained motion
commands to drive the robot along the global path while observ-
ing kinodynamic constraints and avoiding obstacles. Minguez
and Montano [8] proposed a sophisticated rule-based Near-
ness Diagram approach to enable collision avoidance in very
dense, cluttered, and complex scenarios and applied it on a
simple holonomic robot. But for differential drive robots with
non-trivial kinodynamics, researchers have relied heavily on
sampling based techniques [9], [10]: Fox et al. [1] generated
velocity samples achievable by the robot’s physical acceleration

limit, and found the optimal sample according to some scoring
function to move the robot towards a local goal, along a global
path, and away from obstacles. Howard et al. [11] sampled in the
robot’s state space instead of its action space, and subsequently
generated motion trajectories for the sampled states. Given a
highly constrained environment, the required sampling density
has to increase so that a feasible motion command can be com-
puted. Recently, Xiao et al. [12] established that, in constrained
environments, robots oftentimes need to trade off between high
computational requirements for increased sampling and reduced
maximum speed in order to successfully navigate. Their APPLD
algorithm manages this trade off. In contrast, LfH aims to enable
safe, fast, and smooth navigation in places where the obstacle
clearance is only slightly larger than the robot footprint, with
limited computational requirements and without expert engi-
neering, or human demonstrations.

B. Learned Navigation

A flurry of recent research activity has proposed several
new approaches that apply machine learning techniques to
the navigation task [2], [12]–[21]. While these approaches are
distinct in several ways (e.g., the particular way in which the
navigation problem is formulated, the specific sensor data used,
etc.), the machine learning paradigm employed is typically either
reinforcement learning or imitation learning. Many approaches
based on RL [22] rely on hand-crafted reward functions for
learners to discover effective navigation policies through self-
generated experience. Approaches based on IL [23], [24], on
the other hand, use demonstrations of effective navigation be-
haviors provided by other agents (e.g., humans) to learn policies
that produce behaviors similar to what was demonstrated. Both
paradigms have been successfully applied to the navigation task
in certain scenarios, and have even enabled new navigation
capabilities beyond what is typically possible with classical
autonomous navigation approaches, e.g., terrain-based [3] and
social navigation [4]. However, these approaches each impose
substantial requirements at training time: RL-based techniques
rely on large amounts of training experience gathered using
a typically-random exploration policy within an environment
similar to that in which the robot will be deployed, and IL-
based techniques require a demonstration from the same type
of environment. Even after fulfilling these requirements, the
learned planners were only deployed in relatively open spaces,
such as hallways and race tracks. Unfortunately, neither of
these requirements is easily satisfied in the challenging, highly
constrained environments we study here: random exploration
policies are too dangerous, and it is often difficult for an agent —
artificial or human — to provide an expert-level demonstration.
In contrast, the approach we present here utilizes imitation
learning, but modifies the paradigm such that it can train us-
ing arbitrary demonstrations gathered from a different, safer
environment, without any trial-and-error or expert demonstra-
tions. Furthermore, compared to hours of training time and
millions of training data/steps (as in, e.g., [2]), LfH learns an
entire planner within five minutes from only thousands of data
points.
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III. LEARNING FROM HALLUCINATION

We now describe the proposed technique, Learning from
Hallucination, which can circumvent the difficulties of using tra-
ditional planning and learning approaches in highly constrained
workspaces. In Section III-A, we formulate the classical motion
planning problem in such a way that it can be easily understood
from the machine learning perspective. In Section 3.2, we pro-
pose to solve the reformulated motion planning problem with a
new machine learning approach that addresses the inefficiencies
of existing methods through a technique that we call hallucina-
tion. In Section III-C, we describe the technique to ensure safe
navigation in challenging spaces by incorporating both classical
and learning techniques to adapt to motion uncertainties.

