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Abstract—Cobalt Strike is a penetration testing software that
supports stealthy command and control (C&C). As Cobalt Strike
C&C always encrypts its payload and can mimic various normal
traffic (e.g., HTTP, HTTPS), it is very difficult to distinguish
and detect stealthy Cobalt Strike C&C traffic from normal
(encrypted) traffic. As a result, many recent cyber attacks
(e.g., 2020 SolarWind data breach) used Cobalt Strike C&C
to surreptitiously control compromised systems and exfiltrate
sensitive data without being detected. To protect our mission
critical systems from sophisticated cyber attacks, it is critically
important to develop capabilities to effectively detect real world
Cobalt Strike C&C activities from encrypted traffic.

In this paper, we investigate how machine learning models can
help detect stealthy Cobalt Strike C&C activities from encrypted
traffic. Based on analysis of real world Cobalt Strike C&C
traffic, we have developed novel machine learning features across
multiple packet flows that capture some inherent characteristics
of encrypted Cobalt Strike C&C traffic. We have evaluated
several machine learning algorithms with our multi-flow based
machine learning features and real world Cobalt Strike C&C
traffic captured from real world cyber attacks Our experimental
results demonstrate that our neural network based detection is
able to detect 90.9% real world Cobalt Strike C&C activities
with 0.4% false positive rate.

Index Terms—Cobalt Strike C&C, Intrusion Detection System,
Machine Learning

I. INTRODUCTION

The digital technologies have become a critical part of the
lives of billions around the world, used in activities from
the exchange of information to monetary transactions. Cyber
attacks have emerged as an increasingly more serious threat
to these activities, with an estimated global cost of cyber
crime nearing 6 trillion dollars per year [1]. Furthermore, cyber
attacks are also used as a military action to disrupt social and
economic activities, as well as disable critical infrastructure.

Cobalt Strike is a penetration testing software that has
recently become a favorite tool among malicious actors to
perform sophisticated cyber attacks on vulnerable targets due
to its advanced evasion capabilities. As reported by Cisco’s
Talon Incident Report [2], Cobalt Strike was involved in 66%
of the ransomware attacks in the last quarter of 2020. Cobalt
Strike is also used as an advanced persistent threat (APT)
such as the case of the SolarWinds hack in 2020 [3], where
the attackers delivered a customized Cobalt Strike payload via
malicious software updates to 18,000 customers of the Orion

software, including many global companies (e.g., Microsoft,
Cisco) and various US government agencies.

Cobalt Strike establishes a stealthy command-and-control
(C&C) channel between an infected victim and the attacker,
which enables the attacker to explore, exploit and control
the victim system and exfiltrate sensitive information. Cobalt
Strike allows attackers to use Malleable C&C profiles to
customize and disguise the C&C traffic as legitimate traffic,
which makes the C&C traffic very stealthy and hard to detect.
For example, the 2020 SolarWinds data breach attack has
remained undetected for over 9 months. Microsoft president
Brad Smith considered the 2020 SolarWinds attack as “the
largest and most sophisticated attack the world has ever seen”
[4]. To the best of our knowledge, there is no published
approach that can reliably detect real world stealthy Cobalt
Strike C&C activities.

In this paper, we investigate how machine learning models
can help detect stealthy Cobalt Strike C&C activities from
encrypted traffic. Based on analysis of real world Cobalt Strike
C&C traffic, we have developed novel machine learning fea-
tures across multiple packet flows that capture some inherent
characteristics of encrypted Cobalt Strike C&C traffic. We
have evaluated several machine learning algorithms with our
multi-flow based machine learning features and real world
Cobalt Strike C&C traffic captured from real world cyber
attacks Our experimental results demonstrate that our neural
network based detection is able to detect 90.9% real world
Cobalt Strike C&C activities with 0.4% false positive rate.

The rest of the paper is organized as follows: section II
overviews the Cobalt Strike framework and characterizes its
C&C traffic patterns. Section III presents the threat model,
feature extraction and machine learning model development of
the multi-flow based detection approach. Section IV describes
the empirical validation results with the Cobalt Strike C&C
traffic from real world attacks. We review related works in
section V, and conclude the paper with potential future works
in section VI.