A. Motion Planning Formulation

In robotics, motion planning is formulated in configuration
space (C-space) [25]. Given a particular mobile robot, the robot’s
C-space C represents the universe of all its possible config-
urations. Given a particular environment, the C-space can be
decomposed as C = Cobst ∪ Cfree, where Cobst ∈ Cobst is the
unreachable set of configurations due to obstacles, nonholo-
nomic constraints, velocity bounds, etc., and Cfree is the set
of reachable configurations. Let u ∈ U be a low-level action
available to the robot (e.g., commanded linear and angular ve-
locity (v, ω)), and let a plan p ∈ P be a sequence of such actions
{ui | 1 ≤ i ≤ t}, where P is the space of all plans over time
horizon t. Then, using the notation above, the task of designing
a motion planner is that of finding an optimal function f(·) that
can be used to produce plans p = f(Cobst | cc, cg) that result in
the robot moving from the robot’s current configuration cc to a
specified goal configuration cg without intersectingCobst, while
observing robot motion constraints and optimizing a particular
cost function (e.g. distance, clearance, energy, and combinations
thereof).

To address kinodynamics constraints, lack of explicit rep-
resentation of Cobst and Cfree, high dimensionality, etc.,
sampling-based techniques are typically used to approximate
f(·): Probabilistic Roadmap (PRM) [9] samples in Cfree and
assumes finding p to connect two consecutive configurations
cn−1 and cn without enteringCobst is trivial, e.g. using a straight
line. Rapidly-exploring Random Tree (RRT) [10] uses kinody-
namic models to push samples in Cfree towards cg . Dynamic
Window Approach (DWA) [1] directly generates samples in
action space U and finds the best sample to move the robot
towards cg in Cfree. However, in the case of highly constrained
spaces, a large sampling density is necessary. For example,
PRM requires many samples to ensure the possibility of finding
valid local connections between samples without enteringCobst.
RRT requires many samples to efficiently progress in Cfree

toward cg . DWA requires many samples to simply generate a
viable action toward cg while keeping the robot configuration in
Cfree. Meanwhile, the output of sampling is often not a smooth
trajectory, thus requiring post-processing. However, smoothing
in highly constrained spaces may be difficult without the path
entering Cobst.

Fig. 2. Different unreachable sets Ci
obst (grey) lead to the same optimal

control plan p (red), which generates the same trajectory (blue). But that
control plan p = f(Ci

obst | cc, cg) has a unique corresponding most constrained
unreachable set C∗

obst = g(p | cc, cg). During training, the hallucinated C∗
obst

is mapped to the robot’s sensors, e.g. LiDAR range readings (orange) computed
by ray casting to the boundary between C∗

obst and C∗
free (purple).

Instead of finding f(·), consider now its “dual” problem, i.e.,
given p (with cc and cg), find the unreachable set Cobst that
generated that plan. Since different Cobst can lead to the same
plan, the left inverse of f , f−1, is not well defined (see Fig. 2(a)
and 2(b)). However, we can instead define a similar function
g(·) such that C∗

obst = g(p | cc, cg), where C∗
obst denotes the C-

space’s most constrained unreachable set corresponding to p.1

Formally, given a plan p, we say

C∗
obst = g(p | cc, cg) iff ∀Cobst ∈ Cobst,

f ∗(Cobst | cc, cg) = p =⇒ Cobst ⊆ C∗
obst,

(1)

where f ∗(·) is the optimal planner. Here, we assume every
primitive control u has deterministic effects, so plans have no
uncertainty associated with their effects. Uncertainty will be ad-
dressed in Sections III-B and III-C. We denote the corresponding
reachable set of C as C∗

free = C \ C∗
obst (Fig. 2(c) and 2(d)).

We call the output of g(·) a hallucination (details can be found in
Section IV-A), and this hallucination can be projected onto the
robot’s sensors. For example, for a LiDAR sensor, we perform
ray casting from the sensor to the boundary between C∗

obst

and C∗
free in order to project the hallucination onto the range

readings (Fig. 2(d)). Given the hallucinationC∗
obst for p, the only

viable (and therefore optimal) plan is p = g−1(C∗
obst | cc, cg).

Note that g(·) is bijective and its inverse g−1(·) is well defined.
All discussed mappings are shown in Fig. 3.