II. BACKGROUND

A. Cobalt Strike

Cobalt Strike was originally developed as a penetration test-
ing tool by Raphael Smudge in 2012 [5]. Specifically, Cobalt



Strike provides functionalities for the penetration testers to 1)
perform target reconnaissance and identify known vulnerabili-
ties in targets; 2) create trojans and malicious website clone for
drive-by attacks; 3) compromise the chosen vulnerable targets
by deploying and injecting malicious agents – called Beacon
into the targets; 4) secretly control the compromised systems
via key logging, taking screenshots, executing arbitrary com-
mand and payload, downloading additional malware, injecting
a Beacon in other processes; and 5) encrypt its C&C traffic
and mimic popular network traffic such HTTPS. Due to its
powerful and stealthy C&C features, Cobalt Strike has been
widely used by many real world cyber attacks [6].

Cobalt Strike framework consists of 1) the team server; 2)
the client; and 3) the Beacon. The team server is the C&C
server that, on behalf of the client, interacts with victims that
have been infected with some Beacon. The client is the system
used by the attacker to interact with the Beacon via the team
server. The Cobalt Strike Beacon is the malware payload that
opens and maintains a backdoor on a victim system, and it
has two parts: the payload stage, and the payload stager. The
payload stager is a smaller program that is used to download
the payload stage and inject it into the memory of the victim,
and then pass the execution to it. The payload stage is the
actual backdoor that runs in memory of the victim that can
establish a stealthy C&C channel to the C&C server.

B. Cobalt Strike C&C Traffic Patterns

Cobalt Strike support C&C via multiple popular protocols
(e.g., HTTP, HTTPS, DNS). In this paper, we focus on the
detection of Cobalt Strike C&C disguised as HTTPS traffic,
which is most frequently used by attackers. Our analysis of
Cobalt Strike C&C has shown the following common patterns:

• When a victim is infected, the Beacon will periodically
communicate with the team server to retrieve any tasks
requested by the attacker. It supports both asynchronous
and interactive communications, and the time interval that
the Beacon sleeps for between calls is determined by the
attacker.

• The Beacon initiates the transaction with the C&C server
by sending a GET request with information about the
infected system. The server then responds with the tasks
for the Beacon to execute.

• The Beacon executes the tasks, and sends the execution
results back to the C&C server in a POST request. Then,
the Beacon discards the contents of the server response.

• By using GET and POST messages, Cobalt Strike C&C
imitates a legitimate HTTPS transaction between a client
and a server. Each request-response exchange opens a
new TCP connection and, in the case of the HTTPS
communications, a new TLS session is established.

• Cobalt Strike encodes and encrypts the C&C data ex-
changed between the Beacon and the C&C server, which
defeats any content-based detection.

• Cobalt Strike Beacon connections or sessions tend to be
short in time – between a few milliseconds to a few
seconds, depending on the channel bandwidth.

Fig. 1. Captured HTTPS Packets from Cobalt Strike C&C Traffic

Figure 1 shows an interaction between a Cobalt Strike Bea-
con and a C&C server disguised as HTTPS traffic. Specifically,
the interaction involves multiple HTTPS sessions established
by standard TLS handshake. Once each HTTPS session is
established, the Beacon and the team server start to exchange
task requests and task results encoded and encrypted as
HTTPS application data. If the Beacon receives task requests,
it closes the current TCP connection and opens a new TCP
connection and TLS session to send the task results back
to the server as soon as their execution of the tasks is
completed. Each HTTPS session is terminated by encrypted
alert message.

C. Cobalt Strike Malleable C&C Profiles

Cobalt Strike utilizes Malleable C&C profiles to modify
the network indicators of the C&C traffic between the Beacon
and the team server, which enables an attacker to disguise the
Beacon activity to look like other malware or blend in with
legitimate traffic.

The Malleable C&C profile includes 1) the sleeptime and
jitter which modify the Beacon callback interval; 2) the data
jitter which enables the attacker to append a random length of
null data up to the server response payload; 3) the useragent
which sets the User-Agent string in HTTP requests. The
Malleable C&C profile can also configure the HTTP headers,
the SSL certificate, the URI of the HTTP requests, and the
HTTP verb in the http-post section.

III. A MULTI-FLOW BASED DETECTION APPROACH

A. Threat Model

Our objective is to develop an effective machine learning
based detection of stealthy Cobalt Strike C&C activities, and
we focus on detecting Cobalt Strike Beacon traffic disguised as
HTTPS traffic. We assume the following regarding the Cobalt
Strike C&C traffic:

• The system has already been infected with a Cobalt Strike
HTTPS Beacon and the initial infection has not been
detected by an IDS/IPS.

• The attackers use a single C&C server to communicate
with the Beacon but they can use any Malleable C&C
profile configuration.