B. Machine Learning Solution Using Hallucination

Leveraging machine learning, g−1(·) is represented using a
function approximator g−1

θ (·). Note that we aim to approximate
g−1
θ (·) instead of the original f(·) due to the vastly different

domain size: while the domain of f(·) is all unreachable sets
Cobst, g−1

θ (·)’s domain is only the most constrained ones C∗
obst

(Fig. 3). Solving f(·) demands high generalization over a large
domain Cobst, while a simple model g−1

θ (·) with a smaller
domain C∗

obst can generalize better and robustly produce p.
During training, control plans p generated by a random explo-

ration policyπrand are applied to drive the robot and the resulting
sequence of robot configurations ci is recorded, where1 ≤ i ≤ n
and n is the number of recorded configurations. To guarantee

1Technically, cg can be uniquely determined by p and cc, but we include it
as an input to g(·) for notational symmetry with f(·).
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Fig. 3. Classical motion planning aims at finding a function f(·) that maps
from a larger domain of unreachable sets Cobst to plans P . We reduce to the
most constrained unreachable sets C∗obst with hallucination g(·) and then use
learning for g−1(·). During deployment we hallucinate the most constrained
unreachable set and predict the resulting optimal plan.

safety during this exploration phase even without human su-
pervision, we conduct training in an open space without any
obstacles, i.e. C0

obst = ∅ and C0
free = C. C0

obst is the most free
(smallest) unreachable set, while C∗

obst is the most constrained
one. In this obstacle-free space, we use C∗

obst = g(p | cc, cg) to
generate the most constrained unreachable set, in which cc is
the current robot configuration at each time step, and cg the
configuration after executing p. The hallucinated C∗

free can be
viewed as all configurations occupied by the robot, C∗

free =

cc
⋃
cg

⋃n
i=1 ci, and C∗

obst = C \ C∗
free. Note that we assume

a deterministic world model for the hallucination and do not
consider motion uncertainty. If necessary, the uncertainty can be
addressed by adding an envelope aroundC∗

free. The hallucinated
C∗

obst is mapped to the robot’s sensors: for geometric sensors,
e.g. LiDAR, we hallucinate the range readings based on C∗

obst,
as shown in Fig. 2(d). In a data-driven manner, we use a function
approximator, i.e. a neural network, to approximate the function
g−1
θ (·) that maps from most constrained unreachable set C∗

obst

to the control plan p. Note that traditionally training data is
collected using human demonstration or reinforcement learning,
both of which are difficult in highly constrained spaces. But
our inherently safe open training environment precludes the
possibility of collision and allows training data to be collected
in a self-supervised manner using a random exploration policy.

During deployment, the robot uses a global planner gp(·)
and perceives real unreachable set Creal

obst to produce a coarse
path: {c̃j | 1 ≤ j ≤ m} = gp(Creal

obst | cc, cg) (Fig. 4(a)). Each
configuration c̃j in this sequence can have fewer dimensions than
the robot’s original configuration ci, and also a low resolution.
For example, ci ∈ R6 with both translational and rotational
components, while c̃j ∈ R3 with only translations. This coarse
global plan can be found very quickly, with conventional search
algorithms such as Dijkstra’s [5], A* [6] or D* [7]. Being com-
puted in real time, it is then used to approximate the most con-
strained hallucinated unreachable set: C∗

obst ≈ h({c̃j | 1 ≤ j ≤
m}) (Fig. 4(b)). Here, h(·) is an online hallucination function
for deployment, which maps from a sequence of approximated

Fig. 4. (a) During deployment, a coarse global plan is computed quickly using
real unreachable set. (b) Most constrained hallucinated unreachable set is then
constructed based on the coarse global plan. (c) Before execution, safety is
estimated by adding Gaussian noise to the computed plan.

planned configurations to the most constrained unreachable set,
instead of from a plan p of actions ui, as the case for g(·). We
hypothesize that machine learning can generalize over the differ-
ence between the codomain of h(·) during deployment and g(·)
in training, and this hypothesis is validated by our experiments.
Using the function g−1

θ (·) learned during the training phase,
a control plan is finally computed based on the hallucinated
unreachable set:

p = g−1
θ (C∗

obst | cc, cg)
= g−1

θ (h({c̃j | 1 ≤ j ≤ m}) | cc, cg)
= g−1

θ (h(gp(Creal
obst | cc, cg)) | cc, cg).

(2)

C. Addressing Uncertainties

The LfH motion planner can only generalize well over halluci-
nated inputC∗

obst that is similar to that seen in the training set, and
the planning output is not expected to assure safety during de-
ployment. These input differences between hallucination during
deployment and hallucination in the training set and the lack of
output safety assurance during deployment motivate addressing
uncertainties from both the input and output perspectives.

Input Uncertainties: Differences between hallucination
during deployment and hallucination in the training set
may stem from the coarse global path {c̃j | 1 ≤ j ≤ m} =
gp(Creal

obst | cc, cg) (Fig. 4) being different from the robot tra-
jectory in the training set constructed by real robot trajectories
(Fig. 2). For example, the robot trajectory in the training set
may be smoother than the coarse global path computed during
deployment. Another difference can arise when the global goal is
behind the robot, and the coarse global planner does not consider
nonholonomic motion constraints such that the planned global
path may start from the current location and directly lead to
somewhere behind the robot, while during training the robot has
only driven forward. Therefore we need a pre-processing routine
that includes path smoothing and robot re-orientation to make
sure the input to LfH resembles the training set. In particular, we
use smoothing within gp(·) to assure the coarse global path is as
smooth as the robot trajectory during training so as to match the
output of h(·) with g(·). Before using the LfH planner, we use
a feedback controller to rotate the robot to a configuration from
which the planned global path is similar to the robot trajectories
in the training set (see Section IV-A for implementation details).
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Algorithm 1: LfH Pipeline.

Input: πrand, g(·), g−1
θ (·), gp(·), h(·), collision(·),

pre-processing, recovery behavior.

1: // Training
2: collect motion plans {p, cc, cg} from πrand in free space

and form training data Dtrain = {C∗
obst, p, cc, cg},

where C∗
obst = g(p | cc, cg)

3: train g−1
θ (·) with Dtrain by minimizing the error

E(C∗
obst,p,cc,cg)∼Dtrain

[�(p, g−1
θ (C∗

obst | cc, cg))]

4: // Deployment (each time step)
5: receive Creal

obst , cc, cg
6: coarse {c̃j | 1 ≤ j ≤ m} = gp(Creal

obst | cc, cg)
7: if {c̃j} does NOT resemble training set then
8: return p with pre-processing routine
9: end if

10: hallucinate C∗
obst ≈ h({c̃j | 1 ≤ j ≤ m})

11: plan p = {ui | 1 ≤ i ≤ t} = g−1
θ (C∗

obst | cc, cg)
12: add noise ε = {εi} to p, p̃ = {ũi | 1 ≤ i ≤ t}
13: modulate p based on

P (safety) = 1− Eε[collision(p̃ |Creal
obst )]

14: if p is NOT safe then
15: return p with recovery behavior
16: end if
17: return p

Output Uncertainties: The control plan p computed by the
learned function approximator g−1

θ (·) is a reaction to C∗
obst,

learned from the hallucinated training set. Although it serves
as an initial solution to the highly constrained workspace,
it lacks both the ability to adapt to the uncertainties in real
workspaces and any assurance of safety. To address those two
problems, we combine the learned control plan with classical
Model Predictive Control (MPC) techniques. When executing
the learned plan p, we assume the output uncertainty can be
expressed by Gaussian noise over the nominal inputs ui. There-
fore, within the computed plan p, we sample noisy controls
around the planned inputs, ũi = ui + εi, εi ∼ N(0, σ2I), and
compose a perturbed plan p̃ = {ũi | 1 ≤ i ≤ t}. We then use
MPC to simulate the robot under these inputs. We check each
resulting trajectory in the real workspace for collision and com-
pute the percentage of trajectories that will not enter Creal

obst :
P (safety) = 1− Eε[collision(p̃ |Creal

obst )], where ε = {εi | 1 ≤
i ≤ t}, as shown in Fig. 4(c). The magnitude of the learned
controls ui is then heuristically modulated, while still observing
kinodynamic constraints of the robot. For example, the robot
may move fast when P (safety) is high and slow down when
it is low. Before execution, the same MPC model checks if the
modulated controls will result in a collision. If so, the controls are
ignored and the robot executes a pre-specified recovery behavior.
The learned control plan from hallucination can therefore both
adapt to real world uncertainties and assure motion safety.