B. Cobalt Strike HTTPS Traffic Analysis

From an observer’s perspective, the HTTPS traffic between
the Beacon and the Cobalt Strike server is very similar to
the legitimate HTTPS traffic between a HTTPS client and a
HTTPS server. Since Cobalt Strike C&C always encrypts its
payload and can mimic normal HTTPS traffic, it is infeasible
to use content or simple header information to effectively
distinguish Cobalt Strike C&C traffic from normal HTTPS
traffic.

The key to distinguish stealthy Cobalt Strike C&C traffic
from normal HTTPS traffic is to identify those inherent
characteristics of encrypted Cobalt Strike traffic and build
novel machine learning features based those inherent traffic
characteristics.

By analyzing the interactions between HTTPS client and
HTTPS server, we observe the following characteristics of
normal HTTPS traffic: 1) HTTPS servers tend to be the first
to send TLS application data to clients; and 2) HTTPS servers
tend to send more TLS application data to clients than clients
send to servers. In contrast, the Cobalt Strike HTTPS beacon
traffic exhibits some inherently unique pattern with various
malleable C&C profiles.

First, unlike legitimate traffic which is mostly aperiodic,
Cobalt Strike C&C traffic exhibits strong periodic pattern as
the Beacon periodically calls back to the team server to retrieve
tasks. Second, Cobalt Strike C&C used multiple consecutive
TLS sessions between one Beacon and the server. Third, the
Beacon TLS sessions normally have very short duration, while
legitimate TLS sessions that tend to last longer. Lastly, Cobalt
Strike allows attackers to modify the server IP address and
ports that are used in the transactions between the Beacon
and the team server. Similarly, the attacker can modify the
values in the headers of the HTTPS packets exchanged, and
the size of the data payload sent by the server.

Due to mainly being used for data exfiltration, the Beacon
sends more data to the C&C server than it receives in most
scenarios, even when a high data jitter is configured in
the Malleable C&C profile. Furthermore, the Beacon always
initiates the transactions with the team server by sending the
first application data packet after the TLS session has been
established via the TLS handshake. Such patterns are very rare
in normal HTTPS traffic.

C. Feature Extraction

Based upon the above analysis, we are convinced that it
is better to consider a group of HTTPS transactions between
a client and a server (or the Beacon and the team server)
instead of the individual transactions when extracting machine
learning features to differentiate the HTTPS Beacon traffic
from legitimate HTTPS traffic.

In order to capture the inherent interaction patterns of the
Cobalt Strike C&C traffic, we consider those TLS sessions
between the same pair of IP addresses that are not less than 30
seconds apart as one TLS group, and we define the following
group-based features to capture the unique characteristics of
Cobalt Strike C&C traffic:

• dur: the total duration of all the HTTPS sessions within
one HTTPS group.

• nses: the number of HTTPS sessions with the HTTPS
group.

• cltmoredata: the fraction of the HTTPS sessions within
the group that the client sends more application data than
server.

• clt1stdata: the fraction of the HTTPS sessions within the
group that the client sends the application data to server
first.

• dur mean: the mean of the duration (in seconds) of all
HTTPS sessions within the group.

• dur std: the standard deviation of the duration (in sec-
onds) of all HTTPS sessions within the group.

• int mean: the mean of the interval between successive
HTTPS sessions within the group.

• int std: the standard deviation of the interval between
successive HTTPS sessions within the group.

Feature nses enables us to capture inherent patterns among
multiple TLS sessions of the Cobalt Strike Beacon traffic.
The clt1stappdata feature captures the percentage of the TLS
sessions in which the client sends the first application data
packet after the session is established. Similarly, cltmoredata
documents the percentage of the TLS sessions in which the
victim sends more data to the team server than it receives.
The mean and standard deviation (dur mean, dur std) of the
duration enable us to identify those HTTPS groups with short
session duration. Finally, features int mean, int std enable us
to differentiate largely periodic Beacon traffic from largely
aperiodic normal HTTPS traffic at the granularity of TLS
sessions.

D. Machine Learning Model Development

We follow a series of steps in the development of our
machine learning models such that each model may perform
its best in detecting stealthy Cobalt Strike C&C traffic via
given machine learning features. These steps can be generally
divided into data exploration, model building, hyperparameter
tuning and model selection.