LfH Pipeline: The LfH motion planning pipeline is shown
in Algorithm 1. In lines 2–3, training data is collected via a

random exploration policy in obstacle-free space and g−1
θ (·) is

trained on hallucinated data. At each step during deployment,
line 6 computes a coarse global path from gp(·). Lines 7–9
correspond to the pre-processing routine based on a feedback
controller to address input uncertainties. Line 10 hallucinates
and line 11 produces motion plans. Lines 12–16 address the
output uncertainties.

IV. EXPERIMENTS

In this section, LfH is implemented on a ground robot in
simulation and the real-world. We hypothesize that LfH can
achieve safer, faster, and smoother navigation than existing clas-
sical and learning approaches in highly constrained spaces. We
first present our implementation of LfH on the robot. Baseline
methods to compare LfH against are then described, and we
provide quantitative experimental results in 300 simulation envi-
ronments and a real-world controlled test course, and qualitative
results in natural outdoor/indoor environments.

A. Implementation

A Clearpath Jackal, a differential drive four-wheeled ground
robot, is used as a test platform for the LfH motion planner.
Jackal’s nonholonomic constraints increase the difficulty of
maneuvering in highly constrained spaces. Taking advantage of
the widely-used Robot Operating System (ROS) move_base
navigation stack [26], we replace its DWA local planner with
our LfH pipeline (Algorithm 1), and use the same high-level
global planner (Dijkstra’s algorithm). The global planner as-
sumes unknown regions are free and replans when obstacles are
perceived. The local environment is assumed to be known to the
local planner. Input Creal

obst is instantiated as a 720-dimensional
2D laser scan with a limited 1m range. Other types of met-
ric/geometric perception, such as depth images, can also be
used to instantiate Creal

obst . Planning in a robot-centric view, cc
is the origin and cg is a waypoint 1m away on the global
path (orientation is ignored for simplicity). For training, data
is collected in a self-supervised manner with a Jackal robot
in real-time simulation (line 2 in Algorithm 1). The planning
horizon t is set to 1, i.e. only a single actionu1 = (v1, ω1) (linear
and angular velocity) is produced, for faster computation and
better accuracy. The random exploring policy πrand is simulated
by a human operator randomly pushing an Xbox joystick2, with
v bounded in [0, 0.4] m/s and ω in [−1.4, 1.4] rad/s. This
πrand could be easily replaced by a random walk exploration
policy. Linear and angular velocities are randomly applied to
the robot and perform a large variety of different maneuvers.
We record the control inputs (v and ω) as training labels. For
simplicity, we directly record robot configurations (x, y, and ψ)
from simulation ground truth, instead of computing them based
on v and ω, to extract local goals and to hallucinate LiDAR as
training input. The inherent safety provided by the collision-free
open training environment allows completely self-supervised
learning of a rich variety of motions. We speculate that even
when training in an open space in the real world, safety can

2A random exploration policy implemented later also works well.
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Fig. 5. Finite state machine of the LfH implementation.

be assured by a collision avoidance policy to drive the robot
back into the middle of the open space when it comes close
to the environment boundary. We find the model (three-layer
neural network, with 256 hidden neurons and ReLU activation
for each layer) learned from the less than four minutes simulation
in real time can easily generalize to the real world. Training
with the four-minute data takes less than one minute on an Intel
Core i9-9980HK CPU, indicating high computational efficiency
(line 3).

For deployment, we implement a Finite State Machine, shown
in Fig. 5. For line 6 in Algorithm 1, {c̃j | 1 ≤ j ≤ m} is
smoothed by a Savitzky–Golay filter [27] on the global path.
In general, path smoothing may lead to an invalid plan, but
we do not observe such an effect from smoothing the coarse
global path planned by Dijkstra’s algorithm in move_base.
For lines 7–9, a PID controller in the pre-processing routine
rotates the robot in place to address out-of-distribution scenarios
unseen in the training set (when the angle between the current
robot heading and the current tangential direction of the global
path falls out of the range [−30◦, 30◦]). Otherwise, the LfH
module takes control. For line 10, C∗

obst is constructed as all
configurations that are slightly more than the robot’s half-width
away from the smoothed global path. We use ray casting to
generate hallucinated LiDAR input. For safety, we take the
minimum value between the hallucinated and real laser scan.
Concatenated with the current linear and angular velocity and
the local goal cg taken from the global plan, the hallucinated
LiDAR is fed into a neural controller (g−1

θ (·)) and a plan with
planning horizon t = 1 (one command of linear and angular
velocity) is produced (line 11). We add Gaussian noise of zero
mean and 10% standard deviation to the produced v and ω in
line 12. The controls are modulated by the safety estimation by
a MPC collision checker in line 13:

ew1−w2(1−P (safety)) · {v, ω},
where the weights for the speed modulationw1 = 0.4 andw2 =
1.0 correspond to roughly 50%–150% modulation. In order
to prevent noisy ω being amplified by the modulation in safe
spaces, we suppress any ω < 0.04 rad/s to 0. For the recovery
behavior routine in lines 14–16 when a collision is detected, the
robot starts a three-phase recovery behavior designed by hand.

Fig. 6. Three example simulation environments.

Fig. 7. Simulation Results: Number of failure environments, average traversal
time of all trials of DWA and LfH (table), and their performance in the 300 indi-
vidual BARN environments (curve, averaged over three trials each environment).

If the first (decreasing v and increasingω iteratively) and second
(increasing negated v and original ω iteratively) phase are still
unsafe, the robot drives back slowly in the third phase.

B. Results

We first test LfH against the sampling-based DWA planner of
move_base in the Benchmark Autonomous Robot Navigation
(BARN) dataset [28], which uses traversal time as a metric to
benchmark navigation performance. BARN is composed of 300
navigation environments randomly generated using Cellular Au-
tomata. The DWA planner is a widely used representative classi-
cal navigation approach. The default parameters recommended
by the robot manufacturer3 are used. We acknowledge that if
re-tuned for each environment DWA can achieve better perfor-
mance. But it is not practical to do so for all 300 environments,
neither with expert knowledge, nor with state-of-the-art learning
methods [2], [12]. In each of the 300 environments, the robot
navigates three trials between a specified start and goal location
without a map, using the default DWA and the LfH planner. This
results in 1800 total trials and the maximum traversal time of
each trial is capped at 50s (more than 50s is defined as failure).
Three example simulation environments are shown in Fig. 6. We
order the environments using the average traversal time of DWA
(red) as an indicator of difficulty/constrained level, and also
show the average LfH performance (green) in Fig. 7: although
navigating only at a low 0.5m/s speed, the default DWA still fails
to sample feasible actions in many scenarios, causing back and

3https://github.com/jackal/jackal/blob/melodic-devel/jackal_navigation/
params/base_local_planner_params.yaml
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TABLE I
QUANTITATIVE RESULTS

forth motion or getting stuck. In most cases, LfH achieves equal
or faster traversal times than DWA, and the green line fitted to the
green dots indicates LfH is less sensitive to difficult/constrained
environments than DWA.

The LfH controller is then tested in a real-world highly
constrained obstacle course with minimum clearance roughly
1.3× the robot’s footprint (see Fig. 1), whose difficulty is evident
based on the 100% failure rate of the robot’s default planner. The
robot needs to perform agile maneuvers to navigate through this
environment without a map. We compare the LfH controller with
three baseline local planners. First, we compare to the default
DWA again, as the classical sampling-based motion planner.
Second, a machine learning approach, similar to the Behavior
Cloning (BC) work presented by Pfeiffer et al. [2], replaces the
green LfH module in Fig. 5 and maintains the yellow Turn in
Place and Recovery Behavior modules to study the effect of hal-
lucinated learning. We use the same neural network architecture
as LfH, but with realistic instead of hallucinated LiDAR input.
Note that the original BC work used DWA as the expert, so the
learned performance is upper bounded by DWA. We directly
compare to their expert and further provide the BC framework
with a better expert: human expert demonstration in the same
deployment environment. Third, as a recent improvement upon
classical planners, APPLD [12] can fine-tune DWA parameters
based on different navigation contexts to improve navigation.
Therefore, we compare to APPLD-DWA as an upper bound
of classical approaches. In particular, one of the authors with
extensive Jackal teleoperation experience provides a demonstra-
tion in the same deployment environment for BC and APPLD.
The demonstrator aims at quickly traversing the course in a
safe manner. APPLD generates four sets of planner parameters
to adapt to different regions of the obstacle course. Note that
with demonstration in the same environment, we allow BC and
APPLD to fit to the deployment environment, while LfH is not
given any such training data. All approaches use exactly the
same hardware.