The data exploration phase consists of the study of the
input data and data collection, data preprocessing and feature
engineering. The model building phase requires the separation
of the collected data into two datasets, the selection of machine
learning algorithms and building the machine learning models
using the selected algorithms. The hyperparameter tuning
phase involves the computation of the model performance on
the test data and the modification of the model hyperparam-
eters (parameters whose value can be modified to control the
learning process) until a desired performance level has been
reached or all possibilities have been exhausted. Finally, the
model selection phase will compare the performance of all the
different machine learning models generated and choose the
model that performs best for the problem at hand.

We use the following popular metrics to evaluate the per-
formance of different machine learning models: 1) accuracy;
2) weighted precision; 3) true positive rate (TPR); 4) false



positive rate (FPR); and 5) F1 score. The most important
metrics will be the TPR, which is used to assess each model’s
ability to detect the Beacon C&C traffic, and the FPR, that
reports the percentage of false alarms that each model may
produce.

We also use the graphical confusion matrix to show the
performance results of the best machine learning model. A
confusion matrix is a table commonly used to describe the
performance of a machine learning model when performing
classification tasks over a test dataset whose labels (or classes)
are known. It does so by establishing a relationship between
the real label of a record and the predicted label of the same
record, which graphically illustrates the number of records that
have been correctly and incorrectly classified.

Given that most Internet traffic are not Cobalt Strike C&C
traffic, we strive to obtain low detection FPR and high detec-
tion TPR at the same time to avoid the base rate fallacy [7] in
real world scenario. We have selected the following machine
learning algorithms:

• Random forest: A random forest algorithm combines
many decision trees algorithms to reduce the risk of
overfitting.

• Neural network: It consists of multiple hidden layer
nodes, with each layer fully connected to the next layer,
employing back propagation to modify the weight of each
link between nodes during training.

• Linear support vector machine: It constructs a hyper-
plane using the OWLQN optimizer to optimize the Hinge
loss, which can be used for binary classification.

• Naı̈ve Bayes: Family of probabilistic classifiers based
on the application of the Bayes theorem with strong
independence assumptions between the features.

• K-means: A clustering algorithm for unsupervised ma-
chine learning that groups data records into a predefined
number of clusters.

IV. EXPERIMENTS AND RESULTS

A. Dataset Acquisition

As mentioned in the previous section, the development of a
machine learning model requires a training dataset to train
the machine learning algorithm and build the model. The
evaluation of the resulting model needs a separate testing
dataset. Both datasets should contain both legitimate traffic
and Cobalt Strike C&C traffic.

Since there are currently no publicly available datasets
containing Beacon traffic, it will be necessary to generate the
datasets from network traffic packet captures (PCAPs) and use
a proprietary software to extract the traffic characteristics into
features that can be used by the machine learning model to
classify the traffic.

The traffic used to generate the training dataset has been ex-
tracted from various sources. We have obtained the legitimate
HTTPS traffic from the public datasets CICIDS17 [8] of the
Canadian Institute of Cybersecurity and CTU-Normal-20 [9]
of the Stratosphere Research Laboratory. The HTTPS Beacon

TABLE I
RECORDS IN TRAINING AND TESTING DATASETS

Record Type Training Dataset Testing Dataset
Legitimate HTTPS 17,271 644
Lab HTTPS Cobalt Strike 29 0
Real HTTPS Cobalt Strike 0 33
Total Records 17,300 677

traffic, on the other hand, has been generated and collected in
our lab environment using 29 different Malleable C&C profiles
and commands to emulate advanced penetration threats (APT),
crimeware or normal traffic, or generated using randomizers
such as [10]. The use of different Malleable C&C profiles
reduces the possibility of overfitting the machine learning
model to a specific Malleable C&C profile (i.e., the machine
learning model is too closely aligned to the training dataset)
thus enabling the machine learning models to perform better
in the detection of previously unseen real world Cobalt Strike
traffic.

The testing dataset used to evaluate the Machine learning
model has been obtained from the cybersecurity blog malware-
traffic-analysis.net [11], which posts traffic from real world cy-
ber attacks reported by companies such as Palo Alto Networks’
Unit 42 and other cybersecurity blogs. The dataset includes
real HTTPS Beacon traffic, legitimate HTTPS traffic and
HTTPS traffic generated from other malware. All the traffic in
these traces has been manually labeled by cybersecurity teams,
which allows us to measure the performance of our machine
learning based detection.

Each dataset record represents a group of HTTPS sessions
between a pair of IP addresses in a PCAP. As shown in Table
I, the training dataset contains 17,300 records out of which
29 records correspond to HTTPS Beacon traffic, and 17,271
records correspond to legitimate traffic. The testing dataset has
677 records with 33 HTTPS Beacon traffic records captured
from real world cyberattacks and 644 records of legitimate or
other malware traffic.