Ten trials for each planner are executed in the obstacle course.
The results of the four methods are summarized in Table I.
We define “Success” as navigating through the course without
any collision. Non-terminal “Collision”s are recorded and we
allow the robot to keep navigating to the goal. “Failure” is
when the robot fails to navigate through the course to reach
the destination, e.g. getting stuck at a bottle neck or knocking
down the obstacle course. We compute average traversal time
based on the “Success” and “Collision” trials. For default DWA,
all ten trials get stuck mostly because the default planner cannot
sample viable velocity commands in such a highly constrained
environment. BC does not finish three out of ten trials, mostly

Fig. 8. Qualitative Results: Jackal navigates with the LfH local planner in
outdoor and indoor environments with highly cluttered natural objects and tight
clearances. (https://www.youtube.com/watch?v=AE-KgxJS-iE).

due to knocking down the course, and in five other trials, the
robot collides with the obstacles. The safety check fails to
prevent some collisions since the close distance to the obstacle
is smaller than the LiDAR’s minimum range. The other two
trials are successful, but we observe very jittery motion. Using
four sets of parameters learned in eight hours from human
demonstration, APPLD successfully navigates Jackal through
the obstacle course without collision in eight trials, and causes
one gentle collision in each of the other two trials. The average
traversal time is longer than the demonstration (67.8 s). The
LfH controller succeeds in nine out of ten trials with a faster
average speed and smaller variance. The motion is qualitatively
smoother than other methods. One gentle collision with an
obstacle happens in one trial.

Qualitatively, we also test the LfH local planner in both
outdoor and indoor natural environments. It is able to success-
fully navigate through highly constrained spaces cluttered with
everyday objects, including tables, chairs, doors, white boards,
trash cans, etc. In relatively open space, LfH can also enable
smooth and fast navigation. Note the robot has never seen any
of those environments, nor even a single real obstacle, during
training, and does not require human supervision. Admittedly,
better demonstrations or extensive engineering targeted at the
deployment environment could enable conventional learning
or classical approaches to match or even exceed LfH’s perfor-
mance. The strength of LfH is in its performance without such
demonstrations or engineering, and in its ability to generalize to
unseen deployment scenarios (as shown in Figs. 1, 6, 7, and 8).

V. CONCLUSION

This letter introduces the novel LfH technique to address
motion planning (i.e., navigation) in highly constrained spaces.
For robotics, the LfH method addresses the difficulty in planning
motion when obstacle space occupies the majority of the sur-
rounding C-space, which usually causes an increasing demand
on sampling density and therefore computation using classical
approaches. Seeking help from a data-driven perspective, we
hallucinate the most constrained workspace that allows the
same effective maneuvers in open space to the robot perception
and learn a mapping from the hallucinated workspace to that
optimal control input. For machine learning, the proposed LfH
method provides a self-supervised training approach and largely
improves sample efficiency, compared to traditional IL and RL.
To combine the benefits of both sides, our local planner estimates
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motion safety with MPC and enables agile maneuvers in highly
constrained spaces with learning. In simulated and physical
robot experiments, LfH outperforms classical sampling-based
method with default and even with dynamically fine-tuned pa-
rameters, and also imitation learning deployed in the identical
training environment. An interesting direction for future work is
to extended LfH beyond 2D ground navigation, e.g. toward 3D
aerial navigation or manipulation with higher degrees of free-
dom. In this case, new hallucination techniques beyond simple
2D ray casting are needed, e.g. for 3D LiDAR or depth camera.
Another interesting direction is to investigate hallucination tech-
niques that not only hallucinate the most constrained partition
C = C∗

obst ∪ C∗
free, but also any partition C = Ci

obst ∪ Ci
free

in between, for which the motion plan p is still optimal. In that
case, hallucination during deployment is no longer necessary.
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