B. Feature Engineering

Every record of the dataset has 13 features extracted from
the acquired traffic using a proprietary software tool. The first
5 features include: src ip, src p, dst ip, dst p and proto to
uniquely identify each packet flow. To avoid making the ma-
chine learning model to be biased against certain IP addresses,
and obtaining similar results to those using a signature-based
approach, we choose not using these flow identifiers in training
our machine learning models.

We use the remaining 8 features in the classification of the
traffic. Specifically, the number of sessions (nses) that form
each HTTPS group will be selected as an input feature due
to the assumption that an attacker would require at least 10
connections (or HTTPS sessions in this case) between the
Beacon and the C&C server to exfiltrate a significant amount
of information about a system. As proof of this assumption,
all of the real Beacon traffic records that will be used to test



Accuracy Precision F1 score TPR FPR
Random forest 0.961 0.956 0.952 0.272 0.004
Neural network 0.992 0.992 0.992 0.909 0.004
Naïve Bayes 0.932 0.969 0.944 0.969 0.07
Linear Support Vector Machine 0.954 0.956 0.934 0.06 0
K-Means 0.955 0.957 0.937 0.09 0
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Fig. 2. Detection Performance Comparison of Different Machine Learning Models

Fig. 3. Confusion matrix of the Neural Network Model

the model, have more than 10 sessions per group, while many
of the legitimate traffic groups have less than 5 sessions.

The cltmoredata and clt1stappdata will be key features in
the detection of Beacon traffic, as they have been specifically
extracted due to being related to certain characteristics of
the Beacon traffic. The rest of the features (dur, dur mean,
dur std, int mean and mean std) will be used as input to the
Machine learning models depending on how they affect the
performance of the different models.

Since all the eight possible input features take continuous
values, it will not be necessary to perform feature encoding
for the group-based dataset. Like the connection-based dataset,
the input features will be grouped into a vector-type feature
called features using VectorAssembler, which will be used as
the input of the model to facilitate its building process.

C. Group Based Cobalt Strike Detection

Using the Apache Spark machine learning library MLlib,
we have developed the machine learning model and have
conducted hyperparameter tuning to achieve best possible
performance for each of the algorithms. While other machine
learning libraries (e.g., TensorFlow) may have more sophis-
ticated machine learning algorithms, they lack the Spark’s
ability to process large amounts of data in real-time.

Of the machine learning algorithms, the linear support
vector machine and the k-means models fail to perform any
significant detection of the Beacon traffic using any combina-
tion of input features or hyperparameters, as they achieve less
than a 10% true positive rate.

As shown in Figure 2, the random forest model achieves a
27.2% detection rate with a false positive rate of 0.4% using
the features nses, cltmoredata, clt1stappdata, int mean and
int std as inputs. Due to its low detection rate, the random
forest model would fail to detect most of the Cobalt Strike
Beacon infections.

On the other hand, the naı̈ve bayes model is built with
the hyperparameter modelType = ḿultinomialánd achieves a
96.9% detection rate with a false positive rate of 7% using
nses, cltmoredata, clt1stappdata and dur std as input features.
While it has high detection rate, the relatively high false alarm
rate of the naı̈ve bayes model prevents it from being a viable
detection model in real world environments.

The neural network model performs the best, as it achieves
a high true positive rate close to 91% while maintaining a
0.4% false positive rate, which is low enough to be deployed
in a real environment. It uses all 8 features as inputs for the
model, and the L-BFGS solver as hyperparameter. We have
tried different seed values, which set the initial weights of the
neural network algorithm, to obtain the best possible results.

It is important to note that different seeds could result
different results obtained for the neural network model with
the same hyperparameters and input values. For example, one



of the seeds resulted in 13 mixed traffic records being misclas-
sified as Beacon traffic, or a 2.1% false alarm rate. However,
upon closer inspection, at least eight out of the thirteen records
that were misclassified belonged to two malware samples,
ICEID and Bazarloader, which employ C&C communications
to send information to infected hosts. Thus, it can be assumed
that if malicious C&C traffic generated from other malware
adopts similar patterns to the Cobalt Strike Beacon traffic, the
intrusion detection system may be able to detect it.

The resulting group-based network intrusion detection sys-
tem from this experiments will use the developed neural
network model to make predictions on the HTTPS traffic
captured after the information from the HTTPS session groups
is extracted using the propietary program. Figure 3 shows the
confusion matrix of the neural network model when tested
against real traffic from Cobalt Strike attacks that include
HTTP and HTTPS Beacon traffic, normal traffic, and mali-
cious traffic from other malware sources. Since the focus of
this paper is to detect Cobalt Strike C&C traffic, the malicious
traffic from other sources has been labeled ”legitimate”.

V. RELATED WORKS

Machine learning techniques have been widely used in
building cyberattack detection systems [12]–[17]. Most exist-
ing machine learning based cyberattack detection approaches
(e.g., convolutional neural network based detection [17]) are
designed to detect known exploits rather than stealthy C&C
traffic, and they have achieved good results in the classification
of known attacks from public cybersecurity datasets such as
CICIDS17 and UNSW-NB15.

The increasing use of Cobalt Strike recent massive data
breach attacks (e.g., 2020 Solarwind attack) has sprouted an
interest from security researchers to develop the capability to
determine if a host has been infected with a Cobalt Strike
Beacon. However, many existing machine learning based
detection approaches have been shown to be vulnerable to
evasion [18]. Based on an extensive analysis on the Cobalt
Strike C&C traffic encoding [19] and encryption [20] of the
payload as well as the Malleable C&C profiles, Navarrete et al.
[21] explained how Cobalt Strike’s versatility makes it difficult
to detect.

N. Kanzig et al. [22] proposed a method to identify C&C
channels with a random forest classifier using features ex-
tracted from CICFlowMeter, an open-source tool for extracting
flows from packet traces. Their work evaluates the model using
Cobalt Strike traffic from the Locked Shields [23] competition
datasets from 2017 and 2018, but does not consider the data
jitter that can be introduced into the server responses, which
will affect the packet flow features that they use to perform
detection. In contrast, our multi-flow based detection can
handle different data jitter and sleep jitter through the use of
features such as cltmoreappdata and int std.

Van der Eijk et al. [24] presented an approach to detect
Cobalt Strike Beacons using NetFlow data along with a
detection algorithm that classified the data depending on the
features and threshold values. They set the thresholds of the

detection algorithm with the values generated from a single
Malleable C&C profile, and evaluated the algorithm with lab
generated HTTP and HTTPS Beacon traffic and four Malleable
C&C profiles.

Martin Ramos et al. [25] recently proposed using network
flow information in building machine learning based detection
of Cobalt Strike activities, and their machine learning model
has achieved 47% detection true positive rate and 1.4% false
positive rate. Instead of using the features of the overall
network flow, our machine learning model uses features of
the multiple flows sessions that are inherent to stealthy Cobalt
Strike activities. Such unique features enabled our machine
learning model to detect real world Cobalt Strike activities
from encrypted traffic with 90.9% true positive rate and 0.4%
false positive.

In summary, most previous machine learning based Cobalt
Strike C&C detection approaches were evaluated with lab
generated Cobalt Strike C&C traffic and a very few malleable
C&C profiles. It is unknown if those machine learning based
approaches were able to detect real world Cobalt Strike C&C
traffic. In contrast, our multi-flow based approach was trained
with 29 different Malleable C&C profiles and empirically
evaluated with Cobalt Strike C&C traffic from real world
cyberattacks. Empirical results show that our multi-flow based
machine learning model performs significantly better than
previous single flow based machine learning model [25].

VI. CONCLUSIONS

In this paper, we present a machine learning based approach
to identify the stealthy Cobalt Strike C&C Beacon traffic. The
key contribution of this work is the development of novel
machine learning features across multiple packet flows that
captured some inherent characteristics of encrypted Cobalt
Strike C&C traffic.

Built upon our unique multi-flow machine learning fea-
tures extracted from the set of all TLS sessions between
two hosts, our machine learning models have been trained
with lab generated Cobalt Strike HTTPS traffic using 29
different Malleable C&C profiles. We have then validated our
machine learning models with real world Cobalt Strike Beacon
infections captured from real world cyberattacks. Out neural
network model is able to detect 90.9% previously unknown
Cobalt Strike C&C traffic while maintaining a low 0.4% false
positive rate. Our experimental results demonstrate that it
is feasible to detect stealthy real world Cobalt Strike C&C
activities from encrypted traffic once appropriate machine
features have been identified.

As a future work, we plan to investigate if other machine
learning models (e.g., CNN, RNN) could achieve better de-
tection results and if our multi-flow based machine learning is
effective in detecting other cyberattack traffic.
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